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Abstract

Modern-day Brain-Computer Interfaces (BCIs) are a valuable tool for people suffering from disease of neural origin used
to control external applications. However, BCIs are hampered by artefactual source interference with neural sources used
to control the BCI. While there are spatial filter methods to decompose the recorded signal into its source estimates, the
non-stationary nature of the recorded data does not permit transfer of computed filters for new sessions. Thus, source
estimates that are used to make sense of the recorded data are not consistent over sessions. Yet, nowadays state of the
art spatial filter methods do not take non-stationary assumptions into consideration. Hence, due to the lack of the spatial
filters ability to transfer over sessions the preprocessing of such BCIs are bound to time-costly daily setup procedure. Due
to the inability of session transfer for state of the art methods, such as information maximisation independent component
analysis (Infomax ICA), we investigate linear constraint minimum variance (LCMV) beamforming to obtain brain related
spatial filters for session transfer. Given the beamformers robustness due to second-order statistic estimation, we aim to
test for their viability to yield spatial filters that particularly transfer over session. The beamformer was initialised with the
spatial patterns of the Infomax ICA and compared against the corresponding spatial filters. The herewith obtained spatial
filters were evaluated on real EEG data recorded with a high density EEG using the motor imagery paradigm. Grand mean
accuracy was chosen as criterion in order to test for the spatial filters viability for online BCI applications. However, the
actual evaluations were performed offline using stratified 10-fold cross-validation. Finally, while the beamformer spatial
filters showed no clear trend for session transfer, pairwise permutation tests were performed to show the validity of the
empirical results.

Zusammenfassung

Heutige Gehirn-Computer Schnittstellen (GCS) sind ein wertvolles Werkzeug für Menschen die an Krankheiten neurona-
len Ursprungs leiden. Allerdings werden GCS durch Interferenz von Artefaktquellen mit neuronalen Quellen behindert,
wobei lediglich letztere zur Steuerung der GCS verwendet werden. Zwar gibt es örtliche Filtermethoden um die aufge-
nommen Signale wieder in deren ursprüngliche Komponenten zu zerlegen, jedoch erlaubt die nichtstationäre Natur der
aufgenommenen Daten keinen Transfer von berechneten örtlichen Filtern auf neue Session. Dennoch nehmen moderne
örtliche Filtermethoden keine Nicht-Stationaritätsannahme in Betracht. Daher sind die Vorverarbeitungsmethoden sol-
cher GCS an zeitaufwändigen Kalibrationsphasen auf täglicher Basis gebunden, da die örtlichen Filter nicht die Fähigkeit
besitzen auf neue Sitzungen übertragen zu werden. Aufgrund dieser Nicht-Fähigkeit solcher modernen Methoden, zum
Beispiel der Informationen Maximierung Independent Component Analysis (Infomax ICA), untersuchen wir linear cons-
traint minimum variance (LCMV) beamforming um örtliche Filter zu erhalten. Da der beamformer durch Schätzung von
Statistiken zweiter Ordnung robust ist, wollen wir dessen Einsatz überprüfen solche örtliche Filter zu berechnen, die
sich über Sitzungen transferieren lassen. Der beamformer wurde mit örtlichen Mustern resultierend aus der Infomax ICA
initialisiert und mit deren korrespondieren örtlichen Filtern verglichen. Die hierbei erhaltenen örtlichen Filter wurden
auf echten EEG Daten, welche mit einem EEG hoher Elektrodendichte aufgenommen wurden, getestet unter Verwendung
des motor imagery Paradigmas. Als Evaluationskriterium für den Einsatz in realistischen online GCS Anwendung wurde
die mittlere Richtigkeit gewählt. Allerdings wurde die tatsächliche Auswertung offline mittels 10-facher Kreuzvalidierung
durchgeführt. Schließlich wurden paarweise Permutationstests durchgeführt um die empirischen Ergebnisse zu validie-
ren, während die untersuchten beamformer örtlichen Filter keinen klaren Trend für den Session Transfer zeigten.
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Index and Notation

Symbols Description

E [·] expectation operator for a given matrix or vector

cov [·] covariance operator for a given matrix or vector

log (·) natural logarithm, that is loge (·)

det (·) matrix determinant

H(·) Shannon entropy, defined by H(·) =
∑∞

i=1 p(·i) log{p(·i)}
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1 Background

The very first results with regard to electrical activity originating from within the brain were first published in 1875
by Richard Caton, in which he observed particular patterns of electrical activity in living animals [12]. These results
were measured using needle electrodes and a galvanometer [28]. Fifteen years later, the Polish physiologist Alex Beck
published his findings about electrical activity measured with electrodes placed directly on the surface of the brain. These
findings about electrical activity in the brain, such as spontaneous fluctuations, evoked potentials, and desynchronisation
of brain waves also manifested the believe about the existence of so called brain rhythms [14]. Thus expressing the
recorded signals as oscillations is more convenient instead of looking at the raw time series. The term brain rhythms is
used to account for distinct brain patterns, that we think is a fundamental part in understanding the different functions
of the brain [11, 33]. Ultimately, the German physiologist and psychiatrist Hans Berger was the first person to record
electrical activity on the human scalp in 1924 and termed the to date measurements electroencephalogram which is
commonly abbreviated EEG [6, 24, 33].

Back then, Berger build upon the findings of Carton and emphasized the importance of brain rhythms in clinical
diagnosis [19, 45] and set a cornerstone for the next decades of neurological related research. Henceforth, the method of
EEG became a basic tool of diagnosing or assisting in diagnosing abnormalities within the brain of living beings [1, 18].
EEG is being used for detection of epileptic seizures [18, 33, 34], supplementary test of brain death [49, 50], monitoring
the depth of anesthesia [42], differentiation between psychological disorder and encephalopathy [44], and many more.
Nowadays EEG devices usually consist of electrodes, to measure signals from the brain, that is connected via cable to
an external amplifier. The amplifier is non-negotiable for the EEG because the electrical activity on the scalp is in the
range of microvolts and hence hardly measurable [34, 45, 46] and must be amplified consequently. The electrodes are
plugged into an so called EEG cap that is put on the head of the subject to measure the emerging electrical activity from
cortical areas. An EEG cap is used to ensure a structured positioning of the electrodes on the scalp allowing for fair
interpretability of results across subjects and different instances in time. This setup ensures consistent EEG recordings
and thus making the EEG a reliable measurement method.

The extent of EEG usage in research areas and hospitals accelerated in the mid 1900s. Starting from around 1990, EEG
scalp recordings were found to be useful for non-invasive Brain-Computer Interfacing (BCI) [31, 37, 52]. The overall goal
of a BCI was to aid people with physical disabilities, including paralysis, to perform communication tasks and to control
external devices in real life [8, 29]. These communication tasks and control of external devices help in establishing sorts
of communication crucial to autonomously perform everyday tasks, thus restoring quality of life for the subject using the
BCI [17]. Example applications are shown in the Figure 1 at the bottom.

The EEG characteristics of high mobility and high temporal resolution are beneficial to support the feasibility of those
tasks for non-laboratory environments. Brain rhythms, which were found to be a crucial feature in brain functions,
were used in order to define the brain to computer communication interface. BCIs are hence bound to these thought
to condition mappings, commonly called paradigms, employed for the subject to BCI communication. Thus, paradigms
render the feasibility of the subject communicating with the BCI, unless the subject is able to control and operate the
paradigm [2, 23]. One of the more popular paradigms in EEG based BCIs makes use of the sensorimotor rhythm (SMR) of
the brain that relies on the motor commands, for example grasping using either the right or the left hand. Apart from SMR
based paradigms, there are other paradigms that showed similar good empirical performance [51, 39]. Any paradigm
based on EEG recordings, however, is hampered by the often mentioned low spatial resolution and environmental noise
due to the nature of EEG scalp recordings [33, 46, 52]. The wording spatial resolution in the context of this thesis refers
to the resolution of brain patterns recorded at the EEG scalp electrodes at each time instant. Fundamentally, there are
multiple distinct causes to low spatial resolution which are elaborated on in the following.

In order to analyse the resulting low spatial resolution, we briefly review the process of neural electrical activity prop-
agating from within the brain to the electrodes. Single neuron activity emerges as action potential (AP) in the pyramidal

Figure 1: Brain-Computer Interfaces
(BCIs) may function as an
universal solution for non-able
bodied or disabled persons to
control external applications as
depicted in the future. As soon
as BCIs are more robust while
operating, they can be used
to control wheelchairs or even
robotic exoskeletons [26].
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cell body which cannot be measured by EEG, which is located on the scalp, directly. Nor can the EEG electrodes measure
activity elicited by neuron populations directly. Nevertheless, the EEG electrodes are able to record the activity from
multiple neuron populations aligned perpendicular to the cranium. EEG measurements are made possible in particular
because populations of neurons emit local field potentials when electrical activity is elicited. Now, whenever multiple
local field potentials fully or nearly synchronise they mix linearly as described in [34] because of the passive conductance
properties of living tissue on a macroscopic scale. Consequently, the linearly mixed, that is to say superposed, electrical
activity originating from multiple neuron populations is projected farther and thus such activity is summarized as far field
potentials at the electrodes [27, 16]. Now, when there are opposing local field potentials they will rather cancel each
other out instead of mixing themselves, yielding potentials of insufficient strength to be measured by scalp electrodes.

Furthermore, smearing of the signals occurs at different stages because of the passive conductance properties of living
tissue, cerebrospinal fluid (CSF), and the cranium. Due to the generation processes of the measurable signals, activity of
distinct neural sources is likely to be correlated across the brain source-related populations. And to the best of the authors
knowledge, the correlation of sources mixed into a single signal also does not allow to determine the actual number of
sources as well as the influence of each single source generating the signal. Apart from neural sources, EEG recordings
are also prone to contamination by muscular activity occurring close to the EEG cap and ocular activity that is generated
by eye movement or blink. The latter, that is to say muscular and ocular activity, is often referred to as artefact. Moreover,
there might be portions of noise present in the signal from disparate sources that are due to environmental inference or
noise in the EEG system itself.

1.1 Foundations of electroencephalogram characteristics

To start with, we will briefly review physiological characteristics of electroencephalogram (EEG) recorded data, that is
the previous mentioned brain rhythms. This shall give the reader a sufficient understanding of the feature type being
used in the Brain-Computer Interface (BCI) pipeline for the decoding of actions. To declutter the reading flow in this
chapter, whenever the term data is used it refers to EEG data recorded on the human scalp.

First, we need a understanding of the characteristics of the data, hereby, determining physical key aspects underlying
the data. The data has units µV (microvolts) normally distributed around 0µV and varies up to 100µV that may
be exceeded in presence of artefacts or distortion of the recorded signal yielding the data [46]. The data is usually
represented in terms of frequency instead of its raw form because of the importance of oscillatory phenomena and thus
the data is Fourier transformed [4]. The units of the Fourier transformed data changes from time in seconds to frequency in
Hertz with a few particular frequency bands reflecting different functional patterns that may be observed. The complete
frequency band ranges from around 0Hz to 2−1 fsHz with fs the sampling frequency and disperses into

Figure 2: The five major brain rhythms delta, theta, alpha,
beta, and gamma related to functions in the brain
and patterns in the electroencephalogram. Taken
from [46].

◦ Delta Band (∼ 0.5− 4 Hz) is commonly associated
with cognitive processes tied to consciousness and
sometimes information retrieval [4]. Moreover,
relations to deep sleep but also confusion with muscle
artefacts have been found in the range of the delta
band [43].

◦ Theta Band (4− 7 Hz) which was at first thought to
originate from the thalamus, was termed by [48] and
hints at a basic role in cognitive processing and in the
cortico-hippocampal interaction [4, 43].

◦ Alpha Band (7− 14 Hz) oscillation mainly appear in
the posterior half, which targets the parietal and
occipital lobe, of the cortex [43]. Alpha rhythms are
mostly related to visual tasks.

◦ Mu Band (8− 12 Hz) is the brain rhythm of
focus within this work because it is related to the well
known motor-imagery paradigm [38].

◦ Beta Band (15− 30 Hz) is a brain rhythm believed to
be mostly related to awareness and attention [43].

◦ Gamma Band (above 30 Hz) mainly reflects activity
for high cognitive and mental tasks and is the
frequency band most prone to muscular artefacts.
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These brain rhythms find application in clinical use but are also used for Brain-Computer Interfaces. The brain rhythms
are beside others common features used in decoding commands for a paradigm [30, 46]. For the specific choice of
sensorimotor (SMR) paradigms, such as the motor-imagery (MI), the spectral band called mu band found within the
alpha band is often used [30]. However, it is not just the amplitude of the frequency being used but its bandpower [36].
However, a caveat to the MI paradigm is that it is rather not or only partially usable by subjects suffering from motor
neuron disease.

1.2 Artefactual signal morphology in electroencephalogram

As previously discussed, common artefacts
found in electroencephalogram (EEG) record-
ings are (A1) muscle artefacts, (A2) ocular arte-
facts, and (A3) cardiac artefacts. These three
types of artefacts are the most often encountered
contaminates in the EEG literature and focus of
artefact reduction. The morphology of the three
most occurring artefactual sources are depicted
in Figure 3. Ocular artefacts (EOG) may be
caused by horizontal or vertical eye movements
but can also be caused by eye blinks. EOG arte-
facts particularly affect electrodes in the frontal
lobe and fronto-central areas. Artefactual inter-
ference by eye blinks are more abrupt Muscu-
lar artefacts (EMG) arise whenever the subject
moves the jaw or swallows and since these activ-
ities cannot be suppressed and hence they need
to be filtered from the signal.

Figure 3: The most prominent artefactual source morphologies in the
time domain found in EEG. While these artefactual source are
visually identifiable in the time domain, they are present in
many of the frequency bands presented in Figure 2.
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1.3 Non-Invasive Brain-Computer Interface Pipeline

Throughout this thesis, we will follow the Brain-Computer Interface (BCI) pipeline scheme depicted in Figure 4. This
pipeline provides insight to the most important steps to take to build an BCI in which we focus on the field of artefact
reduction. To start with, we will elaborate the single steps of the BCI pipeline before we go ahead into the particular
sub-field of artefact reduction.

EEG Data
Acquisition

Data Pre-
processing

EEG Signal
Decoding

Control of
Application

Artefact
Reduction

Figure 4: Brain-Computer Interface online pipeline built from non-invasive electroencephalogram. This BCI online pipeline
shall motivate and outline the necessity of artefact reduction in the context of BCI. Moreover, this pipeline
sketches the basic steps to build a full-fledged BCI.

For non-invasive BCIs in the context of this work, the data is recorded using electroencephalogram from the human
scalp to observe brain patterns from populations of neurons. Data acquisition usually is the first step to undertake in
the pipeline to calibrate the BCI for the associated session, thus the same session the data was obtained. However,
before this data can be made use of, one must perform the crucial step of data preprocessing to purge the data from
artefacts as best as possible. The preprocessing of the data is crucial for the BCI pipeline to function sufficiently well
because the pipeline is built on data driven methods. Subsequently, features may be created or extracted from the
purged data. These features are then passed onto the signal decoding step in which they yield fundamental support in
decoding the signals into predefined conditions to control an external application. Yet just witnessed the architecture
of the rather simple BCI pipeline assumed in this work, we move one level deeper into the pipeline module of artefact
reduction. Artefact reduction is a crucial part that helps to construct plausible BCIs and hence particularly important to
non-invasive BCIs. The reason for its importance originates from the low spatial resolution that goes hand in hand with
the electroencephalogram because we are merely able to record the activity of only a few neuron populations. Hence,
the sub-field of artefact reduction also comprises methods for spatial filtering that yields support in noise and artefact
attenuation while locating the signal of interest. In the following sections, methods and their material are presented that
were used to undertake the spatial filtering part in artefact reduction of the BCI pipeline from Figure 4.

6



2 Motivation and related work

Non-invasive Brain-Computer Interfaces (BCI) based on EEG measurements offer an affordable and qualitative way of
measuring neural signals from the human brain while it does not constitute a threat for the subject. Unfortunately, this
type of measurement is prone to artefactual sources, namely non-neural signals, and is moreover hampered by low spatial
resolution. While these different factors certainly negatively impact signal quality, there are methods to compromise the
issue of low spatial resolution and also artefactual sources. These methods are summarised within the category of spatial
filtering and are either of supervised or unsupervised nature. Unsupervised in this context means that the data must
not be labelled. On the one hand, there are supervised methods that rely on labelled data to find spatial patterns in the
data to discriminate between distinct brain conditions contained in the labels. The most prominent method concerning
supervised spatial filtering is the common spatial patterns (CSP) [41]. On the other hand, often used unsupervised
methods in this category of spatial filtering are variants of independent component analysis (ICA), principal component
analysis (PCA), and second-order blind identification (SOBI) [25, 35, 40, 46]. Those unsupervised methods decompose
the signal into its original components without requiring knowledge of the specific brain condition, consequently resulting
in suitably applicable spatial filters. These methods produce viable results [10] and allow for applications such as single
source examination [15], temporal analysis, and source-localisation [53]. Unfortunately, these methods only function
well within sessions so far because they do not consider the non-stationary nature of the decomposed sources underlying
the brain patterns.

As a result, BCIs based on such spatial filter methods are left with costly preparation time for setup on a daily basis.
Hence, these methods in their current form are prone to be more impractical for real life BCIs. However, there is work
done in the field of spatial filtering applicable for session transfer. [32] evaluated common methods in spatial filtering
with regards to session transfer in order to simulate an online BCI application. They found the CSP method to perform
overall better than ICA variants and Laplacian spatial filters. Yet, it is to notice that CSP requires prior information in
the form of labels which is generally not present in online BCI applications. In contrast, unsupervised spatial filters do
not require any prior information and hence their usage are more appropriate for online BCI application scenarios. [20]
extended unsupervised spatial filtering methods that solely estimates sources regarding at most second-order statistics
based on non-stationary assumptions, yet also incorporating prior information due to the usage of CSP. Subsequently,
they successfully evaluated their method within and across sessions for an online BCI application scenario, yet requiring
additional knowledge about brain condition labels. In contrast, the goal of this thesis builds upon the idea proposed in
[21] and aims to robustly estimate sources based on second-order statistics under incorporation of an appropriate forward
solution of the brain patterns. The choice of framework to estimate sources is the linear constrained minimum variance
(LCMV) beamforming because it yields more robust solutions than existing approaches such as CSP [22]. Similar to the
related work, the results are evaluated for an online BCI application while existing results from [21] are to be verified.
Finally, results of the Infomax ICA method are compared to the results of the LCMV beamformer. Moreover, the authors
of this work propose an extension to the existing LCMV beamformer for session to session transfer that accounts for the
non-stationary of the second-order statistical estimates yielding more robust and consistent solutions.

2.1 Thesis Outline

This section agrees on the structure of this thesis and briefly outlines its contents. Chapter 1 contains background
reading to firmly introduce the BCI inexperienced reader into the topic. The overall goal of spatial filtering concerned
with session-to-session transfer is motivated in chapter 2. Chapter 3 introduces the spatial filtering methods investigated
for session-to-session transfer. Moreover, the methods are derived, explained and motivated in the light of session transfer
of source estimates. Chapter 4 deals with the details of the study preparations and conduction. An overview is given
over the subjects that undergone EEG data acquisition. Subsequently, data preprocessing methods applied before the
spatial filter evaluation are explained and their justification is given. Following the data preprocessing, chapter 5 deals
with the evaluation. That is justifying the choice of evaluation metric for the spatial filtering session-to-session transfer.
Chapter 6 concludes with the empirical performance of the methods and statements of the author regarding the resulting
performance for spatial filtering in terms of session-to-session transfer and statistical test outcome. Finally, an outlook
for disadvantages of the proposed method and extensions to overcome those disadvantages are given.
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3 Spatial Filter Methods used for Session to Session Source Estimate Transfer

This chapter will give an explanation and derivation of the methods for the purpose of recovering temporal source
estimates used for session to session transfer. That is the re-usage of Information maximisation Independent Component
Analysis (Infomax ICA) spatial filters in Section 3.1 and linear constrained minimum variance (LCMV) beamforming for
temporal subsequent sessions in Section 3.2. Spatial filtering methods are usually used to decompose the mixture of
recorded signals contained in the EEG data. Thus, brain patterns meaningful to control a BCI can be obtained and used
within the decoding process. While artefactual sources may contaminate the data, they are more likely to be contained
in the mixture of signals. Spatial filtering methods try to dissect those artefactual sources from the meaningful brain
patterns. Brain patterns can be identified by estimation of temporal source estimates that are of non-stationary nature and
hence, as broached in the motivation, can only be used reliably within short time frames. In what follows, unsupervised
spatial filtering approaches for within session and session to session transfer of source estimates are presented.

3.1 Infomax ICA for Session to Session Transfer of Source Estimates

Independent Component Analysis (ICA) is a generative model thus is used to model the process of observed data being
generated. One common example to illustrate the usage of ICA is the cocktail party problem. In this problem, there are
two speakers that emit dissimilar speech signals which mix linearly and are being recorded by two microphones. While
the first speech signal mixture contains a greater portion of the first speaker, the other speech signal mixture contains a
greater portion of the other speaker. Given the two signal mixtures, ICA attempts to de-mix these signals to obtain the
original sources prior to mixing. In technical terms, the sources objective to estimation are defined as s = W ·x with W =
A−1 and W ∈ RN×N for the complete model ICA [25]. The matrix A hereby is the mixing matrix that arbitrarily mix all the
signals and W is the unmixing matrix to de-mix the signals in its original source estimates. Looking at W = A−1, we need
to assume a linear mixture model, statistical independence of the sources, an identical distribution throughout time, and
at last a square equation system [25]. The objective of the infomax ICA, as the name prefix already states, maximises the
information, that is equivalent to minimising the mutual information I(Y ; X ) = H(Y )−H(X |Y ) = H(Y )+H(X , Y )−H(X )
which is given by

W ∗ = argmin
W

¨

N
∑

i=0

H(W · x i)−H(W · x )

«

(3.1.1)

in which x i denotes the i-th row element of the vector x . And with W being an invertible transformation, we obtain

W ∗ = arg min
W

¨

N
∑

i=0

H(W · x i)− log (det (W)) ·H(x )

«

(3.1.2)

Additionally, the H(·) operator denotes the Shannon Entropy which is given by H(Y ) =
∑∞

i=1 p(Yi) log{p(Yi)}. With W ,
an orthogonal transformation, and H(x ), independent of W , the objective to recover the source estimate takes the form

W ∗ = argmin
W

¨

N
∑

i=0

H(W · x i)

«

. (3.1.3)

The resulting update equation is hence given by

∆W ∝
∂
�

∑N
i=0 H(W · x i)

�

∂W
=
∂
∑N

i=0E [− log (p(W · x i))]

∂W
(3.1.4)

that can be solved with a gradient descent algorithm. An appropriate choice for the output distribution, namely the
source distribution p(ŝi) = p(W · x i), is given in [5], and remains a parameter to be tuned.

Algorithm 1: Infomax ICA

Data: Raw data X ∈ RN×T with N sensors and T time points, L the number of sources to estimate
Result: Matrices W , A= W−1, S
Initialize W = W0;
Centre X ;
Whiten X using PCA [9] with L components;
while W not converged do

Solve the objective stated in Equation (3.1.4) via gradient descent methods;

A naïve spatial filtering approach forward session to session transfer of source estimates is the re-usage of spatial filters
W yield from previous sessions.

8



3.2 LCMV Beamforming for Session to Session Transfer of Source Estimates

To start with, we shed light on the motivation of the linear constrained minimum variance (LCMV) beamforming. The
motive of LCMV beamforming is to locate source activity from a particular region of interest while attenuating the
bandpower of all other regions so they will not infer the source one is interested in. It does so by finding a weight vector
that obeys the constraint of keeping sources of interest while minimising the bandpower in all other regions as can be
seen from Equation 3.2.1. Van Veen et al. [47] introduced such a method in which they relate the dipole mappings of
the brain to surface recordings by exploiting the estimated spatial covariance structure. The objective from the original
paper of the LCMV beamforming is given by the constrained optimisation

w ∗ = argmin
w

�

w>Σ̂w
	

s.t. w>a = 1
(3.2.1)

with Σ̂ ∈ RN×N a covariance estimate that solves for the optimal spatial filter w ∗. The derivations for this constrained
optimisation is omitted here but can be verified using Lagrange multipliers. The resulting equation yields the optimal
filter

w ∗ =
�

a>Σ̂
−1

a
�−1

a>Σ̂
−1

(3.2.2)

that locates sources of interest encoded by a. Practical issues may arise for the inversion of the estimated spatial co-
variance matrix due to an insufficient inner matrix rank. To account for this issue, the authors resort to the methods
of diagonal loading, that is adding a constant term to the diagonal of the covariance matrix, and more advanced
methods of shrinkage estimators [13]. In order to use the LCMV beamforming for session transfer, the author pro-
poses the reuse of spatial patterns from prior sessions t − τ, τ = 1, . . . , t − 1 while solving for Equation 3.2.2 with
Σ̂ = cov(X) = E

�

X 2
t

�

− E [X t]
2. This method was initially introduced in [21] and, there, it was used to reconstruct

temporal activity of non-Gaussian sources for the overcomplete source mixture model. From here on, we refer to this
method as Linear Constrained Minimum Variance Spatial Pattern Beamforming (LCMV SPBF).

Algorithm 2: LCMV SPBF

Data: Well conditioned baseline trial spatial covariance estimate Σ̂, raw data X ∈ RN×T with N sensors and T time
points

Result: Spatial Filter F
Initialize W = W0;
Centre X ;
Whiten X using PCA [9];
while W not converged do

Solve the objective stated in Equation (3.1.4) via gradient descent methods;

Compute A= W−1;
Visual inspection of K < L paradigm-related sources denoted AK ;

F∗ =
�

A>K Σ̂
−1

AK

�−1
A>K Σ̂

−1
;

For a proper reconstruction of the source estimates, the forward solutions in a need to be uncorrelated which shall hold
given the minimisation of the mutual information during the infomax ICA procedure in Equation 3.1.4. In the case of
Gaussian distributed forward solutions a, the reconstruction of the corresponding source will fail because of arbitrary
sources that were mixed into one source and due to only considering up to second-order statistics. An exhaustive
explanation and analysis for correlated sources in the forward model are given by [5, 25].
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4 Experimental Setup and Study Conduction

The study was carried out at the TU Darmstadt with five male subjects aged 26 ± 3.89 years old. Everyone of those
subjects were in a physically and mentally healthy state during the study conduction. While data has been recorded, the
subject was seated in a comfortable chair and was able to stop the session at any time. The subjects were seated 40cm
in front of a computer screen with a frame rate of 60Hz. At the start of the first session, each subject was handed a
study guide explaining the data acquisition procedure and the sensorimotor (SMR) paradigm used. Alongside the study
guide, the subject was handed a form to fill out anonymised personal information which were allowed to be used within
the thesis by the subject explicitly. Those collected information can be found in Table 2. Each subject noted the explicit

motor skills number of
Subject Age Gender EEG experience playing a music instrument

and frequency
sportiness and frequency sessions

S1 30 male yes stringed instrument, every day 3 days/week 3
S2 29 male no – 1-3 days/week 3
S3 25 male no stringed instrument, 1 day/week 2-3 days/week 4
S4 27 male yes – – 4
S5 19 male no – 2-3 days/week 3

Table 2: General overview about the subjects, that is their identifier, age, gender, previous EEG experience, their motor
skills, and the number of sessions being recorded. The motor skills are listed here because the subjects needed
to operate a paradigm related to motor imagery. Hence, their motor related skills are listed to justify possibly
negative performance with the motor imagery paradigm.

thought for each condition of the paradigm. Before every ongoing session, the subject was able to see there notes made
in the first session to maintain consistency for the chosen thoughts to operate the paradigm. The subject was able to
abort the experiment at any time before and during the recording. The individual sessions were scheduled on a weekly
basis for each subject and no feedback on performance was given.

4.1 Hardware and ties to the Cybathlon Challenge

The contents of this thesis are, also, currently motivated for and embedded in the Cybathlon Challenge and hence
receives support by the collaboration between IAS, Department of Computer Science, Technical University Darmstadt and
Brain-Computer Interfaces Group, Department Empirical Inference, Max-Planck Institute for Intelligent Systems.

The hardware used for data acquisition in this thesis was sponsored by Brain Products GmbH1 for the Cybathlon-Team
Athena-Minerva2 which I, Thomas Hesse, am part of. The Cybathlon is the first official Olympics for bionic athletes with
strong ties to research and “was forged with three aims in mind; to facilitate conversation between academia and industry,
to facilitate discussion between technology developers and people with disabilities and to promote the use of robotic assistive
aids to the general public”.3

4.2 Data Acquisition and Preprocessing

The data was recorded using the aforementioned hardware. This setup consisted of the EEG cap in the 10-20 system,
129 electrodes (including the reference and ground electrode), and an amplifier for the EEG data. The electrodes used
were gelled to gap and improve conductance properties between the electrodes and the scalp. It was made sure that the
impedances of the electrodes were in range 0-20kOhm to actually capture neural data. Afterwards, in an offline step,
the data was preprocessed using common average reference (CAR) over all electrodes which is suitable because of the
high density of electrodes [7], a 3Hz high-pass Butterworth filter of third order, and zero baseline shift for each electrode
before being used for further (pre-)processing. Before recording the paradigm related data, a baseline trial was recorded
and the subject was asked to fixate a white cross on top of a black background on a computer screen. Furthermore, the
subject was instructed to just fixate the cross on the screen not performing any paradigm related commands.

1 Brain Products GmbH - Solutions for neurophysiological research
2 Cybathlon-Team Athena-Minerva, TU Darmstadt
3 Source: Cybathlon Quote
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5 Empirical Results and Evaluation

For the evaluation part, reconsider the pipeline model from Figure 4 introduced earlier. The initial part of the EEG data
acquisition was carefully described in Section 4.2. There, we also outlined the preprocessing that was applied after the
data was recorded. This preprocessing was consistently applied for the remainder of the pipeline model.

Subsequently, the method presented in Section 3.2 was evaluated against the Infomax ICA derived in Section 3.1
in which the latter was regarded as the baseline performance. The evaluation includes cross-validated within session
evaluation and, more important for the application for online BCI applications, across session evaluations. In order to
measure the performance of these methods, a logistic regression classifier with binomial log-likelihood was trained on a
train set and evaluated on a test set. While there was at most up to forty data points for each class produced by a single
session, bootstrapping methods were used in order to artificial upsample the data. To do so, the data of two classes were
first subsampled, then stratified, and at last k-fold cross validated with k = 10. For the accuracies to converge for each
subject respectively, the aforementioned procedure was repeated sufficiently often until the standard deviation of the
results converged to zero. Obviously, the aforementioned evaluation procedure was implemented offline for time-locked
stimuli. Each motor imagery condition was evaluated which is found in the mu band against the resting phase found in
the alpha band (cf. Section 1.1). The results of each subject were averaged afterwards and are shown subsequently in
Figure 5.

Figure 5: Resulting decoding accuracy of the logistic regression binomial log-likelihood classifier. The colour encodes the
session the data was recorded in. The mapping is green for session one, black for session two, blue for session
three, and red for session four. The transparent bars show the performance of the Infomax ICA and the dull
bars show the performance of the LCMV SPBF method presented in Section 3.2. The red error bars shows the
performance variation across the subjects. The yellow line indicates the chance level performance of 50 percent.
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The features for the classifier of each subject were three spatial patterns from each session in the mean mu band. These
spatial patterns were selected from a set of 64 recovered sources using Infomax ICA. Hence the input features for the
bootstrapping applied prior the classification procedure was of the form F>X = Φ ∈ R3×D with D data points representing
time-locked trials.

5.1 Statistical Test Outcome

In the previous Section 5, the averaged accuracies with two times their standard deviation were compared to each other.
While these results are produced from five subjects, non-parametric statistical testing was applied to account for the
validity of the found results. More precisely, pairwise permutation tests were used to examine the true performance of
these results. Therefore, we distinguish the model based on its two distinct preprocessing yielding different feature sets
and henceforth two models subject to this statistical test. We denote permutation sets Pa,condition = {ai,condition}i=1,...,5 for
within session Infomax ICA results and Pb,condition = {bi,condition}i=1,...,5 for within session LCMV SPBF results. Similarly
for the session transfer results, we write P∆a,condition = {∆ai,condition}i=1,...,5 and P∆b,condition = {∆bi,condition}i=1,...,5.

Two null hypotheses were tested, in which the true performance µa, µb, µ∆a, µ∆b is drawn from Pa,condition, Pb,condition,
P∆a,condition, P∆b,condition respectively. That is first testing for true equal averaged accuracy within sessions H∗0 : µa = µb
and across session H∗∗0 : µ∆a = µ∆b. The pairwise permutation test was run with a total of N = 1.000.000 runs for
both null hypotheses for each binary classifier. Each binary classifier is indexed respective the condition that is subject
to testing. The results are depicted in the subsequent in Figure 6 for within session performance and session to session
transfer performance.

Figure 6: Two-sided pairwise permutation test for the H∗0 in green and H∗∗0 in blue for true equal performance of the
compared methods. The plot shows the significance level of 5% and the p-values of the results.
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The test statistic for resulting p-values is given by T (Px ,Py) = mean(Px) − mean(Py) and the associated p-value is
hence computed as

p = N−1
N
∑

i=1

�

T
�

P (i)x ,P (i)y

�

≥ T
�

Px ,Py

�

�

(5.1.1)

with sequential Monte-Carlo roll-outs. The superscripted index [·](i) signals pseudo-random generated pairwise samples
which are obtained by permutation of the pairs

�

Px ,Py

�

.
The results of the pairwise permutation test show significance for the session transfer results given the significance

level of 5%, that is H∗∗0 is accepted. However, for the within session results we fail to either accept or reject H∗0 for the
brain condition feet.
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6 Conclusion and Outlook

We investigated spatial filtering methods for the usage of session transfer for the purpose of an online BCI application.
In order to do so, we used the presented BCI pipeline model from Figure 4 and evaluated the methods in terms of
accuracy. While the methods were tested with five subjects, non-parametric statistical tests were used to validate the
outcome of the empirical results. Yet, LCMV beamforming was solely used by [21, 47] to obtain source estimates within
sessions. The method estimates sources up to second-order statistics and hence yields robust results. In this work, we
investigated the performance of LCMV beamforming for the use of session to session transfer. The forward solutions yield
by methods solving for blind source separation were input to the LCMV beamformer as sources to keep. The forward
solutions here were estimated and visually selected for motor-imagery related conditions. Then, the associated spatial
filters were compared to the LCMV beamformed aforementioned spatial patterns in terms of accuracy. For the choice of
a decoding model we used the log binomial likelihood for a binary classification problem. The feature space used for
decoding had dimensions equal to the number of spatial filters for both, LCMV beamforming and Infomax ICA. Overall,
the LCMV beamforming of the spatial patterns yield by the Infomax ICA showed to be superior for the within session
evaluation as can be seen in Figure 5. While we failed to show significance of the result for the motor-imagery condition
of feet for a significance level of 5%, the results for the other conditions support the findings in [21].

In a second step, the main focus of this work was to show that these types of filters are applicable for session transfer
of the spatial filters. Yet, while the findings show no clear trend to be superior to the spatial filters of the Infomax ICA
used for session transfer, they are shown to be significant for this particular use-case. One plausible explanation for this
undetermined trend shown in Figure 5 might be the non-stationary nature of the estimated baseline trials. These baseline
trials were used to initialise the LCMV beamformer for the associated sessions. In order to account for non-stationarity,
the authors suggest methods that transfer structure from the spatial covariance matrices over sessions. Possible choices
for spatial covariance structure session transfer are the Riemannian Potato introduced by [3]. Furthermore and finally,
this work aims at real life BCIs and hence it is insomuch important to test these results online without time-locked stimuli.
This way, the results are more meaningful and valuable to the concept of real life BCIs.
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A Appendix

Subsequently, auxiliary mathematical concepts that are used within this thesis are derived and explained.

A.1 Whitening Transformation

The whitening transformation is often used to transform an arbitrary set of variables with know covariance onto a new
set of uncorrelated variables whose covariance equals the identity matrix. Let X ∈ Rm×n be n-many arbitrary variables of
length m with non-singular covariance matrix C ∈ Rm×m and zero mean. The whitened matrix is denoted as

Y = C−
1
2 X (A.1.1)

and with E
�

XX>
�

= C = C
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as a covariance matrix (symmetric and positive definite), it holds that
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and hence is a white random vector. �
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