
Artificial Curiosity for Motor
Skill Learning
Bewegungslernen mittels Artificial Curiosity
Bachelor-Thesis von Yannick Schröcker
Mai 2014



Artificial Curiosity for Motor Skill Learning
Bewegungslernen mittels Artificial Curiosity

Vorgelegte Bachelor-Thesis von Yannick Schröcker

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Gerhard Neumann

Tag der Einreichung:



Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit den angegebenen
Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen entnommen wurden, sind
als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungs-
behörde vorgelegen.

Darmstadt, den 28.05.2014

(Yannick Schröcker)

1



Abstract

Reinforcement learning can be applied to episodic tasks in robotics in order to learn how to perform motor skills without
the need for prior knowledge. Algorithms that can learn contextual tasks enable the robot to generalize his learned
knowledge about a specific task to another, similar task and to solve this task without further specific training. This
requires the robot to train on given contexts which are sampled from a distribution. Typically, a uniform distribution is
used. However, the distribution has an effect on the learning process and can be learned in order to improve the final
performance of the robot. To this end, we introduce Active Relative Entropy Policy Search (ActiveREPS). ActiveREPS is a
modification of Relative Entropy Policy Search (REPS) that learns a context distribution by maximizing the improvement
of the expected reward in order to train the robot where it improves most. We show that ActiveREPS can be used
to improve the performance of the robot when executing motor skills when compared to reinforcement learning with
uniformly sampled contexts. The obtained contexts are then used to learn a policy. To this end, we introduce Local
Relative Entropy Policy Search (LocalREPS), an adaptation of REPS that is trained for each context locally. We show in
this thesis that LocalREPS is capable of learning policies that depend non-linearly on the context and outperforms REPS
on tasks with complex dependencies on the context.

Zusammenfassung

Reinforcement Learning erlaubt es Robotern komplexe, episodische Aufgaben zu lösen ohne auf vorhergehendes Wissen
zurückzugreifen. Algorithmen die außerdem kontextuelle Aufgaben lösen können erlauben es Robotern von ihrem gel-
ernten Wissen zu abstrahieren und ähnliche Aufgaben ohne gesondertes Training zu bewältigen. Diese Algorithmen
setzen voraus, dass der Roboter auf einer Anzahl an Kontexten zu trainiert wird, üblicherweise werden dazu gle-
ichverteilte Kontexte genommen. Alternativ ist es möglich die Kontextverteilung zu lernen um damit das Endresultat
des Lernprozesses zu verbessern. Um dies zu erreichen stellen wir in dieser Thesis Active Relative Entropy Policy Search
(ActiveREPS) vor. ActiveREPS ist eine Modifikation von Relative Entropy Policy Search (REPS), die die Kontextverteilung
lernt, die den Unterschied im Erwartungswert des Rewards maximiert um den Roboter auf Kontexten zu trainieren, auf
denen die größte Verbesserung des Endergebnisses erzielt wird. Wir zeigen in dieser Thesis, dass ein Roboter, der auf von
ActiveREPS bestimmten Kontexten trainiert wurde, bessere Resultate beim Bewegungslernen erzielt als ein Roboter, der
auf gleichverteilten Kontexten trainiert wurde. Die gelernte Kontextverteilung kann dann benutzt werden um eine Policy
zu lernen. Zu diesem Zweck stellen wir in dieser Thesis außerdem Local Relative Entropy Policy Search (LocalREPS)
vor. LocalREPS ist eine Variation von REPS, die für jeden Kontext lokal trainiert wird. Wir zeigen in dieser Thesis, dass
LocalREPS dadurch policies lernen kann, die nicht-linear von dem Kontext abhängig sind und dass LocalREPS damit
bessere Resultate erzielen kann als REPS.
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1 Introduction

Environment/
Goals
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Critic
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Forms context

Figure 1.1: Episodic reinforcement learning with and without artificial curiosity

One of the key goals in robotics is and has been to provide robots with the ability to solve tasks without the need of
hard coding detailed knowledge about the task and the robot into the robot’s system. To this end, reinforcement learning
methods have been utilized and have shown good results so far. However, using reinforcement learning to teach robots
how to solve a single task is often impractical. Instead, the robot should be able to learn whole classes of tasks and
generalize from its past experience. This generalization can be done based on parameters of the task which then form a
so called context. A context provides the necessary information about the specific task and can include parameters that
describe the state of the environment (which is not influenced by the actions of the robot) as well as the objectives of the
robot. One example for a contextual reinforcement learning problem would be a ball-throwing task where a robot-arm
has to throw a ball to a certain, freely chosen position: For example, a ball-throwing task might have a context that
describes the target. In that case, the robot would have to learn how to aim at arbitrary targets and generalize over its
training samples. Another example that we will later use for evaluation as well is a robot arm playing table tennis. In
the table tennis task, the robot has to be able to handle different settings of the ball cannon. Another possible parameter
would be the target position on the other side of the table. As a result, the context of this task could consist of the forces
that the ball cannon applies as well as of the coordinates of the target. Generalization is key in all of these tasks and
necessary to solve them efficiently.

While there are algorithms that are cab able of generalizing over different tasks and contexts, the training of these
algorithms often uses the same conditions for training the robots as those that are encountered when actually performing
the task. This means that the contexts are merely observed and not chosen by the learning process. However, in
environments where the context can be controlled, it can be possible to take advantage of this circumstance for training.
For example, a human might set a ball cannon in table tennis to aim at a specific corner in order to train that particular
stroke more effectively. The reason why a human player might do this is that he has identified the need to improve
particular strokes and thinks that he can improve his play best by training them directly. Artificial curiosity is based
on this idea and aims to improve the learning process of the robot by giving it the ability to chose contexts during
training. The intention is to chose contexts where the robot thinks it can improve its overall performance most. We will
mention different approaches to artificial curiosity in Section 2 and introduce our own approach in the remainder of this
thesis.

In this paper, we focus on episodic reinforcement learning, where the contexts as well as the actions are chosen in the
beginning of each episode and then carried through without further decision making. For example when learning a
motor skill, the robot would learn whole trajectories instead of learning each step separately. This is a special case of the
more general MDP approach where the agents can execute multiple actions sequentially and reevaluate the next actions
after an action has been executed and its effects have been observed. Specifically, our work is based on Episodic Relative
Entropy Policy Search which is capable of learning a policy based on actions as well as of generalizing the learned policy
based on observed contexts. While the policy is learned by REPS, the contexts for training are sampled based on a fixed
distribution; We attempt to learn a better distribution over contexts instead. Figure 1.1 outlines the steps of an episodic
learning setup with and without artificial curiosity.
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The algorithm we propose in this paper is called Active Relative Entropy Policy Search (ActiveREPS). ActiveREPS is
a modification of episodic REPS that learns a context distribution based on the past learning progress. Specifically,
ActiveREPS is optimizing the gain in expected reward in comparison to the previous iteration. This is achieved by a
modification of REPS’ objective function that we will explain in detail in Section 4. The idea behind this metric is to
advance the learning as quickly as possible by choosing contexts for training where the change in the expected reward is
as high as possible.

The core idea of artificial curiosity and thus the core idea behind ActiveREPS is to have the algorithm choose the context
of a task in order to improve the learning process. This means that the algorithm exploits the effect that different choices
for contexts have on the learning progress. As a consequence, the most interesting kind of task for artificial curiosity
algorithms are tasks where the effect of the context is large. However, as we will show in Section 3, REPS has limitations
specific to this kind of task. In order to solve this problem, we furthermore propose Local Relative Entropy Policy Search
(LocalREPS). LocalREPS is a modification of REPS that is trained locally around a specified context. We will show that
LocalREPS is capable to learn policies on tasks where the performance of regular REPS is limited by its assumptions over
the influence of the context-space.

In Section 3, we will recapitulate REPS and introduce LocalREPS while we will present ActiveREPS in Section 4. In
Section 5, we will then evaluate our new approach on the already mentioned table-tennis-task as well as on a two
dimensional reaching task.
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2 Related Work
Very closely related to the problem of choosing context is the field of exploration in reinforcement learning. Typically,
this term is used when talking about a set-up where the agent is trying different actions in a certain state in order to
explore how they affect the state of the robot and the environment. In an episodic set-up, on the other hand, we want
to explore contexts that are not manipulated by the actions of the agent or rather can only be manipulated by synthetic
actions which are made-up in order to have the agent control the environment artificially (which can be done to make the
problem-definitions compatible). This difference is particularly obvious when considering the exploration-exploitation
trade-off that is usually addressed by exploration-algorithms(e.g. E3[7] or R-Max[4]); Exploitation chooses actions that
are optimal to accomplish the goal where exploration chooses actions to gain knowledge about them. However, in this
thesis we want to choose contexts for training. An exploitation strategy when choosing contexts is impossible since the
context defines the task and can only be chosen during training.

There are different approaches to exploration that have been used in the past. The easiest approach is random exploration
which chooses actions randomly. For example, ε-greedy executes the optimal action with a set probability while sampling
them uniformly, i.e. exploring, otherwise. Another example would be a soft-max policy which does not explore uniformly
but uses the Q-value of executing an action in a state to determine a probability with which that action is executed. These
probabilities are then used to randomly choose an action.

A more sophisticated approach can be used for model-based learning algorithms and is based on the idea that the
solutions for model-based reinforcement learning algorithms get approximately optimal when the relevant states have
been visited often enough. One of the most well-known algorithms based on this idea is E3[7]. E3 defines an explicit
exploration and an explicit exploitation strategy where exploitation is done by solving the MDP only on the states that
have been visited at least m times(the “known” states) to reach the goal state. To perform exploration, first the MDP
is solved on the known states in order to reach an unknown state. When the algorithm reaches an unknown state it
explores by performing “balanced wandering”, meaning that the algorithm executes the action that has been executed
the least for this state and follows this course of action until it hits a known state again. Here it can then follow either
the exploitation or the exploration policy. Another popular algorithm in this class is R − Max[4], which makes the
exploration-exploitation trade-off implicit by assigning the maximum reward to states that have not yet been visited m
times, while solving the problem using a regular reinforcement-learning algorithm.

A third approach to exploration is to learn probabilistic policies which explore different actions naturally by sampling
actions from a probability distribution. Examples where this approach has been used include Bayesian model-based learn-
ing, such as in value-function-methods which are intractable but can be approximated(BEB[9]), as well as REPS.

A special kind of exploration problem is called artificial curiosity. This kind of exploration is concerned with the explo-
ration of tasks based on past feedback, i.e. rewards. As a result, it has more resemblance to our own problem. Early work
in the field of artificial curiosity include the work of Schmidhuber et. al.[14] who were doing model-based reinforcement
learning based on neural networks and added another, “intrinsic”, reward function based on the difference between the
actual performance of the agent and the outcome that was predicted by the internal model. A similar reward-term has
been used in [15] which incorporated the same kind of intrinsic reward into the reward function of an option-learning
algorithm that learns a whole database of skills instead of how to perform single tasks. The algorithm uses the cu-
riosity induced by this reward function to learn a new task whenever it detects an interesting task in an unspecified
manner.

Different kinds of intrinsic reward function have been developed as well, for example by Lopes et. al.[10] who proposed a
reward similar to R−max , only that the reward is set to maximum based on the competence of the learning-algorithm on
that state instead of conditioning the reward function on the amount of visits to the state in question. The competence-
measure that is proposed in that paper is based on the change in the estimated log-likelihood of the model as well as the
estimated variance. Lopes et. al. also proposed a similar modification of BEB which is using a reward function based on
visitation-counts as well.

All the previously mentioned algorithms for artificial curiosity drive the learning process by defining an intrinsic reward
function. Intrinsic reward-signals have also been found in the psychology of many animals. In [16], Singh et. al. provide
a comparison of intrinsic reward functions used for artificial curiosity with intrinsic reward signals that are hypothesized
in evolutionary psychology. They derive another intrinsic reward-function that is optimal based on a more general fitness-
function. However, the fitness function has to be defined by the designer of the robot. It needs to evaluate the history of
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an agent similarly to a reward function but can be can be derived from the task in a more direct manner, e.g. by counting
the number of times that a goal has been reached.

The most similar approach that also uses artificial curiosity for contextual policy search has been presented by Baranes
et. al.: In [3], they present the SAGG-RIAC framework, which is an artificial curiosity framework that learns where to
sample contexts in an episodic setting. SAGG-RIAC divides the context-space into hyper-cubical regions from which the
contexts are then sampled based on a strategy similar to ε-greedy. SAGG-RIAC is assigning an interest-value to each
region that determine how often a context is sampled from that region. This interest is based on the amount of growth
that the empirically collected reward-samples have seen in this particular region and is defined as the difference between
the average reward of the last ζ

2
samples and the ζ

2
samples before these

I(Gk) =

∑|Gk |−
ζ
2

j=|Gk |−ζ
Rk, j −

∑|Gk |

j=|Gk |−
ζ
2

Rk, j

ζ
, (2.1)

where Gk denotes a region and Rk, j; j<|Gk | are the rewards collected in Gi in chronological order. ζ is a parameter that
denotes the number of samples that are to be considered. This metric is approximating the difference between value
functions (expected reward) of older iterations and value functions of newer iterations. Between two iterations i and
i+ 1 this can written as V (i+1)(s)− V (i)(s) which we will use in this thesis.

In [12], Peters et. al. present Relative Entropy Policy Search, a policy search algorithm with the core idea to bound the
distance between two policies in order to ensure a stable learning progress and to avoid premature convergence. We
will use REPS both, for learning the policy as well as as the basis for our own ActiveREPS algorithm which will learn the
context-distribution. REPS is capable of generalizing over different observed contexts[8] which makes it suitable for our
purposes. We will describe REPS in detail in the next chapter. For a comparison of different policy search algorithms see
[5].

We intend to use the same idea behind the metric used in SAGG-RIAC while alleviating some of its problems. Specifically,
SAGG-RIAC is using hypercubical regions with hard boundaries for obtaining new samples. However, different levels
of complexity are unlikely to have hard boundaries in the context-space and can seldomly be mapped to hypercubical
regions. As a result, we attempt to learn a single, non-parametric probability distribution instead of discrete probabilities
for hypercubical regions. Furthermore, SAGG-RIAC is using distinct algorithms for learning the context-distribution and
for learning the policy. Instead, we intend to use a more unified approach by learning the context-distribution using a
variation of the same learning algorithm that is used for learning the policy.

In order to learn the context-distribution, we will incorporate this metric into a modified objective function and solve
the learning problem analogously to the optimization process used in REPS. We will furthermore show that the solution
that we derive from this adaption is implementing its curiosity aspect by incorporating an intrinsic reward function into
standard REPS and is therefore in line other approaches to artificial curiosity.

For a more detailed discussion of different approaches to exploration and curiosity see [11].

In Section , we introduce LocalREPS. LocalREPS is a modification of REPS that only aims to be correct in a small region
of the context-space. In the past, locally weighted learning has often been used for supervised learning, for example
local regression. Different methods used for supervised learning are discussed in [1]. Atkeson et. al. show that locally
weighted learning can be used for model-based reinforcement learning[2]. LocalREPS combines locally weighted learning
with model-free policy search using weightings based on a distance metric similar to the aforementioned methods.
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3 Relative Entropy Policy Search
3.1 Policy Search

Reinforcement Learning aims to learn how to solve tasks solely by interacting with the environment without prior, task-
specific knowledge. These tasks are often represented as a Markov Decision Process where the agent tries to navigate
a space of states S using actions of an action space A based on a reward function R : S × A → R which denotes how
good a certain state is as well as how good the action was that lead to that state. In robotics, the state-space S and the
action-space A are typically continuous. However, in a contextual episodic learning setup, there is no state that could
be modified by actions. Instead, the state space is replaced by a space of contexts S. Furthermore, A contains whole
trajectories as an episode has to be solved without using multiple transitions.

Reinforcement learning then strives to find a deterministic policy a = π(s) or a probabilistic policy π(a|s) that solves the
task by choosing actions that maximize the reward. One particular class of reinforcement learning algorithms is policy
search. Policy search attempts to find a policy using optimization. A specific algorithm in this class is Relative Entropy
Policy Search which we will explain in the following section.

3.2 Relative Entropy Policy Search

In [12], Peters et. al. present Relative Entropy Policy Search (REPS). REPS is a probabilistic policy search algorithm
that strives to iteratively find an optimal policy by maximizing the expected reward for a reward function r(s,a). The
expected reward is defined as

J(π) =
∑

s,a

µπ(s)π(a|s)r(s,a), (3.1)

where µπ(s) is the distribution of contexts. The core idea of REPS is to limit exploration of actions and contexts in order
to stay close to the observed data of the last iteration. This keeps the algorithm from converging prematurely based on
assumptions on unseen data and is achieved by putting a bound ε on the KL-divergence between the joint-distribution
p(s,a) = µπ(s)π(a|s) that the optimization problem tries to find and the joint-distribution q(s,a) that has been found in
the last iteration

ε≥
∑

s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)

q(s,a)
. (3.2)

As a result, the joint distribution of contexts and actions between two iterations cannot differ greatly. Furthermore, since
we are working in a contextual setup and since we cannot freely choose the context distribution µπ, it is necessary to fix
the context-distribution to the observations. Since observations are only possible at samples, we cannot obtain the exact
distribution. Instead, REPS matches the average of chosen features of the observed contexts with the average features of
the desired context-distributions by adding a constraint

∑

s

µπ(s)Φ(s) = Φ̂, (3.3)

where Φ is the feature function and Φ̂ is the feature average of the observed contexts. For example, a possible feature
function is Φ(s) = (s, s2)T , i.e. a feature function that matches mean and variance of both distributions.
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As a consequence, the full optimization problem of Relative Entropy Policy Search reads as follows:

max
π,µπ

J(π) =
∑

s,a

µππ(a|s)r(s,a), (3.4)

s.t.ε≥
∑

s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)

q(s,a)
, (3.5)

∑

s

µπ(s)Φ(s) = Φ̂, (3.6)

1=
∑

s,a

µπ(s)π(a|s). (3.7)

This problem can be solved using the method of Lagrangian multipliers. Peters et. al. show that the new joint distributions
can be obtained by putting weights on the old joint distribution where these weights depend on the rewards as well as
the Lagrangian multipliers. The formula is

µπ(s)π(s|a)∝ q(s,a)exp

�

r(s,a)− θ TΦ(s)
η

�

, (3.8)

where η and θ are Lagrangian parameters. Peters et. al. furthermore show that θ TΦ(s) is an approximation of the value
function Vπ(s)+ c for some c[12]. This approximated value function serves as a baseline and ensures that the weightings
depend only on the quality of the actions and not on the quality of the contexts. This is also of particular interest when
comparing REPS to ActiveREPS in Section 4. Without the constraint on the context-distribution, this term vanishes which
we will also make use of in Section 4.

If we were to derive a policy directly from this solution we would need to evaluate the reward at every possible context-
action pair (s,a) which is impossible. However, we can obtain a usable policy using only samples by approximating it
based on samples. This can be achieved by fitting a parametric policy π′(a|s,ω)with parametersω, e.g. a Gaussian linear
model, so that it is as close to the real distribution as possible. In order to do this, we can minimize the KL-divergence of
the parametric policy and the optimal policy. It can be shown that this can be calculated using equation 3.8 and a fixed
amount of action-samples a(i) at contexts s(i):

argminωKL(π(a|s)|π′(a|s,ω)) (3.9)

=argminω

∫

π(a|s) log
π(a|s)
π′(a|s,ω)

da (3.10)

=argminω

∫ ∫

µπ(s)π(a|s) log
π(a|s)
π′(a|s,ω)

dads (3.11)

≈argmaxω
∑

i

µπ(s(i))π(a(i)|s(i))
q(a(i), s(i)|ω)

logπ′(a(i)|s(i),ω), (3.12)

where wi := p(s(i))π(a(i)|s(i))
π′(a(i)|s(i),ω)

∝ exp r(s(i),a(i))−θ TΦ(s(i))
η

can be derived by Eq. 3.8. This results in the weighted maximum
likelihood problem

ω∗ = argmaxω exp
r(s(i),a(i))− θ TΦ(s(i))

η
logπ′(a(i)|s,ω), (3.13)

which can be solved with respect to the parametric policies π′(a|s,ω). For example, a linear Gaussian policy
π′(a|s) = N(µω,Σω) can be used, where the mean depends linearly on the context. µω and Σω can be calcu-
lated by standard weighted linear regression using a weight-matrix W = diag(w1, w2, ..., wn) based on the previously

defined weights. The mean can then be calculated as µω = KΦ(s) + k where
�

kT

K T

�

= (Φ(s)T WΦ(s))−1ΦWa and

Σω =
∑

i wi(a(i)−µω)T (a(i)−µ)
∑

i wi
.
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Figure 3.1: Examples for the expectation of policies(y-axis) dependent on context(x-axis). a) A Gaussian linear policy b) A
Gaussian locally linear policy learned by LocalREPS

3.3 Local Relative Entropy Policy Search

In this thesis we are presenting a method to train the robot on areas of the context-space where the robot improves best.
Naturally, this is more interesting on tasks where the context has a large influence on the learning process of the robot.
However, this kind of task is also particularly difficult for REPS to learn. In order to retrieve a usable policy based on
samples, REPS requires a parametric model. Typically, we are using models that depend linearly on the context, e.g.
Gaussian linear models. This kind of model only works well if the optimal actions depend approximately linearly on the
context, i.e. on tasks where the context-space has a particularly small influence on the learning process of the robot. As
a result, we expect the performance on many of the tasks where ActiveREPS would yield improvements to the overall
performance to be limited by the model that REPS is using. Furthermore, REPS only matches the average features of
the internally used context-distribution and the observed samples. A complex context-space would require to choose a
complex enough feature function as well.

In order to learn policies on complex context-spaces we therefore introduce Local Relative Entropy Policy Search. Local-
REPS is an adaptation of REPS that is trained for each context locally around that context. The distance metric that we
are using for LocalREPS is RBF-Kernels

k(s, s0) = exp−
||s− s0||2

2σ
. (3.14)

For training LocalREPS at a context s0, we are therefore bounding the KL-divergence between the old joint distribution
q(s,a) and the new joint distribution µπ(s)π(a|s) only locally. This can be achieved by modifying the corresponding
constraint on REPS’ objective function so that the old joint distribution is multiplied with the RBF-Kernel

ε≥
∑

s,a

µπ(s)π(a|s) log
µπ(s)π(a|s)

k(s, s0)q(s,a)
. (3.15)

Furthermore, we are matching the features only locally by matching the feature average with the weighted feature
average of the observations Φ̂s0

. The observations are weighted by the distance as measured with the RBF-Kernel
∑

s

µπ(s)Φ(s) = Φ̂s0
. (3.16)

This results in the proportionality equation

µπ(s)π(s|a)∝ k(s, s0)q(s, s0)exp
r(s,a)− θ TΦ(s)

η
, (3.17)

which is a modified version of Equation 3.8. In order to train the parametric policy π′(a|s,ω) on samples we therefore
need to multiply each weighting with its RBF-Kernel activation so that

ω∗ = argmaxωk(s, s0)exp
r(s(i),a(i))− θ TΦ(s(i))

η
logπ′(a(i)|s,ω). (3.18)

Using LocalREPS allows us to learn more complex policies as can be seen in Figure 3.1.
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4 Active Relative Entropy Policy Search
4.1 Active Relative Entropy Policy Search

Contextual REPS as it was described in the last chapter is able to generalize over contexts but gathers the distribution of
these contexts from observations and is therefore unable to take advantage of situations where we can choose a context
distribution. In this paper we propose Active Relative Entropy Search, an adaptation of REPS that aims to learn the
context distribution instead of the policy in order to train on contexts where the learning algorithm can improve the
expected return the most. Since REPS already maximizes for both, the policy and the context-distribution, we mostly
need to adapt the objective function. Instead of maximizing the expected reward, our intention is to maximize the
expected interest, i.e. a metric that is high for contexts that are deemed “interesting” according to a specific interest
metric. The interest metric that we are using for our approach is similar to the one used in SAGG-RIAC and is measuring
the change of the expected reward (value function) for a given context. This can be written as

I(s) = V (i+1)(s)− V (i)(s). (4.1)

Similar to the interest function used by SAGG-RIACs, this interest function aims to choose contexts where the underlying
policy-learning-algorithm is able to improve its performance the most. The modified objective function can be written
as

max
π,µπ

J(π,µπ) =
∑

s

µπ(Vπ(s)− Vold)(s), (4.2)

where Vold denotes the value function belonging to the old policy, i.e. the value function of the previous iteration.

As we want µπ to be learnable, we need to relax the constraint given in Eq. 3.3 to allow REPS to learn the parts of the
context that are learnable instead of fixing them to observations. The modified constraint looks as follows

∑

s

µπ(s)Φs f i x
= ˆΦ f i x with s= (s f i x , s f ree)

T , (4.3)

where we split the context in two parts. s f i x is the part of the context that cannot be chosen whereas s f ree is the part of
the context that we can choose. For example, this situation could occur in a modification of the aforementioned table-
tennis task where the incoming balls are thrown by a human instead of by a controllable ball cannon. In this scenario,
the robot cannot choose the parameters of the incoming balls and as a result, they would be part of s f i x . However, the
robot would still be able to choose its target which makes it part of s f ree.

By expanding the value function and using a few transformations, this objective function can be reduced to a function
similar to the objective function of the original REPS-algorithm

J(π,µπ) =
∑

s

µπ(Vπ(s)− Vold(s)) (4.4)

=
∑

s

µπ
�

∑

a

π(a|s)r(s,a)− Vold(s)
∑

a

π(a|s)
�

(4.5)

=
∑

s,a

µπ(s)π(a|s)(r(s,a)− Vold(s)). (4.6)

The objective function is therefore equivalent to the one of regular REPS with a modified reward-function rmod(s,a) =
r(s,a)− Vold(s). Employing the regular (extrinsic) reward function would lead to contexts being chosen by the original
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objective function without baseline, i.e. maximizing the expected reward. It follows that the curiosity aspect of this
algorithm lies in the intrinsic reward contained in the modified reward function which is similar to the algorithms
described in Section 2. The result of the modified REPS optimization problem is now given as

µπ(s)π(s)∝ q(s,a)exp
rmod(s,a)

η
= q(s,a)exp

r(s,a)− Vold(s)
η

. (4.7)

In order to evaluate this equation it is necessary to evaluate the value of the old value-function Vold(s) at new contexts
that haven’t been used with the old policy. As Vold is not known, we have to learn the function based on the context-
reward pairs that have been obtained in the last iteration. In order to learn Vold , we are using a Gaussian Process. Our
experiments show that it is best to choose the hyper-parameters of the Gaussian Process based on Cross Validation as
described in [13] instead of using Empirical Maximum Likelihood.

The Gaussian Process allows us to evaluate the modified reward function and to obtain a parametric context-distribution
analogously to obtaining the parametric policy in standard REPS using weighted maximum likelihood. However, since
our goal is to represent complex context-distributions, it is advisable to use a non-parametric model for the context-
distribution as it is flexible enough to represent such complex distributions, for example Kernel Density Estimation.

4.2 Using Active Relative Entropy Policy Search for learning the context distribution

ActiveREPS can be used in two ways. The first way is to use it in order to learn a context-distribution and then to use this
distribution for sampling the context while using another policy search algorithm such as regular REPS in order to learn a
policy π(a|s). This method has the advantage that the model and the parameters of the policy-learning algorithm, such as
the relative entropy bound ε, can be fine-tuned independently for learning the policy and the context-distribution.

The second possibility is to use ActiveREPS to learn both, a context-distribution as well as a policy. We have shown that
ActiveREPS only introduces a different baseline to the REPS learning problem. As a consequence, ActiveREPS is still
optimizing the policy as well and can be used to to learn one. This results in a simpler solution with a single learning-
algorithm but requires the learning-algorithm and its parameters to be suitable for learning both distributions.

4.3 Managing the Training Set

Training regular REPS requires a set of state-action-reward tuples, sampled from the last policy. However, in order
to reduce the amount of samples that are being collected, we can reuse samples from the previous iterations. For
ActiveREPS, a more sophisticated strategy is necessary. Since the context-distribution might have most of its mass on
certain regions, samples from other regions of the context-space become more unlikely. Hence, when the algorithm
deletes old samples, it is forgetting all knowledge about unlikely areas of the context-space. Retaining older samples
from all regions retains the support in these regions.

In order to retain old samples from old regions we are replacing the global bound based on the number of samples with
a bound on the local activation of RBF-kernels. Specifically, when the training set consists of N chronologically ordered
samples with contexts s1, s2, ..., sN , a sample with a context si is being deleted if

K >
j
∑

k=i+1

exp−
||si − sk||

2σd
(4.8)

where K is the bound on the local activation and σd is a parameter denoting the bandwidth of the used kernel. Following
this strategy leads to samples being deleted if it is the oldest sample in a region where the kernel-activation exceeds a
set threshold. This can be seen as keeping a set of the newest K samples locally as opposed to the global limit used for
regular REPS.
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5 Evaluation
We have conducted two experiments to evaluate ActiveREPS as well as LocalREPS. The first experiment is a simulated
table tennis task that is being solved with a combination of reinforcement and demonstration learning. We will show
that in this experiment, ActiveREPS leads to a better performance of the robot after the training has been completed.
The second experiment is a two dimensional simulation where the robot has to reach to a certain point. We will show
that in this experiment, LocalREPS leads to a large improvement over regular REPS. We will furthermore utilize this
experiment to discuss in which situations ActiveREPS does not lead to an improved performance when compared to
regular (Local)REPS.

5.1 Table tennis

In the table tennis task a simulated robot arm has to return differently incoming balls to a specified position using a table
tennis racket. The robot arm has 9 degrees of freedom and is mounted on rails that allow it to move horizontally in the
x and y directions.

The goal of the robot is to first hit the ball with the racket and then to return it to a desired position. How the ball is shot
at the robot is determined by the context of this particular learning problem. The context is 2-dimensional and consists
of the initial velocities of the ball in the x and y direction whereas the velocity in the z direction is fixed.

5.1.1 Dynamic Movement Primitives

In order to reduce the dimensionality of actions, we employ Dynamic Movement Primitives(DMP)[6]. The DMPs are
trained by a demonstration trajectory, in our case a forehand stroke. They are capable of adapting to different end
positions of the trajectory while retaining the shape of the trajectory. Hence, we can use the end-positions of the DMPs
as actions for the reinforcement learning scenario of the movement instead of encoding whole trajectories which would
be much harder. DMPs are dynamical systems which track a goal attractor g by following a shape that is defined by a
forcing function fw(z) where z is a phase variable that represents time

ÿ = τ2α(β(g − y)−
ẏ

τ
) +τ2 fw(z), (5.1)

ż =−ταzz, (5.2)

where α and β are fixed parameters. In order to learn the shape of the DMP by demonstration we need to learn the
forcing function fw(z). This is done by linear ridge regression using a fixed amount of featuresψ(z) based on radial basis
functions

fw(z) =ψ
T (z)w. (5.3)

Learning the parameters w allows us to learn the shape of the trajectory by demonstration so that we only need reinforce-
ment learning to adapt the end position g. However, as the shape of the trajectory is fixed, we can only learn forehand
strokes which may require a larger amount of movement to reach all incoming balls.

5.1.2 The Learning Setup

As baseline, we use standard REPS with a reward function based on the minimal distance from ball to racket as well as
the distance from the ball to the goal position on the table

r(s) =−min(|sball − sracket |) + I(c− |sball,i − sgoal |), (5.4)

where sball is the trajectory of the ball, sracket is the trajectory of the racket, sball,i is the position of the ball when it hits
the table and sgoal is the desired target position on the table. The variable c is a constant and I is an indicator that is 1
if the racket hit the ball and 0 otherwise. This reward function will give gradually higher rewards when the robot gets
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Figure 5.1: a) The simulated robot arm used in the table-tennis-environment. b) Learning curves of the table tennis task
on fixed, uniformly sampled states. Regular REPS is shown in blue, REPS with SAGG-RIAC in pink, ActiveREPS
in green. c) Learning curves of the table tennis task on the states sampled for training, colors as in b). d
Evaluation of the reward on uniformly sampled, fixed states in green and the reward on training samples in
brown

closer to hitting the ball. When the robot hits the ball, it gets gradually higher rewards when the ball is hitting the table
closer to the target position. The fixed reward c that is given for hitting the ball encodes the maximum distance of the
returned ball to the target position at which the trajectory is still considered to be better than one that barely misses to
hit the ball.

We evaluated this task for 400 iterations using 20 samples for each iteration, while we also keep 400 samples of older
iterations for training REPS. As mentioned in Section 3, the policy that is learned by REPS has to be approximated with
a parametric policy using a weighted ML estimate; For this task, we are using a Gaussian linear model. This is sufficient
since the end-position of DMPs generalizes well enough using a linear model. Furthermore, we are using a relative-
entropy bound of ε = 2. Furthermore, contextual REPS requires a feature function to be chosen. We use radial basis
functions as features as we obtained the best results with this representation.

In this experiment, we compare this baseline to Active Relative Entropy Policy Search. We use ActiveREPS to learn
both, the context-distribution and the policy simultaneously. In addition to the parametric model for the policy we also
require a parametric model for the context-distribution. We have chosen Kernel Density Estimation as model for the
context-distribution using hyperparameters acquired by 5-fold cross validation.

5.1.3 Results

We averaged each experiment over 8 trials and compute the performance by averaging the reward obtained after each
iteration on 20, uniformly sampled contexts. We are comparing this to the performance on the contexts used for training
which are sampled from the context-distribution that is learned by ActiveREPS and concentrates on the easier parts of
the context-space first. The results show that ActiveREPS succeeds to learn the task faster than regular REPS on the
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training-samples (Figure 5.1 c). However, on the fixed contexts the obtained reward is initially lower, because early on,
the fastest progress can be obtained in a small region of the context space while the majority of the fixed contexts lie
in different regions. Therefore, the performance of the robot at these points is not greatly influenced by the training
samples which concentrate where the fastest progress can be obtained. However, in later iterations, ActiveREPS samples
in different regions as can be seen in Figure 5.1 b) and the performance on the fixed states approaches the performance
on the training-samples, and, thereby surpasses the performance of the baseline. One might expect the learning progress
on the uniformly sampled states to be faster as well since we are optimizing the expected improvement over the complete
context-space. However, since this can only be evaluated on the samples, the algorithm does not necessarily optimize the
expected improvement outside of the areas of the context-space where samples have been obtained.

Figure 5.2 shows the sampling process of contexts during learning. We can see that after 50 iterations, the contexts
concentrate on a particular region in the context space with a few outliers. After 100 iterations, we can already see
another region emerging. In subsequent iterations, we see that contexts have been sampled in almost all parts of the
context space. We can also see that very few contexts have been sampled in the center of the context-space during the
first 400 iterations, which makes sense as the samples on the border are most difficult to learn. They are also the most
informative to learn as the policy depends only linearly on the context. It is noteworthy that the reward function gives
a large penalty for not hitting the ball, therefore, learning to hit the ball robustly results in the largest improvement of
the average reward. Figure 5.3 shows the learning process. At 50 iterations most samples are in a specific area of the
context-space, however, the results in this area are still mixed(Figure 5.3 a) and many of the newer samples obtain higher
rewards than the older samples in the training-set. Therefore, the modified reward function gives a high reward on these
contexts (Figure 5.3 b). Consequently, REPS learns a context-distribution, which is high in a particular region (Figure 5.3
c) and therefore creates samples foremost in that particular region (Figure 5.3 d). After 50 more iterations, the rewards
in this region are almost consistently good (Figure 5.3 e) and the context-distribution shifts to another region (Figure 5.3
f).

We furthermore compared ActiveREPS to SAGG-RIAC for sampling the contexts, using a region size of 150 and ζ−= 15.
In the results, we can still see the same tendencies of faster learning on training samples which results in a better
learning progress on fixed samples. However, the observed effect isn’t nearly as large as with ActiveREPS. The results of
this comparison can also be seen in Figure 5.1 b) and c).
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Figure 5.2: The context-learning process. After 50 iterations most samples are in a particular region, the rewards in this
region still differ greatly (a) which, after subtracting the old value function, leads to a modified reward (rmod)
that is still high in this region (b). As a result, the context-distribution has most mass in this region (c) which
leads to new samples being sampled there (d). After 50 more iterations the rewards gathered in this region
are more homogeneous (e) which leads to a shift in the context-distribution (f).
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After 50 iterations After 100 iterations

After 150 iterations After 200 iterations

After 250 iterations After 300 iterations

After 350 iterations After 400 iterations

Figure 5.3: All contexts sampled during training on the table tennis task. Each point represents one sample, the axes
describe both dimensions of the context. New contexts are mostly sampled from a narrow area that shifts
once the performance on the previous area is good enough. After 50 iterations almost all samples come from
a small region in the context space, after 400 iterations most of the space is covered.
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Figure 5.4: Simulated 5-link robot(blue) and the goal-space(green)

5.2 5-Link Reaching Task

For our second evaluation, we simulated a planar robot arm with 5 links (Figure 5.4). The task of the robot is to reach
a certain point in the 2d-plane with its end effector, where the target position is determined by the context. To be more
specific, the context space consists of the area between (0,−3) and (3,3). The robot has 5 links with a length of 1
and its base is placed at the position (0,0). The difficulty in this task in comparison to the previous evaluation comes
from the lack of demonstrations. The actions in this setup consist of the weightings for the DMP, i.e. factors for radial
basis functions that form a forcing function and determine the shape of the DMP. As a result, the dimensionality of the
action-space is considerably higher and linear generalization is more difficult as a consequence. Especially in the part of
the context-space that lies close to the base of the robot.

5.2.1 The Learning Setup

Similar to the table tennis task, we first evaluated the task with regular REPS and then compared it with ActiveREPS.
However, as we will show later, regular REPS cannot learn this problem well enough which is why we also evaluate
LocalREPS. In order to train the learning algorithm, we use a reward function that is based on the distance of the end
effector to the goal at a certain point in time as well as a penalty based on the actions:

r(s,a) =−haT a− (see,i − sgoal)
2 (5.5)

where see,i is the position of the effector at the relevant time step, sgoal is the position of the goal and h is a parameter
that determines how much influence the actions have on the reward.

We used a relative entropy bound of ε= 0.8. As a feature function, we are using Φ(x) = (x,x2)T (moment matching) for
LocalREPS and a feature function based on RBF-Kernels for regular REPS as this one needs to handle a larger and more
heterogeneous space of contexts. Furthermore, we set the bandwidth of the locality weighting used in LocalREPS to 1.5.
Finally, a Gaussian model for policies isn’t sufficient(see fig. 5.5 b) since REPS finds multiple solutions for part of the
context-space (the robot arm can go left and right) over which a Gaussian policy would average. Instead, we are using a
Gaussian mixture model with 10 mixture components which we train using 10 iterations of the EM-algorithm.

We compared the results of REPS and LocalREPS with a combination of ActiveREPS and LocalREPS. For this, we use
ActiveREPS to learn the context-distribution while using a separate instance of LocalREPS to learn a policy using the
contexts sampled from the learned context-distribution. This also shows the ability of ActiveREPS to work in combination
with different algorithms for learning a policy.

For the parametrization of ActiveREPS, we are again using a Kernel Density Estimation to approximate the context
distribution. However, we found that for this task a fixed bandwidth of 0.5 works generally better for the overall task
than a bandwidth learned with Cross Validation. Furthermore, we are using the same bandwidth of 0.5 for the locality
measure used for deleting old samples.
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Figure 5.5: Reward on uniformly sampled, fixed states. a) 2D-context and mixture model. Regular REPS without Ac-
tiveREPS and with uniformly sampled contexts (blue) is outperformed by LocalREPS with uniformly sampled
contexts (red). No further improvement by employing ActiveREPS (green) b) 1D-context and Gaussian model
(no mixture model). LocalREPS with uniformly sampled contexts (blue) performs better than LocalREPS with
contexts sampled from ActiveREPS (green). c) 1D-context and mixture model and uniformly sampled con-
texts. LocalREPS (green) greatly outperforms regular REPS (blue) d) LocalREPS with ActiveREPS and ε = 0.4
outperforms regular LocalREPS without ActiveREPS and ε = 0.4 by a large margin. However, LocalREPS with
ActiveREPS and ε= 0.8 is still better.

5.2.2 Results

Without employing ActiveREPS, we can see in Figure 5.5. a) that LocalREPS outperforms regular REPS by a significant
margin. This is due to the non-linear dependency of the actions from the context as the actions consist of whole trajec-
tories. Figure 5.5. c) shows that this margin gets even larger on a smaller context-space where the x-coordinate of the
goal-position is always set to 1.5 since LocalREPS manages to improve further while regular REPS performs as poorly as
on the large area. We also applied ActiveREPS, however, we could not see a significant improvement of the performance.
By analyzing the generated contexts, we can see (Figure 5.6) that the samples are more uniformly distributed than in the
table tennis task. The reason for that is the squared form of the reward function which makes early improvements on
the task have more influence than improvements later in the learning progress. Subsequently, learning concentrates on a
smaller part of the context-space much later than in the table tennis task. However, the policy does not improve anymore
since REPS has already converged to a solution. We can change this behavior by manipulating the relative entropy bound.
The results for that case can be seen in Figure 5.5. and show that ActiveREPS outperforms regular REPS. However, the
change to ε also leads to a generally worse learning performance and is therefore undesirable. The evaluation of this
task with a linear Gaussian model for approximating the policy (as well as a smaller, one-dimensional, subspace of the
context-space) shows that ActiveREPS can even be harmful (Figure 5.5 b). This behavior results from ActiveREPS taking
its measure of improvement directly from the rewards and does not take the limitations of the used model into account.
As a result, ActiveREPS predicts large improvements in an area where the model cannot accommodate them and keeps
sampling in this region.
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After 10 iterations After 25 iterations

After 50 iterations After 100 iterations

After 150 iterations After 200 iterations

Figure 5.6: All contexts sampled during training on the reaching task. Each point represents one sample, the axes describe
both dimensions of the context. New contexts are sampled much more uniformly than in Figure 5.2. New
samples concentrate on a particular region of the context-space only after 100 iterations.
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6 Conclusion
In this thesis, we introduced ActiveREPS, an algorithm that incorporates artificial curiosity into contextual, episodic REPS
in order to guide the learning process by training on contexts where the overall performance can improve best. We have
shown that it is possible to integrate the improvement of the learning performance directly into the objective function of
REPS for learning a context-distribution. Furthermore, we have shown that this modification corresponds to including a
intrinsic reward based on the learnable value function of past iterations into the reward function. We showed that, using
ActiveREPS, we can improve the end-results of the learner where the extent of the improvement depends on the task as
well as the chosen models.

Furthermore, we have introduced LocalREPS, a variation of REPS that is trained locally. We have shown that LocalREPS
can improve the performance for tasks where the actions depend non-linearly on the context.

6.1 Future Work

In future work we will further analyze the behavior of ActiveREPS in combination with different parameterizations of
REPS and the used models. Furthermore, we will analyze for which kind of tasks ActiveREPS yields the best improve-
ments over regular REPS. We will use this knowledge in order to improve the performance on the presented tasks and to
further expand the context-space. Secondly, we are going to evaluate the effect of incorporating exploration algorithms
into ActiveREPS as the table tennis task shows that the context distribution can get very narrow. This makes it difficult
to evaluate the improvement of the expected reward in other areas as there are very few newer samples. We hope that
an exploration algorithm such as ε-greedy will alleviate this problem and lead to a globally faster learning progress.
Moreover, we will compare the performance of different intrinsic reward functions in a model-free learning algorithm
such as REPS and compare the results to our own approach. Finally, we want to apply the ActiveREPS algorithm in a
non-episodic setup.

We are confident that ActiveREPS can be used to solve tasks that couldn’t be solved in a satisfactory way using random
samples on standard REPS.
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