
Reinforcement Learning for a
Dexterous Manipulation Task
Reinforcement Learning für eine geschickte Manipulationsaufgabe
Bachelor-Thesis von Valerian Marg
Tag der Einreichung: 25. August 2016

Gutachten: Prof. Jan Peters
Betreuung: Herke van Hoof



Reinforcement Learning for a Dexterous Manipulation Task
Reinforcement Learning für eine geschickte Manipulationsaufgabe

Vorgelegte Bachelor-Thesis von Valerian Marg

Gutachten: Prof. Jan Peters
Betreuung: Herke van Hoof

Tag der Einreichung: 25. August 2016



Thesis Statement
I herewith formally declare that I have written the submitted thesis inde-
pendently. I did not use any outside support except for the quoted literature
and other sources mentioned in the paper. I clearly marked and separately
listed all of the literature and all of the other sources which I employed when
producing this academic work, either literally or in content. This thesis has
not been handed in or published before in the same or similar form.
In the submitted thesis the written copies and the electronic version are
identical in content.

Darmstadt, August 25, 2016

(Valerian Marg)

Erklärung zur Thesis
Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu ha-
ben. Alle Stellen, die aus Quellen entnommen wurden, sind als solche kennt-
lich gemacht. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.
In der abgegebenen Thesis stimmen die schriftliche und elektronische Fassung
überein.

Darmstadt, 25. August 2016

(Valerian Marg)



Abstract
In robotics, dexterous grasp- and manipulation tasks for unknown objects
are still a major challenge. Methods based on conventional control engi-
neering need accurate models of the object or the environment. If these are
not available, those methods are not applicable. Reinforcement learning in-
stead makes use of experience from direct interaction and learns a policy
to accomplish a particular task. This thesis presents a method, based on
reinforcement learning, with which manipulation primitives can be learned.
In this method the task specifications are defined in a reward function in
advance. To learn a value function from data least-square temporal differ-
ence learning (LSTD) is used. The policy is improved in smooth updates
with actor-critic relative entropy policy search (AC-REPS) that balance ex-
ploration and exploitation of experience. This thesis inspects the individual
components of the approach in more detail, presents a stabilization task in a
realistic experiment and evaluates the method in a simulated robotic setup.
The results show that the presented approach is feasible and suitable for the
proposed manipulation task.

Zusammenfassung
Im Bereich der Robotik sind komplexe Greif- und Manipulationsaufga-
ben mit unbekannten Objekten nach wie vor eine große Herausforderung.
Herkömmliche Methoden aus der Regelungstechnik benötigen exakte Model-
le vom Objekt bzw. der Umwelt. Wenn diese nicht vorhanden sind, können
diese Methoden nicht verwendet werden. Reinforcement Learning nutzt hin-
gegen die Erfahrungswerte aus direkter Interaktion und lernt eine Handlungs-
strategie um eine spezielle Aufgabe zu erfüllen. Die vorliegende Arbeit stellt
eine Methode vor, mit welcher Manipulationsprimitive basierend auf Reinfor-
cement Learning gelernt werden können. In dieser Methode werden die Ziel-
vorgaben der Manipulationsaufgabe in einer Belohnungsfunktion definiert.
Um aus den Daten eine Nutzenfunktion zu lernen, wird least-square tempo-
ral difference learning (LSTD) verwendet. Die Handlungsstrategie wird mit
actor-critic relative entropy policy search (AC-REPS) in weichen Schritten
aktualisiert, wobei zwischen Erkundung und Ausnutzung von Erfahrungs-
werten abgewägt wird. Diese Arbeit untersucht die einzelnen Bestandteile
der Methode, präsentiert eine Stabilisierungsaufgabe in einem realistischen
Versuch und bewertet die Methode in einer simulierten Umgebung. Die Er-
gebnisse zeigen, dass die vorgestellte Methode eine mögliche und brauchbare
Lösung für die vorgeschlagene Manipulationsaufgabe bietet.



Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations 4
2.1 Fundamental Principals of Reinforcement Learning . . . . . . 4
2.2 State Representation and Reward Function . . . . . . . . . . . 5
2.3 Function Approximation with Radial-Basis Functions . . . . . 7
2.4 Least-Square Methods in Reinforcement Learning . . . . . . . 9
2.5 Policy Improvement with AC-REPS . . . . . . . . . . . . . . . 12

3 The Methods and Preliminary Studies 15
3.1 The Principal Approach . . . . . . . . . . . . . . . . . . . . . 15
3.2 A Closer Inspection of the Methods . . . . . . . . . . . . . . . 16

3.2.1 Impact of Data Size on LSTD . . . . . . . . . . . . . . 17
3.2.2 Policy Iteration and Learning Progress . . . . . . . . . 18

4 The Experiment and the Results 20
4.1 Platform for Experiments – The Robot Hand . . . . . . . . . . 20
4.2 Learning a Manipulation Primitive – Stabilization . . . . . . . 21
4.3 Collecting Samples and Exception Handling . . . . . . . . . . 22
4.4 Learning the Policy by Simulation . . . . . . . . . . . . . . . . 24
4.5 Learning Progress and the Results . . . . . . . . . . . . . . . . 25

5 Discussion and Outlook 28

References 30



Chapter 1

Introduction

Robots will definitely play a large role in future life. In the past fifty years, a
remarkable industrial change has taken place. Industrial robots and machine
tools allow producing parts in an once impossible accuracy and velocity. In
the next time surely highly specialized robots will take their place. These
robots can perform those tasks autonomously, precisely and reliably for which
they are built for. For instance, recently great progress can be noticed in the
area of robot-assisted surgery. But what is definitely still up in the air, are
multi-talented robots, capable to interact with their unknown environment
– reactive and robust. These robots orient themselves and can perform com-
plicated tasks, for instance, use various tools in a dynamic environment. But
grasping and manipulation of objects still rank amongst the most challenging
interactions, even though a lot of research is being done in this area.

Several works make use of classical methods for manipulation and craft
sophisticated control rules [1][2][3]. Those rules are highly specialized, work-
ing only in a well known environment or for a small number of tasks. For
this reason reinforcement learning in manipulation is definitely worth fur-
ther research. Reinforcement learning uses the experience the system gains
in action and uses the cumulative knowledge to improve its control strategy.
This area of machine learning does not need a model of the environment or
the system dynamic, as it takes samples of occurring situations frequently
and values them respectively. Moreover, reinforcement learning has the abil-
ity to generalize, with the result that the system can take proper actions in
previously unknown situations.



1. Introduction 2

1.1 Related Work
In context of robotics and manipulation, complex abilities of grippers, com-
monly inspired by human hands, are often denoted with the term of dexterous
manipulation. For this term there are several definitions [4]. In this thesis
the following definition is used: Dexterous manipulation is the capability of
changing the position and orientation of an object to another certain dif-
ferent configuration [5]. This capability has also a simple gripper, that is
mounted on a robot arm with the respective degrees of freedom. The au-
thors in [4] reason, that in this case the configuration space is restricted by
the arm and therefore hand dexterity should be preferred in particular cases,
as it increases the workspace. In addition they note, that hand dexterity can
increase precision and allows object reorientation within the hand. During
manipulation, there are several objectives, that have to be considered. In [6],
the manipulation task is categorized hierarchical in low-, mid- and high-level
controls, that are interacting with each other. Another perspective for man-
aging complex robotic tasks, especially dexterous manipulation, is the idea
of task decomposition into motion primitives. In [7] a taxonomy of different
human grasps is introduced and various motion primitives are identified. Two
possible primitives, for example, are acquiring an optimal grasp or turning a
grasped object about one axis.

An early implementation of a control scheme using motion primitives
is demonstrated in [8]. The suggested method utilizes sequences of motor
commands and local feedback loops. In this sense, the authors of [9] propose
a hardware distributed control structure for manipulation tasks. Here, the
task is formulated as a combination of primitive modules and flow-control
modules. A method based on skill primitive nets is presented in [10]. This
method for task planning, especially assembly planning of industrial robots,
considers uncertain environments.

However in an assembly line, there is prior knowledge about the environ-
ment, the robot and the manipulated object. Once dexterous manipulation
should be possible in an unknown environment, and only with little or no
knowledge about the object, additional approaches are required. As already
mentioned, reinforcement learning is a promising area of machine learning,
that meets those requirements. In the following section a small extract of
various works about reinforcement learning for manipulation is given.

The authors of [11] present an approach based on reinforcement learning,
focusing on holonomic constraints between the robot and the object. In a
simulation they apply the presented method to stabilize an object with one
degree of freedom. In [12] reinforcement learning is used to learn primitives
– more precisely, policy improvement with path integrals is used to learn



3 1. Introduction

dynamic motion primitives. The authors of [13] deals with model-free rein-
forcement learning for complex robot tasks, where only little data is available.
A robot should be able to react to unexpected situations during manipula-
tions. To handle such situations, a method is proposed in [14] to make the
system reactive. The authors suggest a database of trajectories, that can
adapt to new environment changes through weighting the trajectories based
on learned metrics.

Tactile feedback plays an important role for manipulation tasks, as it of-
fers great opportunities. With additional information from tactile sensors,
the robustness and the ability to react can be improved by detecting insta-
bilities, disturbances or slippage [15][16].

1.2 Overview
This thesis presents a method for learning a manipulation task and is struc-
tured mainly in three parts. It depends on the basic understanding of rein-
forcement learning and makes use of several selected methods. Therefore an
introduction is given in the first place in Chapter 2, presenting all required
basics for the remaining parts. Secondly, in Chapter 3 the principal approach
is suggested, joining the prior concepts together. Also, two preliminary tests
are conducted to review the suggested method. In the third place, an exper-
iment is presented in Chapter 4, in which a stabilization primitive is learned
in practice. In Chapter 5 possible improvements of the proposed method are
discussed and the insights are summarized in a brief conclusion.



Chapter 2

Foundations

This thesis is based on the understanding of the background knowledge of re-
inforcement learning. The relevant basics are covered in this chapter. Section
2.1 indicates the used notations and focuses on the reinforcement learning
framework. This section also introduces policy iteration, which provides the
basic approach for this thesis. The following section 2.2 explains the general
idea behind the proposed state representation. In addition, a generalized
template is described to design reward functions for manipulation tasks. To
keep the computation feasible, in section 2.3 the principals of function ap-
proximation are shown and Gaussian radial basis functions are introduced.
The section 2.4 deals with least-square methods in reinforcement learning.
It proposes two approaches that are used in this thesis for policy evaluation.
Furthermore, this section also focuses on regularization, since it plays an im-
portant role in least-square methods. The section 2.5 introduces policy im-
provement and explains the trade-off between exploration and exploitation.
It presents the method that is used for policy improvement with smooth
updates.

2.1 Fundamental Principals of Reinforcement
Learning

Reinforcement Learning is an area of machine learning, where a strategy for
an arbitrary task in unknown environment can be learned autonomously.
This strategy includes decision-making on the basis of past interactions with
the environment. The whole process is assumed to be time-discrete, more
precisely it is modeled as Markov decision process (MDP). The learning agent
obtains a reward R in every step as a feedback, with which it can score his
state s and actions a. In every step, the current state transitions into a next



5 2. Foundations

state s′, which is influenced by the chosen actions and potentially by other
effects like noise or external disturbances.

The learning is autonomous, because the actions to be performed to com-
plete a task are not explicitly given. The chosen actions are determined by
a policy π, which is learned while the agents experience different situations
and value them regarding the given reward. A deterministic policy π(s) is
a function that returns particular action a for a given state s. Whereas
a stochastic policy π(a|s) is a probabilistic distribution that describes the
probability of possible actions a given a state s.

In addition a value function V π(s) can serve as a basis of decision-making.
It quantifies the expected future rewards, following a policy π starting from
state s. In this thesis only the state-action value function Qπ(s,a) is used,
which is often mentioned as Q-function. It also estimates future rewards,
while in addition taking actions into account. The correlation between both
value functions is given byQπ(s,a) = Eπ(R|s,a)+γV π(s′), where Eπ(R|s,a)
is the expected reward under the policy π and γ a discount factor that is later
introduced in more detail.

The goal of learning is to archive a policy that maximizes the total reward
in the long run. The concept of policy iteration is common in a lot of meth-
ods. This iteration is geared towards finding the optimal policy, alternating
between policy evaluation and policy improvement. Both parts cannot be
determined at once. Policy improvement is impossible without a sufficient
estimate of the value function under the current policy. Since the improve-
ment step changes the policy itself, evaluation has to be done repeatedly.
This strategy converges for well-formed learning tasks to the optimal policy.
Here the policy evaluation refers to estimating an approximation of the value
function Qπ(s,a).

What is finally learned depends most notably on the reward. It is the crit-
ical factor that prioritizes different goals, rations efforts and sets constraints.
In a control task the objectives can be explicitly formulated by designing a
reasonable reward function r(s,a). This approach is used in this thesis and
thus the next section covers this topic in more detail.

2.2 State Representation and Reward Function
The state s is a tuple of variables that describes all relevant aspects of the
system state. The state variables are given by the system, influenced by the
actions the agent does, and normally cannot be set directly.

As this thesis is about performing in-hand manipulations with a robot
gripper, reasonable variables can be the fingertip positions. Likewise, other



2. Foundations 6

variables are conceivable, such as joint positions, pressure location and con-
tact normals on the fingertip or even the power consumption of the servo
drives. Often such state variables are interdependent. The difficulty lies in
finding a state representation that covers all relevant parts in an efficient
and sufficiently accurate way. State variables can be scaled or transformed
to fit better the learning problem. Furthermore, they can actually be any
combination of various other variables1. Usually there are many reasonable
representations depending heavily on the specific task. This issue is revisited
later in Chapter 4, where a concrete task is discussed.

According to the definition in chapter 1, dexterous manipulation is about
turning an object to a particular position and orientation. Hence there are
configurations more favorable than others and the objective is to reach those
or respectively keep them. These configurations depend on the current goal,
which can change during the task. A reasonable approach can be the use not
only the variables of the current configuration x in the state s, but also of
context variables xd:

s = (x,xd) . (2.1)
Those context variables represent the goal or the desired configuration. Tech-
nically it is not a state in the proper sense, since the goal configuration is
not necessarily given by the system. For instance it could be set by the user
or by a hierarchical control system. In many cases it is not necessary to have
all variables modifiable in the end. These can be fixed to a specific value,
reducing the learning complexity, since only the specific case is learned. An
example for a possible state representation with a fixed goal is given in Figure
2.1.

As mentioned in Section 2.1 the final policy depends notably on the re-
ward. With the previously defined state representation it is simple to design
a reasonable reward function. States close to the goal should obtain a higher
reward than the states far away. Because of this, the reward function should
penalize the difference between the current and desired state variables. In
addition a penalty on the actions is reasonable to prevent unnecessarily high
actions and to ensure convergence in the end. The following equation is a
convenient way of designing the reward function for a manipulation task:

r(s,a) = −(x− xd)ᵀWs(x− xd)− aᵀWaa. (2.2)

Both parts of this term can be weighted independently with the weight matri-
ces Ws and Wa. Setting values only for the diagonals of the weight matrices
is satisfactory in most cases The ratio between the entries of both matrices
1 An example for preprocessed variables is given in figure [4.1]. The signals of all 19

electrodes in the tactile sensor are used to calculate pressure point and normal.



7 2. Foundations

ϕ
ϕd

ϕ=ϕd

Figure 2.1: Example of a rolling task, where the gripper should roll
an object by a certain angle. A possible state representation can be
s = (ϕ, p, ϕd, pd). ϕ denotes the angle and p the total pressure on
the finger tips. The angle can be measured by an external sensor for
example. To reduce the complexity ϕd can be set to zero and pd to
some empirical value.

have an effect on the final policy. For instance, relatively low weights on the
actions can lead to oscillation and noisy behavior.

2.3 Function Approximation with Radial-Basis
Functions

The methods, introduced in Section 2.1 involve saving values of the value
function for various state-action pairs. Since manipulation tasks have con-
tinuous states and actions, it is impossible to save all values for every state-
action pair. Even if states and actions are discretized in adequate intervals,
the high dimensionality of the state and action space leads to problems. The
vast needed memory size to store such Q-function sufficiently is not the only
problem. The amount of state-action pairs rises rapidly with the number
of dimensions and intervals. Besides the computational complexity, a dis-
cretized space leads to impractical discontinuities. Furthermore, the use of
data is very inefficient and learning requires relatively large data sets. Every
single state-action pair needs at least some samples to learn, but those can
only be used for a particular interval. The major problem of discretization
is the lack of generalization.

The agent should also handle unknown situations, by considering the
experience from related situations.

In consequence of the disadvantages listed above, some kind of gener-



2. Foundations 8

alization is mandatory. More precisely a way of function approximation is
needed which matches the target data properly with a feasible amount of
parameters. A metric for how close an approximated function matches the
target data is the mean squared error (MSE):

MSE = 1
N

∥∥∥y − ŷ∥∥∥2
, (2.3)

where N is the number of observed samples, ŷ are observed values of the
target function and y are the respective approximated values.

Generally there are many function approximation methods, that can be
combined with reinforcement learning. The most commonly used methods
in function approximation are linear in the parameters [17]. Those methods
are well studied and used extensively in practical applications, due to their
advantage of closed form solution. To be exact, for linear methods there
is one optimal solution, where the MSE is minimal. The linear function
approximation does not need to be linear in the data, but instead it makes
use of nonlinear transformations φ on the input data x to fit it to a linear
model.

The general linear form is given in the following equation:

y(x) = φ(x)ᵀθ =
D∑
j=1

φj(x)θj, (2.4)

where φ(x) is a D×1 vector, containing the transformed input data x, which
is denoted from now on as present features. The parameter vector is denoted
with θ.

There are many different transformations also referred to as basis func-
tions. One important group of basis functions are radial basis functions
(RBF). These functions depend only on the distance from the function center
c and are well suited for approximation, because of their easily adjustable
smoothness and their powerful convergence properties [18]. In this thesis
multivariate Gaussian functions are used that meet the criteria of RBF:

φj(x) = exp
(
−1

2(x− cj)ᵀΣ−1
j (x− cj)

)
. (2.5)

The center, where the function has its maximum, is denoted with c. The
covariance matrix Σ is used to define a bandwidth that determines the shape
and size of the features and therefore how much they overlap.

There are several possibilities how to choose the feature centers c and the
covariance matrix Σ. One possibility is spacing the feature centers equally in
a grid. The advantage of this method is its simplicity. It just estimates the



9 2. Foundations

boundaries of the data, chooses the number of features for every dimension
and generate the grid. In contrast, there is the disadvantage that with the
dimension growth the total number of features also grows exponentially. In
addition there are cases, in which regions of little interest and with no data
points are still covered with features. In these cases, the Q-function is not
learned properly for these regions, due to lack of data.

As the ranges of various grid dimensions differ, a relative bandwidth b
can be used to ensure a consistent overlapping of the features. In this case
all entries of Σ are zero except the diagonal which is Σ = diag(σ2

1, . . . , σ
2
K),

where the elements σ2
k are calculated as follows:

σ2
k = xmax

k − xmin
k

dk − 1 b. (2.6)

So the absolute bandwidth could be calculated with the boundaries xmax

and xmin, the number of features dk in each dimension and the relative band-
width b.

Another method centers the features on the data points themselves. The
same number of features as the data points can be used and the centers
of the features are exactly where the data points are. Here there is the
advantage that only the space is covered, where the data actually exist. To
choose suitable bandwidths Σ, for instances, the median distance between
all data points to each other can be used. There are also methods to reduce
the number of features and optimize the bandwidths directly, but this is not
covered in this thesis.

2.4 Least-Square Methods in Reinforcement
Learning

A popular approach is to adapt the theory of least-squares function approxi-
mation to reinforcement learning. One Example is the so-called least squares
temporal difference (LSTD) learning, since it targets to minimize a so-called
temporal difference (TD) error in a least-square sense. The main advantage
of LSTD methods in comparison to classical TD(λ) [19] is the efficient use of
data. Even though the computation of LSTD is more complex, in most cases
LSTD converges faster and better than TD(λ) [20]. Another advantage is
the lack of control parameters, such as a learning rate or trace, because these
possibly lead to bad results, if not properly chosen. LSTD is generally used
off-line, using a previously collected sample set. But there are also methods
which can be used on-line, such as the incremental LSTD [21][22][23]. This



2. Foundations 10

thesis presents one way of estimating the Q-function Q(s, a) with least-square
methods and derive this method step by step.

2.4.1 Closed Form Solution
The Q-function under the policy π can be defined recursively using the Bell-
man function:

Qπ(s, a) = r(s, a) + γE [(Qπ(s′, a′)|s, a)] . (2.7)

Hence the value function equals the reward plus the expected next value
of the value function, discounted by a discount factor γ. In doing so, the
value function accumulates the total expected future rewards. However, by
using a discount factor, it takes a lower account into further away events and
thus reduces the effect of more uncertain values. Since the real Q-function
is unknown, the TD error δTD describes the deviations between the current
estimate and the real data:

δTD = Qπ(s,a)− [r(s,a) + γQπ(s′,a′)] . (2.8)

That error reflects how good a Q-function fits the data. In the end, the
Q-function should be approximated linear by a vector of parameters, as it is
introduced in Section 2.3:

Qπ(s,a) ≈ φ(s,a)ᵀθ. (2.9)

Calculation of the Q-function based on a data set is not directly a least-
square regression, due to the target being unknown [24]. It is rather finding
a fixed point, involving a least-square optimization.

To learn from data, a previously collected set of samples D is used. Those
samples are simply a set of tuples, containing state s, action a, reward R,
next state s′ and next action a′:

D = {(si,ai, Ri, s
′
i,a
′
i)|i = 1, 2, . . . , N} . (2.10)

Most methods make no use of the next action a′, but here it is used to have
implicitly the current policy in a convenient way.

In the first step, an optimal parameter vector u is calculated that ap-
proximates the target ŷ in the following error function:

MSTDE = 1
N

∥∥∥δTD∥∥∥2
= 1
N

∥∥∥Φu− (R+ γΦ′θ)︸ ︷︷ ︸
ŷ

∥∥∥2
, (2.11)



11 2. Foundations

where the N×D matrix Φ = (φ(s1,a1), . . . ,φ(sN ,aN))ᵀ contains all current
state-action features of the data set. The matrix Φ′ contains respectively all
next state-action features. The objective in Equation 2.11 is the mean square
TD error and is abbreviated as MSTDE in the following. It is not only used
for the derivation, but also for evaluating the value function later in Section
3.2.1.

The optimal parameter vector u? can be calculated in closed form, by
setting the derivative of the MSTDE to 0:

f̃(θ) = u? = arg min
u

(MSTDE) (2.12a)

⇒ ∂(MSTDE)
∂u

!= 0 (2.12b)

u? = (ΦᵀΦ)−1 Φᵀ (R+ γΦ′θ) . (2.12c)

Afterwards, the fixed point for θ = f̃(θ) = u? is determined:

θ = (ΦᵀΦ)−1 Φᵀ (R+ γΦ′θ)
= (Φᵀ (Φ− γΦ′)︸ ︷︷ ︸

Â

)−1
ΦᵀR︸ ︷︷ ︸
b̂

= Â−1b̂. (2.13)

2.4.2 Regularization
As in any regression problem, over-fitting can occur. In this case the

approximating function fits the given data well, but performs badly on unseen
data. In LSTD, such as in supervised learning, regularization can also be used
to prevent this. Preventing bad generalization is not the only reason why
regularization is reasonable. Calculating θ in Equation 2.13 requires that Â
is invertible. Especially when the number of samples N is not much greater
than the number of features D, chances are high that Â is ill-conditioned.

Regularization can be done by restricting the magnitude of the parame-
ters. Adding an `2 penalty on the parameters to the error function is the most
simple case. This method is used in this thesis, as it is easily comprehensible
and furthermore a closed form solution is still determinable. Including the
penalty gives the new error function∥∥∥δTD∥∥∥2

=
∥∥∥Φu− (R+ γΦ′θ)

∥∥∥2
+ λ

∥∥∥θ∥∥∥2
(2.14)

with its fixed point

θ =
(
Φᵀ (R+ γΦ′θ) + λI

)−1
ΦᵀR =

(
Â+ λI

)−1
b̂. (2.15)



2. Foundations 12

However using `1 norm is also possible. The `1 regularization prefers
sparse solutions [25] and performs better on learning problems with a high
amount of irrelevant features [26]. However, there is no analytical solution
in finding the `1 regularized fixed point, but it is possible to solve it with
numerical methods, such as the least angle regression algorithm [27].

Having regularization has great advantages, but it also introduces a new
parameter, which has to be set carefully. A simple and commonly used
method is applied in this thesis to find an optimal constant λ. The data set
is split in a training set Dtrain and a testing set Dtest. The closed form θ(λ)
is used with the training set and inserted in the following error function that
makes use of the testing set: ∥∥∥Âθ(λ)− b̂

∥∥∥2
. (2.16)

Minimizing this error with respect to λ gives the optimal regularization con-
stant regarding to the MSTDE.

Another method to optimize λ, for example, is cross validation. In this
case, the data set is split in a number of bins and the optimization is done sev-
eral times, using different bins as testing set each time. For this reason, cross
validation is computational expensive, as it includes multiple optimizations.
But the main advantage is its efficient use of data and it can be considered
when only little data is available. However, for the reason of additional com-
plexity, computational expense and the sufficient availability of data, in this
thesis the previously proposed method is preferred to cross validation.

2.5 Policy Improvement with AC-REPS
While learning, the agent comes upon varying states, taking different ac-
tions and receiving corresponding rewards. In the beginning, there is little
knowledge about what states are appealing with respect to the reward and
what actions lead to them. This knowledge is gained by approaching new
situations. Section 2.1 introduces policy iteration that includes the idea of
an iterative policy improvement which aims to an optimal policy. Taking
always random actions to come upon new situations contradicts the idea of
converging to an optimal policy. This policy would try to explore any possible
situation, but does not exploit past experiences. On the other hand, taking
always the most promising actions is fraught with problems in a learning
situation. This strategy is called greedy policy, as it always takes the action
that maximizes the value function. However, the value function is an esti-
mate, that is determined in the policy evaluation step and is also improving
iteratively. Because of this, the greedy policy ignores potentially better, but
undiscovered, situations during learning.



13 2. Foundations

Considering the arguments above and following the idea of policy itera-
tion, the agent has to trade off exploration of new situations with exploitation
of known appealing situations. There are several modifications of the greedy
policy to achieve the trade-off between exploration and exploitation. For
instance, the ε-greedy policy, that takes random actions with a probability
of ε and otherwise chooses the most promising action. Another modification
is the use of softmax action selection. This policy is stochastic, meaning it
chooses the action from a distribution with probabilities that are related to
how promising an actions is.

This thesis makes use of actor-critic relative entropy policy search (AC-
REPS) [28], which delivers the above-mentioned distribution in an advanced
way. This method provides smooth policy updates and controls the amount
of exploration. It belongs to the family of actor-critic methods, which store
and use the value function and the policy separately. In such an architecture,
the policy is the basis for selecting actions and is therefore denoted as actor.
The value function is described as critic, because it is used to evaluate the
current policy [17].

Such a structure has the advantage that it represents the policy directly in
parametrized form [29]. Here, the stochastic policy is modeled as a standard
distribution. To approximate the mean of the distribution the same methods
are used, as introduced in Section 2.3. Therefore, the policy is represented
directly. Particularly the parameter vector θµ describes the mean and the
covariance Σ the uncertainty of the policy.

π (a|s) = N (a|φ(s)θπ,Σ) (2.17)

In contrast, the greedy policy has to find a maximum of the value function in
every step to deliver the most promising action. Having the policy directly
in parametrized form, bypasses this computationally expensive optimization.
Thus, this form simplifies the policy execution, where the agent just follows
the learned policy.

The AC-REPS allows learning the policy in smooth updates by com-
bining two optimizing objectives. On the one hand, this method targets
finding an optimal policy with respect to the value function Qπ(s,a). But
on the other hand, it constrains the policy update. More precisely, the diver-
gence between the observed state-action distribution q(s, a) to the distribu-
tion p(s,a) = µ(s)π(a|s) is limited by the Kullback-Leibler (KL) divergence
KL(p ‖ q) ≤ ε [30]. The state distribution µ(s) ensures that the policy π(a|s)
is learned where data actually exists. With this constraint optimization AC-
REPS provides good policies with an appropriate ratio of exploration and



2. Foundations 14

exploitation. Solving it can be done by minimizing the dual function g(η,υ):

min g (η,υ) = εη + υᵀφ̄+ η log
∑
i

1
N

exp
(
Qπ(si,ai)− υᵀφ(si)

η

)
︸ ︷︷ ︸

wi

, (2.18)

where η and υ are Langrangian multipliers. The vector containing the av-
erage of all state features in the samples, is denoted by φ̄ = 1

N
ΣN
i=1φ(si).

The utilized Q-function Qπ(s,a) is determined in the prior policy evalua-
tion step that is described in Section 2.4. With the optimized η? and υ?
importance weights w = (w1, . . . , wN)ᵀ can be obtained, which specify how
the new distribution p(s,a) can be obtained from the observed distribution
p(s,a):

p(s,a) ∝ q(s,a)w(s,a). (2.19)

To determine the parameters θµ of the new policy, linear regression is used
with the sampled actions Ŷ = (ai, . . . ,aN)ᵀ as target. While (ΦᵀΦ)−1 ΦᵀŶ
would determine the mean of the current policy q(a|s) in the data, the
improved policy π(a|s) is obtained with the recently calculated importance
weights w. These weights are applied on the regression problem:

θµ = (ΦᵀWΦ)−1 ΦᵀWŶ , (2.20)

where the weight matrix W = diag(w)/∑N
i=1 wi contains the normalized

weights on its diagonal. In the same way, the covariance Σ is obtained from
the calculated parameters θµ, using importance weighting:

Σ =
(
Ŷ − E(π)

)ᵀ
W

(
Ŷ − E(π)

)
=
(
Ŷ − θµΦ

)ᵀ
W

(
Ŷ − θµΦ

)
.

(2.21)

As the policy iteration is converging to an optimal policy, the covariance
diminishes, due to decreasing policy updates. For this reason it can also be
used as a metric for the progress of policy iteration.



Chapter 3

The Methods and Preliminary
Studies

This chapter focuses on the principal approach that is used and presents two
preliminary studies. The first section 3.1 shows the complete approach as
the process of policy iteration, using the concepts explained in the previous
chapter. In the second Section 3.2 a simple task is proposed that is well suited
for further inspections of the methods, due to its simplicity and similarities
with the experiment in Chapter 4. While Section 3.2.1 deals with the impact
of the amount of training data on LSTD, Section 3.2.2 inspect the whole
iteration and shows the learning progress of the proposed task.

3.1 The Principal Approach
In the first instance, a state representation has to be defined. Possibly,
some data has to be preprocessed first, to be suitable. The objective of the
control task is stated by designing an appropriate reward function. In the
end a policy should be learned which enables performing the control task in
the intended way. By evaluating collected data, the agent gains knowledge
about coherences between states, actions and rewards under current policy
that is reflected by the value function. This policy evaluation step uses
LSTD to determine parameters θQ that approximates the value function. In
the policy improvement step, AC-REPS is used to perform a smooth policy
update, utilizing the recently calculated parameters θQ. As an actor-critic
structure is used, the policy is modeled separately in parametrized form.
Here it is assumed to be a normal distribution: π(a|s) = N (Φθµ,Σ), where
the parameters of the mean θµ and the covariance matrix Σ are learned. The
improved policy can be used to collect additional data. The past experiences



3. The Methods and Preliminary Studies 16

should be preserved and therefore the newly collected samples are appended
to the former set. How this can be done without computational redundant
expense, is shown in Section 3.2.2.

Policy evaluation and improvement are repeated, while new data is added,
until the policy converges. The covariance matrix Σ reflects the uncertainty
of the policy. If the uncertainty is very small, the policy will not change that
much any more. Because of this, it is suitable as termination criterion for
the iteration. The entire process is shown in Figure 3.1.

procedure PolicyIteration
π ← N (0,Σ0)
D ← ∅
repeat

D ← D ∪ collectSamples (π)
θQ ← LSTD (D) . policy evaluation
θµ,Σ← AC-REPS (θQ) . policy improvement
π ← N (θµ,Σ)

until tr(Σ) ≈ 0

Figure 3.1: Policy iteration is a process of alternating evaluation and
improvement, that targets to find the optimal policy in the data D.

The process of collecting new samples is denoted with collectSamples in
the algorithm and is performed in several roll-outs, using different initial
states. The first data is obtained without knowledge about the system and
so a random policy can be used π(a|s) = N (0,Σ0). The initial covariance
matrix Σ0 should be chosen in a way that the policy covers the entire range
of possible actions.

3.2 A Closer Inspection of the Methods
To get a feeling for the algorithms and to see how they perform, some small
experiments were made, assuming a simple system. The system dynamic is
assumed as:

s′ =
[
x
xd

]
+
[
a+ N (0, σ2)

0

]
. (3.1)

It can be interpreted as a joint position x which should reach a desired
position xd taking changes in position as action, neglecting the impact of
gravity and inertia. As reward function of the system the formulation in



17 3. The Methods and Preliminary Studies

0 5000 10000
0

0.06

0.12

0.18

MSTBE

6 = 10!6

6 = opt

0 5000 10000
jDtrainj

-0.18

-0.12

-0.06

0

7R

Experiment Setup
feature grid 5× 5× 5
discount factor γ 0.7
steps per episode 10
validation set size |Dval| 105

state penalty Ws 1
action penalty Wa 1
range of actions [amin,amax] [−0.2, 0.2]
range of states [smin, smax] [0, 1]× [0, 1]

Figure 3.2: On the left are the results of the learning without regu-
larization – the right side shows the results with optimized λ.

Equation 2.2 is used, as it is suggested in Section 2.2. This dynamic has
rather low practical use, but because of its simplicity, it is suitable for further
investigations of the policy iteration.

3.2.1 Impact of Data Size on LSTD
In the first experiment the impact of the data size on the quality of the policy
evaluation is examined. The direct performance could be measured with the
MSTDE, because it is the error minimized by the proposed LSTD algorithm
in Section 2.4. In addition, the value function shows the expected reward
on the long run. As mentioned in Section 2.5, the greedy policy utilizes the
value function directly. In this experiment, new samples are collected by
applying the greedy policy directly on the evaluated value function. These
new samples could be examined regarding their reward, which is an indicator
of how good the policy evaluation works in the first place. The average of all
rewards of newly collected samples is used as metric. The size of the training
sets is altered while a validation set of 100k data points is used to evaluate
the MSTDE. In the first run only a small fixed regularization constant was
used, to make at least the inversion in LSTD possible. Subsequently, in the
second run, the regularization constant was altered by optimizing it with
respect to the MSTDE. The optimization was done with a testing set Dtest

which size was equal to the according training set Dtrain. The setup of the
experiment and the corresponding results are shown in Figure 3.2.

In conclusion, the results shows that the non-regularized method needs
a particular training set size to converge to the minimal MSTDE. In this
case, at least a training set size |Dtrain| of 1500 samples is needed which



3. The Methods and Preliminary Studies 18

-0.2 -0.1 0 0.1 0.2

a

-0.3

-0.1

0.1

-0.3

x0 ! x

-0.2 -0.1 0 0.1 0.2

a

-0.3

-0.1

0.1

-0.3

x0 ! x
0 5000 10000

0

0.06

0.12

0.18

MSTBE

6 = 10!6

6 = opt

0 5000 10000
jDtrainj

-0.18

-0.12

-0.06

0

7R

Figure 3.3: The results show no remarkable difference to the exper-
iment without noise in Figure 3.2.

corresponds approximately to the tenfold amount of features D = 125. With
enough data, this method converges well. In contrast, the regularized method
performs well, even with little data. But with increasing data, the results
do not get necessarily better. Both, MSTDE and the average reward, are
not even better than those obtained using the non-regularized method in all
cases. It is to be noted that in this first experiment the action variance σ2

in Equation 3.1 is zero and hence there is a small chance, that over-fitting
occurs. To examine the case where the state transitions of x are affected by
noise a second experiment was performed. This experiment has the same
setup, but uses a variance of σ2 = 0.016. The results shown in Figure 3.3
indicate that little noise in the transitions has no remarkable influence on
the learning quality.

3.2.2 Policy Iteration and Learning Progress

The complete approach, as it is presented in Section 3.1, particularly in
Figure 3.1, is inspected in the next experiment. The system dynamic and the
reward function is the same, as in the experiment before. At the beginning an
initial sample set is collected, using a random policy. As policy evaluation
method LSTD is used without regularization. In the policy improvement,
AC-REPS is compared with the ε-greedy policy, as introduced in Section
2.5. For comparison, in each iteration, the actual policy is evaluated by



19 3. The Methods and Preliminary Studies

1 2 3 4 5 6 7 8 9 10

iteration

-0.12

-0.08

-0.04

0

7R

AC-REPS
" = 0:1
" = 0:01
" = 0:001

Experiment Setup
feature grid 3× 3× 3
relative bandwidth b 3.0
discount factor γ 0.7
KL divergence bound ε (REPS) 0.1
steps per episode 5
training set size |Dtrain| 30
state penalty Ws 1.0
action penalty Wa 1.0
range of actions [amin,amax] [−0.2, 0.2]
range of states [smin, smax] [0, 1]× [0, 1]

Figure 3.4: The learning curve shows the progress of the policy im-
provement, utilizing different methods.

running long episodes1 and estimating the average reward.
As already mentioned, during the iteration, past experience should be

preserved, so that the policy is learned for the entire state space, and not
locally for the recently collected data. If new samples are simply appended
to the existing training set, the computational expense would grow during
the iteration. In LSTD the parameter vector θQ is obtained by solving Â−1b̂,
as it is derived in Section 2.4. Because Â has the dimension N×N , the costs
for the containing matrix inversion rise rapidly2 with the number of samples.
To evade this problem, two data structures, Âtrain and b̂train, can be stored
and updated in each step t, by adding the recently calculated Ât and b̂t [31]:

Âtrain
t+1 = Âtrain

t + Ât

b̂train
t+1 = b̂train

t + b̂t
(3.2)

The results and the setup of the experiment are shown in Figure 3.4. To
obtain fairly representative results, the experiment was repeated 50 times and
the curves where averaged. The experiment shows, that AC-REPS and the
ε-greedy policies are converging relatively equally. It is quite possible that
the results are substantially different if the parameters are altered, notably
the training set size Dtrain or the relative bandwidth b. This experiment
should rather be seen as a proof of concept, than an in-depth analysis of the
policy improvement.

1 The episodes for evaluating the policy have 50 steps/episode in contrast to
5 steps/episode in the training data.

2 The Gauss–Jordan elimination has the complexity of O(n3).



Chapter 4

The Experiment and the Results

This chapter presents in an experiment how a stabilization primitive can
be learned. In Section 4.1 the robot gripper and the tactile sensors are
presented which are the platform for the experiment. A description of the
task with the proposed state representation and reward function is given in
Section 4.2. The Section 4.3 deals with the practical perspective of collecting
samples, especially exception handling and feature coverage. In Section 4.4 a
strategy to learn an initial policy is suggested. Finally, Section 4.5 presents
the results of the learning progress.

4.1 Platform for Experiments
– The Robot Hand

As platform for the experimental part of the thesis the so-called Allegro hand
is used. This robot gripper is inspired by the human hand and is specially
designed for grasping and manipulation research [32]. All 4 fingers are fully
actuated, with 4 torque controlled joints each. Furthermore, on the finger
tips tactile sensors1 are attached. Hereby, the fingers can measure the total
pressure on the finger tip. This tactile feedback offers great opportunities, as
it can improve the grasp, by detecting instabilities, disturbances or slippage
[15][16]. It also allows a stable grasp during the manipulation. Instead of
learning tasks for one particular object, the tactile feedback allows a certain
degree of generalization. Thus, for example a policy can be learned once
and subsequently be applied on objects of the same shape, but alternating
slightly in size.

Additionally, the sensors have also 19 electrodes on different locations in
1 BioTac, SynTouch [33]



21 4. The Experiment and the Results

Figure 4.1: The pressure point and the contact normal can be calcu-
lated by estimating the center of the electrode signals. But the results
are not reliable and therefore not used in the thesis.

the finger tip. With these, changes of the resistance of the conductive fluid
under the skin can be detected. With some preprocessing, this data can be
used to calculate pressure points and contact normals.

Having this data appears promising, as it can help to detect grasp insta-
bilities or slippage. But some test runs have shown, that the raw electrode
signals are not reliable enough for a simple preprocessing. If the pressure
point and contact normal are simply calculated by the center of the signal,
the results are prone to error and are impractical for learning. Therefore bet-
ter heuristics or preprocessing strategies are needed to obtain reliable signals.
However, this goes beyond the scope of this thesis and thus is not considered
onwards.

4.2 Learning a Manipulation Primitive
– Stabilization

The goal of this task is to hold an object in a particular pose, respectively
keeping the objects in this pose that is defined by a mutable context variable.
Such a control primitive is very useful in various situations. For example,
this primitive can be applied, when a robot should hand over a full cup of
coffee. The stabilization prevents the coffee from spilling out, while the hand
follows a certain trajectory.

Before learning the policy, some assumptions have to be made and a prac-



4. The Experiment and the Results 22

tical state representation has to be chosen. To narrow the problem the task is
learned for two dimensional space, meaning that only the x and z coordinate
is considered. Moreover, it is assumed, that the manipulated object can be
held in a pinch grasp. On the one hand, the pressure of the grasp should
never be too low, so that the object slips out of place or even falls down.
On the other hand, to protect the sensors or in some cases the manipulated
object, the pressure should never be to high. Anyhow, the pressure plays
an important role and this is considered in the state representation. The
orientation of the object cannot be measured directly without the addition
of external sensors. Therefore, it is assumed that the relative tip position
to each other, directly affects the object orientation. Accordingly, as reverse
conclusion, it is assumed that the object orientation can be estimated by the
tip position. As suggested in Section 2.2, a context variable is introduced
controlling the tip positions and thus affecting the object orientation. Taking
all these things together, the following state representation is proposed:

s = (∆x, p̃,∆xd) (4.1)

The variable ∆x denotes the relative distance in x-direction between the
finger tip. The according context variable, the desired relative distance in
x-direction, is denoted with ∆xd. The pressure variable p̃ is preprocessed
and describes the derivation of the desired grasp pressure of both fingers.
The relative distance ∆z is not considered in the state representation, as it
is already represented indirectly by ∆x and p̃. Adding it would limit the
generality of the policy to a certain size of the object, which is not wanted
here. Changes of the relative finger tip positions ∆x and ∆z are defined
as actions of the two dimensional task. Given this state representation, the
suggested reward function is made up as follows:

r(s,a) = −
(

∆x−∆xd
p̃

)ᵀ

Ws

(
∆x−∆xd

p̃

)
−
(
a1
a2

)ᵀ

Wa

(
a1
a2

)
(4.2)

4.3 Collecting Samples and Exception Handling
To train this task on the robot gripper, some practical problems need to
be solved. Most importantly, the tactile sensors have to be protected from
damage due to high pressures. Another problem is that during the sampling
process the object can fall out of the hand. In this particular case, the agent
collects wrong samples, as there is no object any more between the fingertips
and thus no tactile feedback. For these reasons, an emergency stop has to be



23 4. The Experiment and the Results

a1

a2

a1

z

x

∆x

∆z

a2

Figure 4.2: The actions change the distance of the finger tips in x-
and z-direction. For a better grip, the middle finger mimics the index
finger.

implemented for both cases, that is executed if the pressure exceeds a defined
threshold.

The sampling is done in several episodes, starting from different initial
states. This is necessary to obtain samples for all regions of the state-action
space. After a defined number of steps the episode ends. To start a new
episode, the gripper loosens the grip and moves the finger tips to new arbi-
trary positions in the workspace. If the fingers exit the workspace, an episode
should stop earlier. In the case of leaving the workspace or emergency stop,
the last sample should be considered with high costs. Otherwise, this case
can be interpreted as too promising, because it has no following transitions
and thus it does not regard additional future costs.

As already mentioned the state variables have to be transformed. This
step is important mainly to scale roughly the state variables to the same
range. Highly diverging magnitudes in the values lead to problems in the
policy iteration, particular in regression and regularization. To avoid these
problems, the range of the state variables is rescaled to the range between
−1 and 1. Another reason for the preprocessing is that not all regions of the
samples are equally important. For instance, a pressure signal of 200 is very
undesirable, if the defined desired pressure is 100. A pressure signal of 250
would be even worse, but it is not so important to distinguish between both
cases, because both cases are highly undesirable and thus are considered with
a low reward accordingly. Figure 4.3 shows the utilized preprocessing of the
average pressure signal of both involved finger tips. Having this preprocessed
state variable p̃, the equally spaced features are concentrated in the region



4. The Experiment and the Results 24

0 100 200 300

avg(p)

-1

0

1

~p pd

Figure 4.3: The average
pressure signal of both fin-
ger tips avg(p) is transformed
to the state variable p̃ =
tanh

(
π
pd

(avg(p)− pd)
)
.

d min d obj d max

d

p d

p max

avg(p)
I II III IV

Figure 4.4: The simulated
pressure signal avg(p) is re-
lated to the distance d be-
tween the tips of thumb and
index finger.

around the defined desired pressure pd.

4.4 Learning the Policy by Simulation
Learning on the real hand without any initial policy is tricky and tedious.
With no proper policy the agent takes random actions, without any strategy.
Because of this, the agents would often violate the pressure limits and get
consistently the object out of hand. In this case, the object has to be handed
back manually, which is a tedious procedure. It would be possible that an-
other robot helps during the learning and places the dropped object precisely
back. But to avoid that effort another method is tried out: An initial policy
is learned in a simulation and then in a second step, this policy is improved
in the real situation.

The software framework of the robot hand can be used, including the in-
verse kinematic controller, to simulate a simple training scenario without the
need of the real gripper. But to learn the initial policy, the tactile feedback
has also to be simulated in some way. The goal of the simulation is, that the
resulting policy is better than picking random actions. In other words, the
gripper should drop the object or cancel the episode for other reasons less
often. For this reason, the simulation has not to model the reality absolutely
exactly. It is sufficient to achieve a better policy.

In this experiment several assumptions were made to construct a simple
pressure signal. A particular object width is simulated, but the resulting
policy fits various widths. It is assumed, that the pressure signal is directly
related to the distance of the finger tips. Figure 4.4 shows a possible function
of the distance, that is used for this experiment. This proposed function



25 4. The Experiment and the Results

-1 0 1

s1

-1

0

1

s2

-1 0 1

s1

-1

0

1

s2

-0.1 0 0.1
a1

-0.1

0.1

"
x

0 !
"

x

-0.1 0 0.1
a2

-0.1

0.1

"
z

0 !
"

z

Figure 4.5: On the right side a reduced grid is shown which has
only feature centers where data actually exists. The sampled data is
indicated as blue dots and the feature centers as orange crosses. The
figure on the left shows the state transitions that are noisy and biased.

relates only on the distance and is linear in four segments. In segment I
the distance is a certain amount smaller than the object width and therefore
the pressure signal is at its maximum. In this case the limits are exceeded
and the episode is canceled. Such a region should never be reached with a
proper policy. The optimal pressure is located between segment II and III. In
segment IV the fingers lose contact to the object and the episode is canceled.

A survey of the samples shows that if all features are spaced equally in a
grid, it is not always possible to get all of them covered by data. This case
happens on the s1s2 plane, as it is shown in Figure 4.5. A simple workaround
is reducing the grid by taking out features where no data exists. Figure 4.5
also shows that the state transitions in the samples are noisy and biased.

4.5 Learning Progress and the Results
The result of the initial learning step is shown in Figure 4.6. It turns out
largely as expected. High actions are taken to achieve a grasp with the
desired pressure on the tips. The taken actions also aim to reach the relative
desired distance that is set by the context variable. If the gripper has grasped
the object, the actual states are altering only in a narrow region around the
desired pressure. In this region, the actions point to the goal position, but
it could be observed that they are decreasing as they approach the goal
position. This behavior is caused by the quadratic formulation of the reward
function. One possible solution might be adding an extra penalty on the
difference ‖∆x−∆xd‖, that increases over time.

In a second step the policy is inspected by running it in the kinematic



4. The Experiment and the Results 26

0

0.025

0.05

"z

-0.05 -0.025 0 0.025 0.05

"x

0

0.025

0.05

"z

"xd = 0:025

A

"xd = !0:025

B

A

B

Figure 4.6: The visualization of the policy shows a red region of high
pressure. The policy takes actions that aim for a desired pressure and
a desired relative distance ∆xd.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

iteration

-1.5

-1

0.5

0

7R

Experiment Setup
state feature grid 5× 5× 3
action feature grid 3× 3
relative bandwidth b 3.0
discount factor γ 0.7
KL divergence bound ε (REPS) 0.1
steps per episode 100
training set size |Dtrain| 2000
state penalty Ws 1
action penalty Wa 100
range of actions [amin,amax] [−0.1, 0.1]
range of states [smin, smax] [0, 1]3

Figure 4.7: The learning curve shows that there is progress in the
policy improvement with respect to the average reward.



27 4. The Experiment and the Results

simulation and see how actually the policy execution looks like. It shows that
the gripper approaches the desired pressure relatively fast, but reaching the
goal position proceeds rather sluggish, while the fingers are moving wobbly.
This behavior cannot be observed in the policy itself and is probably caused
by the one-step training. However, the learned policy takes by tendency the
correct actions to reach the given goal and hence it is vastly better than the
random policy.

In contrast, the situation on the real hand is more difficult. It was not
possible to apply the policy on the real system. The fingers consistently
showed an unstable control behavior and began oscillating. A possible rea-
son might be the small actions, that trigger self-excited oscillations, due to
the stick-slip phenomenon [34] and high controller gains. Although some at-
tempts were made to solve these problems, no proper solution could be found.
For instance, a gravity compensation was combined with the PD-controller.
Another approach was the use of linear interpolated trajectories as actions
instead of single steps. The implementation of a robust task-space position
controller goes beyond the scope of this thesis and therefore no further in-
vestigations were made on this issue.

For the reason that the experiments could not be applied on the real grip-
per, the policy iteration was continued, not as intended, with the kinematic
simulation. The results of the learning progress is shown in Figure 4.7. Col-
lecting one sample in the used simulation framework needs approximately
one second. For this reason, the sampling is done with a fixed ∆xd = 0,
reducing the amount of needed samples drastically and thus making the iter-
ation possible in appropriate time. The results show that the policy iteration
converges after approximately 10 iterations which corresponds to the learning
from 20000 samples.



Chapter 5

Discussion and Outlook

This thesis presents a method, based on reinforcement learning, with which
dexterous manipulation primitives can be learned. More precisely, in an
iterative learning process a policy is learned to fulfill the task, previously
specified in the reward function. In this thesis, also individual components
of the approach are inspected in preliminary studies. A stabilization task
is presented in a realistic experiment and the applied method is evaluated
in a simulated robotic setup. The results of the preliminary studies and
the experiment show that the presented method is feasible and suitable for
the proposed manipulation task. Most of the concepts in this approach are
intuitive and readily understandable. The computed results look decent: The
learned policy takes proper actions to reach the intended objective.

However, in detail, the presented approach needs much fine tuning. A
lot of parameters have to be chosen that affect the results substantially. The
presented approach can certainly be improved in many respects. For in-
stance, the hand-tuned weighting of the reward function plays a huge role
in how the final policy looks like. An unbalanced weighting leads to poor
results and finding a satisfying policy is rather a trial-and-error method. One
possible solution might be an automatic rating of the policy under particular
metrics and quality measures. Then, the weights could be adjusted until
a policy is found that meets the requirements. However such requirements
are actually another formulation of reward and demand again human inter-
vention. As future work, preference-based reinforcement learning could be
investigated. This approach utilizes comparisons of trajectories instead of a
reward function.

Another aspect is the use of feedback in the experiment: The presented
experiment considers only few data of the environment, such as the tip posi-
tion and the average pressure signal. Generally, it is desirably to obtain more
information, whenever it is useful for the task. As already mentioned, the



29 5. Discussion and Outlook

tactile sensors can provide much more information than the plain pressure
signal. These capabilities were not exploited, to preserve the feasibility in
the scope of this thesis and a clear survey of the proposed method. However,
to achieve a reactive and robust behavior in manipulation, exploiting the full
capabilities of the tactile sensors is valuable and preferable.

If additional data expand the state representation, the proposed method
leads to problems. With the number of states the number of features grows
exponentially in the equally spaced feature grid and with these also the com-
putational expense. Likewise, it is not guaranteed, that the features fit actual
data. Therefore, the presented function approximation is widely impractical
for larger state representations. More advanced methods for function approx-
imation should be taken into consideration. For example, non-parametric
methods, such as Gaussian processes could be used.

To sum up all in a conclusion, it can be stated that reinforcement learning
is definitely a key technology to new control systems, especially for complex
systems and unknown models. These qualities unlock a potential for material
improvements – also in the challenging domain of dexterous manipulation.
So one may be curious what the future brings.



References

[1] L. Han and J. C. Trinkle, “Dextrous manipulation by rolling and finger
gaiting,” in Robotics and Automation, 1998. Proceedings. 1998 IEEE
International Conference on, vol. 1, pp. 730–735 vol.1, May 1998.

[2] Z. Doulgeri and L. Droukas, “On rolling contact motion by robotic fin-
gers via prescribed performance control,” in Robotics and Automation
(ICRA), 2013 IEEE International Conference on, pp. 3976–3981, May
2013.

[3] M. Cherif and K. K. Gupta, “Planning quasi-static fingertip manipu-
lations for reconfiguring objects,” IEEE Transactions on Robotics and
Automation, vol. 15, pp. 837–848, Oct 1999.

[4] R. R. Ma and A. M. Dollar, “On dexterity and dexterous manipulation,”
in Advanced Robotics (ICAR), 2011 15th International Conference on,
pp. 1–7, June 2011.

[5] A. Bicchi, “Hands for dexterous manipulation and robust grasping: a
difficult road toward simplicity,” IEEE Transactions on Robotics and
Automation, vol. 16, pp. 652–662, Dec 2000.

[6] A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of dex-
terous manipulation,” in Robotics and Automation, 2000. Proceedings.
ICRA ’00. IEEE International Conference on, vol. 1, pp. 255–262 vol.1,
2000.

[7] P. Wright, J. Demmel, and M. Nagurka, “The dexterity of manufactur-
ing hands,” Robotics Research, DSC, vol. 14, pp. 157–163, 1989.

[8] T. H. Speeter, “Primitive based control of the Utah/MIT dextrous
hand,” in Robotics and Automation, 1991. Proceedings., 1991 IEEE In-
ternational Conference on, pp. 866–877 vol.1, Apr 1991.



31 References

[9] Y.-J. Cho, J.-M. Park, J. Park, S.-R. Oh, and C. W. Lee, “A control ar-
chitecture to achieve manipulation task goals for a humanoid robot,” in
Robotics and Automation, 1998. Proceedings. 1998 IEEE International
Conference on, vol. 1, pp. 206–212 vol.1, May 1998.

[10] U. Thomas, B. Finkemeyer, T. Kroger, and F. M. Wahl, “Error-tolerant
execution of complex robot tasks based on skill primitives,” in Robotics
and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, vol. 3, pp. 3069–3075 vol.3, Sept 2003.

[11] Y. Kobayashi, H. Fujii, and S. Hosoe, “Reinforcement learning for ma-
nipulation using constraint between object and robot,” in 2005 IEEE
International Conference on Systems, Man and Cybernetics, vol. 1,
pp. 871–876 Vol. 1, Oct 2005.

[12] F. Stulp, E. Theodorou, M. Kalakrishnan, P. Pastor, L. Righetti, and
S. Schaal, “Learning motion primitive goals for robust manipulation,”
in 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 325–331, Sept 2011.

[13] B. Bischoff, D. Nguyen-Tuong, H. van Hoof, A. McHutchon, C. E. Ras-
mussen, A. Knoll, J. Peters, and M. P. Deisenroth, “Policy search for
learning robot control using sparse data,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3882–3887, May
2014.

[14] S. Hangl, E. Ugur, S. Szedmak, J. Piater, and A. Ude, “Reactive, task-
specific object manipulation by metric reinforcement learning,” in Ad-
vanced Robotics (ICAR), 2015 International Conference on, pp. 557–
564, July 2015.

[15] Y. Bekiroglu, J. Laaksonen, J. A. Jorgensen, V. Kyrki, and D. Kragic,
“Assessing grasp stability based on learning and haptic data,” IEEE
Transactions on Robotics, vol. 27, pp. 616–629, June 2011.

[16] M. Li, Y. Bekiroglu, D. Kragic, and A. Billard, “Learning of grasp adap-
tation through experience and tactile sensing,” in 2014 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 3339–3346,
Sept 2014.

[17] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1st ed., 1998.



References 32

[18] M. Buhmann, Radial Basis Functions: Theory and Implementations.
Cambridge Monographs on Applied and Computational Mathematics,
Cambridge University Press, 2003.

[19] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine Learning, vol. 3, no. 1, pp. 9–44, 1988.

[20] S. J. Bradtke and A. G. Barto, Linear Least-Squares Algorithms for
Temporal Difference Learning, pp. 33–57. Boston, MA: Springer US,
1996.

[21] A. Nedić and D. P. Bertsekas, “Least squares policy evaluation algo-
rithms with linear function approximation,” Discrete Event Dynamic
Systems, vol. 13, no. 1, pp. 79–110, 2003.

[22] A. Geramifard, M. Bowling, and R. S. Sutton, “Incremental least-
squares temporal difference learning,” in Proceedings of the National
Conference on Artificial Intelligence, vol. 21, p. 356, Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

[23] C.-G. Li, M. Wang, and S.-H. Yang, “Incremental least squares policy
iteration in reinforcement learning for control,” in 2008 International
Conference on Machine Learning and Cybernetics, vol. 4, pp. 2010–2014,
July 2008.

[24] C. Dann, G. Neumann, and J. Peters, “Policy evaluation with temporal
differences: A survey and comparison,” no. March, pp. 809–883, 2014.

[25] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[26] M. W. Hoffman, A. Lazaric, M. Ghavamzadeh, and R. Munos, Regular-
ized Least Squares Temporal Difference Learning with Nested `2 and `1
Penalization, pp. 102–114. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012.

[27] J. Z. Kolter and A. Y. Ng, “Regularization and feature selection in least-
squares temporal difference learning,” Proceedings of the 26th Annual
International Conference on Machine Learning, 2009.

[28] C. Wirth, J. Fürnkranz, and N. G., “Model-free preference-based re-
inforcement learning,” in Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15), 2015.



33 References

[29] I. Grondman, L. Busoniu, G. A. D. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy gra-
dients,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, pp. 1291–1307, Nov 2012.

[30] J. Peters, K. Muelling, and Y. Altun, “Relative entropy policy search,”
in Proceedings of the Twenty-Fourth National Conference on Artificial
Intelligence (AAAI), Physically Grounded AI Track, 2010.

[31] M. G. Lagoudakis, R. Parr, and M. L. Littman, Least-Squares Methods
in Reinforcement Learning for Control, pp. 249–260. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002.

[32] Wonik Robotics, “Allegro Hand – product description and specifica-
tions.” [http://www.wonikrobotics.com/Allegro-Hand.htm; accessed
July 11, 2016].

[33] SynTouch, “BioTac – product description and manual.” [http://www.
syntouchllc.com/Products/BioTac/; accessed July 11, 2016].

[34] G. Capone, V. D’agostino, S. d. Valle, and D. Guida, “Stick-slip insta-
bility analysis,” Meccanica, vol. 27, no. 2, pp. 111–118, 1992.

http://www.wonikrobotics.com/Allegro-Hand.htm
http://www.syntouchllc.com/Products/BioTac/
http://www.syntouchllc.com/Products/BioTac/

	Introduction
	Related Work
	Overview

	Foundations
	Fundamental Principals of Reinforcement Learning
	State Representation and Reward Function
	Function Approximation with Radial-Basis Functions
	Least-Square Methods in Reinforcement Learning
	Policy Improvement with AC-REPS

	The Methods and Preliminary Studies
	The Principal Approach
	A Closer Inspection of the Methods
	Impact of Data Size on LSTD
	Policy Iteration and Learning Progress


	The Experiment and the Results
	Platform for Experiments – The Robot Hand
	Learning a Manipulation Primitive – Stabilization
	Collecting Samples and Exception Handling
	Learning the Policy by Simulation
	Learning Progress and the Results

	Discussion and Outlook
	References

