
Manipulation Skill for Robotic
Assembly
Roboterfertigkeiten für den Zusammenbau
Master-Thesis von Stefan Zeiß aus Heidelberg
Juni 2014

Fachbereich Informatik
Intelligent Autonomous Systems

Manipulation Skill for Robotic Assembly
Roboterfertigkeiten für den Zusammenbau

Vorgelegte Master-Thesis von Stefan Zeiß aus Heidelberg

1. Gutachten: Jan Peters
2. Gutachten: Hao Ding

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 01.07.2014

(Stefan Zeiß)

1

Preface

This Master-Thesis is the final thesis of the "Computational Engineering" Master’s degree program at Technische
Universität Darmstadt, which I attended from 2011 to 2014.
It was created in 2014 as a cooperation between the group "Intelligent Autonomous Systems" of the department
of computer science at TU Darmstadt and the ABB Group. I wrote it at the ABB Corporate Research Center in
Ladenburg, where it was part of a "Robotic Skill" project carried out at the "Robotics and Manufacturing" group
of the research center’s "Automation" department.
So far, one paper has been published in the context of this thesis at the IEEE International Conference on Au-
tomation Science and Engineering (IEEE CASE 2014), which describes our work in the area of "Contact Force
Estimation". Another paper describing the overall concept is planned and will most likely be submitted at a
different conference this year.
I would like to thank my university supervisor Professor Dr. Jan Peters for his great support and fruitful discus-
sions. I am also greatly in debt to our project group at ABB, Dr. Hao Ding, Dr. Arne Wahrburg and Dr. Björn
Matthias: Thank you for the great cooperation during the last months! Furhtermore, I would like to thank Ivan
Lundberg of the ABB Corporate Research Center in Sweden for providing valuable information and support on
the topic of "Contact Force Estimation". In the context of this topic I would also like to adress thanks to Andreas
Stolt, Magnus Linderoth and Anders Robertsson for their inspiring work.
Furthermore, I would like to thank Allegra Pender for her great support and extensive spell-checking. Finally I
would like to thank all the employees at ABB Ladenburg and especially my student colleagues there for the good
time I had.
The full text of this thesis can be found on the attached CD as an PDF file.
q q̇ q̈ J p px , py , pzφx ,φy ,φz f Fx , Fy , Fzτx ,τy ,τz µ I P+ X� 0T F F FSM PCBDACRSV M DOF T C PDH

2

Abstract

In this thesis, a new Manipulation Skill concept to fulfill robotic assembly tasks is proposed. A manipulation skill
is an elementary primitive that encapsulates the capabilities to coordinate, control and supervise an elementary
robot task. To gain reusability of a primitive in alike robot tasks, the primitives are represented as generic templates
that are parametrized for each situation with data from an assembly specification. A skill is represented in two
ways: as a 12-dimensional trajectory describing compliant motions in pose-wrench space and as a Finite State
Machine to execute the motions that are derived from this trajectory. A qualitative node-based concept is proposed
to store the trajectory in a generic way. Motions in the Finite State Machine are specified in the Task Frame
Formalism. Mapping procedures are introduced to map parameters between the assembly specification, the Finite
State Machine and the trajectory. A categorization of skills based on the proposed skill representation is presented,
where the two skills Insert and Snapfit are investigated in depth. A new assembly specification is introduced that
incorporates descriptive information about an assembly as well as instructions on how to perform an assembly. The
applicability of the system to standard industrial hardware is shown. For control, only standard position control
is employed while force/torque information is used to switch between different position-controlled motions. To
circumvent the need for dedicated force/torque sensors, a novel approach to estimate forces from motor data is
proposed. The concept is implemented as a demonstrator using an ABB dual-arm concept robot and standard
ABB robot control software. Its applicability is shown by performing an example small part assembly featuring
the skills Insert and Snapfit among others.

Zusammenfassung

In dieser Thesis wird ein neuartiges Konzept zur Durchführung von Montageaufgaben durch einen Roboter
basierend auf "Manipulation Skill" vorgestellt. Ein "Manipulation Skill" ist ein primitiv, das die Fähigkeiten
eines Roboters, eine elementare Aufgabe zu koordinieren, zu regeln und zu überwachen, enthält. Um Primi-
tive für ähnliche Aufgaben wiederverwenden zu können, sind diese als generische Schablonen gespeichert, die
durch Parametrisierung mit Daten einer Montagespezifikation an einzelne Situationen angepasst werden. Ein
"Skill" wird auf zwei Arten gespeichert: als 12-dimensionale Trajektorie, welche Bewegungen anhand von Po-
sition, Orientierung, Kontaktkräften und Kontaktmomenten beschreibt, sowie als Zustandsautomat, welcher die
Bewegungen durchführt, die von der Trajektorie abgeleitet werden. Ein qualitativer knotenbasierter Ansatz er-
möglicht es, die Trajektorie auf generische Art und Weise zu speichern. Die Bewegungen im Zustandsautomat
werden basierend auf dem "Task Frame Formalism" definiert. In der Thesis werden Mapping-Verfahren zum
übertragen von Parametern zwischen den verschiedenen Repräsentation eingeführt. Darüber hinaus wird eine
Kategorisierung von "Skills" vorgestellt, bei der die Skills "Insert" und "Snapfit" im Detail betrachtet werden.
Es wird außerdem eine neue Spezifikation für Baugruppen vorgestellt, welche neben beschreibender Informa-
tion auch Informationen über den Ablauf der Montage enthält. Letztlich wird die Nutzbarkeit des Systems auf
industrieller Standard-Hardware gezeigt. Die Regelung von Bewegungen erfolgt anhand von Positionsregelung,
während Kraft- und Momentinformation dazu verwendet wird, zwischen verschiedenen positionsbasierten Be-
wegungen zu wechseln. Um die Verwendung von Kraftsensoren zu umgehen, wird ein neuartiger Ansatz zum
Abschätzen der Kräfte basierend auf Motordaten vorgestellt. Das Konzept wird als Demonstrator implementiert,
wobei ein "ABB Dual-Arm Concept Robot" sowie Standard-ABB-Software zum Einsatz kommen. Der Demon-
strator wird genutzt, um einen Zusammenbau von Kleinteilen durchzuführen, bei dem unter anderem die Skills
"Insert" und "Snapfit" verwendet werden.

3

Contents

List of Figures 11

List of Tables 13

List of Symbols and Abbreviations 15

1 Introduction 17
1.1 Motivation . 17
1.2 Problem Statement . 18
1.3 Outline . 18

I State of the Art 19

2 Robotic Assembly 21
2.1 Specification and Requirements of Robotic Assembly . 21
2.2 Automatic Assembly Sequence Planning . 22

3 Compliant Behavior 23
3.1 Active and Passive Compliant Motion . 23
3.2 Specification of Compliant Motion Tasks . 25

3.2.1 Task Frame Formalism . 25
3.2.2 Constraint-Based Task Specification . 25

3.3 Advanced Task-Level Robot Control Approaches . 27
3.3.1 Operational Space Formulation of the Robotic Dynamic Model 27
3.3.2 Direct and Indirect Force Control . 28
3.3.3 Vision-Based Control . 30

3.4 Sensing Devices and Approaches . 31

4 Assembly Skill 33
4.1 General Idea and Requirements . 33
4.2 Skill Representation Approaches . 35
4.3 Comparison of Skill Representation Approaches . 37

5 Contribution 39

II Assembly Skill Representation 41

6 Assembly Skill System 43
6.1 Assembly Definition . 43
6.2 Concept Structure and Information Layers . 44
6.3 Assembly Tree Specification . 45

6.3.1 Assembly Tree Structure . 45
6.3.2 Assembly Tree Elements . 46
6.3.3 Assembly Tree Traversal . 47

6.4 Skill Selection and Parametrization . 48

4

6.5 Example Assembly Application . 49

7 Skill Representation 51
7.1 Properties of a Skill Primitive . 51
7.2 Trajectory Representation . 53

7.2.1 The Pose-Wrench Space Concept . 53
7.2.2 Elements of a Trajectory . 54
7.2.3 Example Trajectory . 55
7.2.4 Motion State Evaluation . 56
7.2.5 Trajectory Template and Parametrization . 57

7.3 Motion Net Representation . 58
7.3.1 Elements of a Motion Net . 58
7.3.2 Structure and Execution Behavior . 60
7.3.3 Motion Net Template and Parametrization . 62

8 Skill Categorization 65
8.1 Insert Skill . 66

8.1.1 Mathematical Model of an Insertion Task . 66
8.1.2 12D Pose-Wrench Trajectory of the Insert Skill . 68
8.1.3 Motion Net Finite State Machine of the Insert Skill . 69
8.1.4 Insert Data Sheet . 70

8.2 Snapfit Skill . 71
8.2.1 Mathematical Model of a Single Latch Snap-Fit Operation 72
8.2.2 12D Pose-Wrench Trajectory of the Snapfit Skill . 74
8.2.3 Motion Net Finite State Machine of the Snapfit Skill . 75
8.2.4 Snapfit Data Sheet . 76

8.3 Other Skills . 77

III Application Results 79

9 Experimental Setup 81
9.1 ABB Dual-Arm Concept Robot . 81
9.2 ABB IRC5 Robot Controller . 82
9.3 Setup of the Example Assembly Application . 83

10 Contact Force Estimation 87
10.1 Schematic Overview and Previous Work . 87
10.2 Problem Statement . 88
10.3 Contact Force Estimation Scheme . 88

10.3.1 Basic Idea . 88
10.3.2 Friction Identification . 89
10.3.3 Calibration of the Weighting Matrices . 90

10.4 Results . 92

11 Implementation 93
11.1 Overall Program Structure . 93
11.2 Assembly Tree Reading . 95

11.2.1 Assembly Tree Representation . 95
11.2.2 Assembly Tree Traversal . 96

11.3 Skill Setup . 97

5

11.3.1 Template Skill Representation . 97
11.3.2 Parametrized Skill Representation . 98
11.3.3 Skill Selection . 99
11.3.4 Skill Parametrization . 100

11.4 Motion Execution . 101
11.4.1 RAPID Robot Control Code . 101
11.4.2 Communication Between Robot and PC . 104
11.4.3 Contact Force Estimation and Robot Representation . 105
11.4.4 Motion Evaluation and Robot Command Execution . 105

12 Results 109
12.1 Performance of an Example Assembly Application . 109

12.1.1 Reference Frames and Robot Setup for the Assembly . 109
12.1.2 Used Skills in the Assembly Sequence . 110
12.1.3 Performance of the Insert Skill . 111
12.1.4 Performance of the Snapfit Skill . 112

12.2 Comparison of Manual Skill Parametrization and Robot Teaching 114

IV Summary 115

13 Conclusion 117

14 Discussion 119

15 Outlook 121

Appendix A Derivation of the Contact Force Estimation 125

Appendix B Remarks on Contact Force Estimation 127

Appendix C Position-Based Skills Used in the Example Assembly Application 129

6

List of Figures

Figure 1.1: Applicability of Robots for Production Scenarios Visualized by the "Robot Zone" 17

Figure 3.1: A Remote Center of Compliance (RCC) device . 23
Figure 3.2: Closed Kinematic Chain . 26
Figure 3.3: Closed Kinematic Chain with Uncertainty Coordinates . 26

Figure 5.1: Contributions on Assembly Execution Levels . 39

Figure 6.1: Information Layers of the Proposed Assembly Skill Concept. 44
Figure 6.2: Assembly Tree Representation . 45
Figure 6.3: Assembly Instruction Extraction . 47
Figure 6.4: Skill Selection and Parametrization . 48
Figure 6.5: Assembly Tree for an Example Assembly Application . 49
Figure 6.6: Skill Selection and Parametrization in the Example Assembly Application 50

Figure 7.1: Assembly Skill Scheme . 52
Figure 7.2: Example Trajectory . 55
Figure 7.3: Trajectory Evaluation Scheme . 56
Figure 7.4: States and Transitions in an Example Motion Net . 60
Figure 7.5: Schematic Visualization of Mapping R2.1 . 63
Figure 7.6: Schematic Visualization of Mapping R2.2 . 63

Figure 8.1: Contact States During Insertion . 66
Figure 8.2: Contact State Geometry . 67
Figure 8.3: Trajectory of the Insert Skill . 68
Figure 8.4: Motion Net of the Insert Skill . 69
Figure 8.5: Cantilever Hook Snap-Fit . 71
Figure 8.6: Motion Scheme of a Single-Latch Snap-Fit . 72
Figure 8.7: Geometric Composition of the Snap-Fit . 72
Figure 8.8: Friction Geometry . 73
Figure 8.9: MATLAB Plot of Equation 8.6 . 73
Figure 8.10: Trajectory of the Snapfit Skill . 74
Figure 8.11: Motion Net of the Snapfit Skill . 75

Figure 9.1: ABB Dual-Arm Concept Robot . 81
Figure 9.2: Workstation with Assembly Parts . 83
Figure 9.3: Steps of the Example Assembly . 85

Figure 10.1: Contact Force Estimation Scheme . 87
Figure 10.2: Friction Identification Results . 91
Figure 10.3: Calibration Results . 91
Figure 10.4: Contact Results . 92

Figure 11.1: Overview of the Overall Program Workflow . 93
Figure 11.2: Assembly Tree Traversal Flowchart . 96
Figure 11.3: Robot Data Receiving Process . 104
Figure 11.4: Program Workflow During the Execution of Robot Motions 107

7

Figure 12.1: Reference Frame Locations . 109
Figure 12.2: PCB Insertion Geometry . 111
Figure 12.3: MATLAB Plot of the Estimated Force During the Execution of Different Insert Skills . . 112
Figure 12.4: Execution of Snapfit Skill 3 . 112
Figure 12.5: MATLAB Plot of the Estimated Force During the Execution of Different Snapfit Skills . 113

8

List of Tables

Table 4.1: Comparison of Skill Representation Approaches . 37

Table 7.1: Nodes in the Example Trajectory . 55

Table 8.1: Data Sheet Template . 65
Table 8.2: Explanation of the Nodes of the Insert Trajectory . 68
Table 8.3: Description of the States and Transitions in the Insert Motion Net 69
Table 8.4: Insert Data Sheet . 70
Table 8.5: Description of the Nodes in the Snapfit Trajectory . 74
Table 8.6: Description of the States and Transitions in the Snapfit Motion Net 75
Table 8.7: Snapfit Data Sheet . 76
Table 8.8: Bayonet Mount Data Sheet . 77
Table 8.9: Screw Data Sheet . 78

Table 12.1: Skills Used in the Example Assembly Application . 110

Table C.1: Transfer Data Sheet . 129
Table C.2: PickUp Data Sheet . 130
Table C.3: Place Data Sheet . 131

9

List of Symbols and Abbreviations

q Joint angle
q̇ Angular joint velocity
q̈ Angular joint acceleration
J Robot Jacobian
p Pose vector
px , py , pz Position coordinates in x,y, and z-direction
φx ,φy ,φz Rotations about the x,y, and z axis described by ZYX Euler angles
f Wrench vector
Fx , Fy , Fz Acting forces in x,y, and z-direction
τx ,τy ,τz Acting torques about x,y, and z-direction
µ Friction coefficient
I Identity matrix
P+ Moore-Penrose-Inverse of P
X � 0 Positive semi-definiteness of matrix X
T F F Task Frame Formalism
FSM Finite State Machine
PCB Printed Circuit Board
DACR Dual-Arm Concept Robot
SV M Support Vector Machine
DOF Degree of Freedom
T C P Tool Center Point
DH Denavit Hartenberg

10

1 Introduction

1.1 Motivation

In today’s industrial manufacturing robots are only economically worthwhile in a limited set of production sce-
narios. Their applicability mainly depends on the production scale.
The production scale differs between mass production (very large scale) and customization (very small scale). In
large scale production a limited number of models is produced in very large amounts over a long period of time.
Here it makes sense to use hard automation where highly specialized and inflexible manufacturing devices are
employed instead of robots. The opposite case is customized manufacturing where a large variety of products is
produced in smaller amounts and short life spans. Manufacturing on this scale is carried out mostly manually.
The production scale region in between these extreme scenarios where robots are applicable is called the "Robot
Zone", which is shown in Figure 1.1.
In today’s manufacturing, there is a paradigm shift in manufacturing from mass production towards mass cus-
tomization [5], which increases the demand for flexible production systems, as the production line output changes
more frequently in its shape and number. Robotic systems have to adapt to these new demands. The main reason
why today’s industrial robots do not meet these demands is their lack of adaptivity to new situations. It is very
complicated to program a robot to fulfill a new task, even if it is only slightly different from the previous task. To
reprogram a robot, experts with deep technical knowledge of the domain and a lot of time are needed. Further-
more, standard industrial robots have only very limited capabilities to cope with uncertainties. To circumvent this
drawback, the robot’s environment has to be specifically and carefully structured for each task. It is obvious that
this is difficult in a constantly changing production scenario. Another disadvantage of today’s industrial robots is
the lack of collaborative capabilities, as robots cannot react to humans in their environment.
A new approach in design and control of robots is necessary to push the border of the "Robot Zone" towards
the domain of manual manufacturing. If robots should ever be used in more flexible production scenarios, the
setup and programming efforts must be decreased while the cooperation capabilities must be increased. With
the Manipulation Skill system we propose a system that is supposed to reduce the setup time and simplify the
programming by including a set of reusable robot capability packages called "Skills". To facilitate collaborative
behavior, these skills can incorporate different sensing and control possibilities.

(a) Current Robot Zone (b) Desired Robot Zone

Figure 1.1: The applicability of robots for production scenarios visualized by the "Robot Zone". The blue line repre-
sents common production scenarios as a function of the produced units per model, the model variety and
the life span of a model. [57]

11

1.2 Problem Statement

To use robots in flexible production scenarios (see Section 1.1), like for example small part assembly, two main
problems have to be solved:

• Robots need to be able to operate in partly unstructured environments under the presence of uncertainty.

• Robots need to be quickly adaptable quickly to react to frequently changing production scenarios.

A robot that can operate under the presence of uncertainty demands complex sensor-based control strategies.
To adapt a robot quickly, it has to be possible to reprogram them quickly, preferably by non-experts on the
shopfloor. As the former requirement increases the programming complexity, it is obvious that the solution to
the two problems contradicts.
An approach to solve this contradiction is the concept of Manipulation Skill. The general idea is to assemble
complex robot actions from elementary building blocks called Skills. A skill encapsulates the capabilities to
coordinate, control and supervise an elementary robot action. All details of the robot control, which can be as
complex as force control, are hidden from the programmer who just needs to assemble predefined skill primitives.
To be useful, a skill needs to be reusable in alike situations. Otherwise, each new situation would demand the
programming of a new skill primitive.
Such a concept is proposed in this thesis. To create a Manipulation Skill system and to use it, several requirements
have to be met. Firstly, it is necessary to find a skill representation that has the flexibility to cope with uncertainties,
is easy to use and can be reused in alike situations. Secondly, a framework needs to be created in which the skill
representation can be embedded and used for robot control. This includes the creation of interfaces to robot control
and sensing, as well as an interfaces to high-level applications, for example assembly planning. Finally, the system
needs to be implemented to prove its usability.

1.3 Outline

This thesis is structured as follows: after the previous chapters provided an introduction to the topic, Part I sum-
marizes the state of the art of Manipulation Skill for Robotic Assembly. The part firstly presents the individual
requirements and components necessary for manipulation skill and proceeds to presenting different approaches
to manipulation skill. Afterwards, these approaches are compared and the contributions of this thesis to the
manipulation skill approach are presented.
Part II presents the proposed concept. In this part, first the overall concept is presented with its different elements.
Then, the representation of manipulation skill that is embedded in this system is described. At the end of this part,
Chapter 8 presents different example skills with respect to the proposed skill representation.
Part III presents the practical implementation of the proposed concept. It is firstly described how the demonstrator
was implemented. The concept of contact force estimation, which is necessary to use the concept in practice, is
presented in Chapter 8. Chapter 9 describes the robotic workstation and Chapter 12 reveals the results derived
from using the implemented demonstrator to perform an example assembly on the described workstation.
Part IV summarizes and discusses the work and provides an outlook to potential extension and future development
of the approach.

12

Part I
State of the Art

13

2 Robotic Assembly

This chapter presents an overview of the state of the art in robotic assembly, which is the main application area
for the concept presented in this thesis.

2.1 Specification and Requirements of Robotic Assembly

Robotic Assembly can be seen as a subset of robotic manipulation tasks. Such tasks describe a process where
objects are moved and rearranged in the environment by a manipulator [47]. During the motion several contact
situations between the involved objects and the environment can occur. From this definition a great number
of applications can be derived. Besides industrial assembly, tasks involving manipulation can also be found in
everyday life. Some examples are building a card house, opening a door or pouring a glass of water [47] [72]. The
focus of this thesis is on industrial small part assembly tasks like assembling a cell phone.
Historically, humans are in the role of the manipulator. With thousands of sensors and actuators as well as the
intelligence to coordinate and adapt them to new situations, humans are perfectly capable of performing manipu-
lation tasks [47]. Another important factor is that humans have the knowledge of what actions are needed to fulfill
a certain task due to their experience. Furthermore, the human hand is a highly dexterous tool that is a perfect fit
for nearly all manipulation tasks.
When manipulation is supposed to be automated, which is desired in industry and increasingly also in home and
service environments, robotic systems can be employed. For robots manipulation tasks are very challenging, since
human sensory, motor and combinatorial capabilities have to be emulated. Several requirements have to be met to
make a robot suitable for manipulation and especially assembly tasks.
These requirements can be described as a mixture of planning and mechanics problems [47]. At first, suitable
tools are needed to enable interaction with the objects. Then, a sequence of object motions and other actions that
lead to successful completion of the manipulation task needs to be found [62, Section 26.1]. As these motions
are at least partially performed in contact with the environment, contact situations need to be supervised. For this
supervision sensing is necessary. Depending on the task, this can, for example, mean to measure external forces
acting on the objects and adapt the motions or the strategy accordingly. Another possibility is visual feedback.
Finally, it needs to be determined if the manipulation task has been performed successfully. For this purpose also
a combination of sensing and prior situational knowledge is necessary. To orchestrate all of these components, a
high-level coordination is necessary. The following list based on [62, Section 26.1] summarizes the requirements:

Tooling As we do not have a "perfect tool" like the human hand in robotics, we need appropriate robot end-
effectors that are usually designed specifically for one task or one class of tasks. In most manipulation tasks
the applied tool is a gripper to pick up and hold objects. Especially in unstructured environments where
objects have uncertain orientations, this can be a difficult task, and high dexterity is needed in order to fulfill
it. There is a wide variety of grippers reaching from simple open/close clamps to state-of-the-art robot
hands. A detailed description of tools is out of the scope of this thesis.

Motion Planning Finding an action sequence that leads to successful completion of a task is a non-trivial problem
in robotics. Its foundation are accurate models of the environment as well as the robot itself. Traditionally,
the problem is divided into gross and fine motion planning. While the former is used to find a macroscopic
motion strategy, the latter tries to deal with the environment uncertainties. How an assembly sequence can
be planned and represented is described in Section 2.2.

Motion Specification To specify the motions involving contact with an uncertain environment, mostly kinematic
and dynamic contact constraints are used. Different approaches for motion specification are described in
Sections 3.1 and 3.2.

14

Control To satisfy these the constraints, appropriate robot motions have to be executed. Therefore, different
feedback control loops can be used. For their use, various forms of sensing may be necessary. Control
strategies can include different mixtures of control and sensing of robot kinematics, static and dynamic
forces [47, Section 1.4]. For a more detailed decription refer to Section 3.3.

Sensing Examples for applied sensing are force/torque sensing or optical sensing. The sensing can be used
directly in a feedback control strategy or in higher-level supervision of the task execution. Different sensing
possibilities are presented in Section 3.4.

Coordination A way to coordinate the execution of assembly tasks is the concept of robotic skills. This is de-
scribed in detail in Section 4.

2.2 Automatic Assembly Sequence Planning

The goal of assembly planning is to find a sequence of robot actions that accomplishes a certain assembly task. In
general, assembly planning can be described as an extension of the basic motion planning problem.
The problem can be solved by applying two consecutive steps. Firstly, an assembly plan has to be created con-
sisting of a sequence of steps to assemble a part. In this step, only the geometry of the part and not the robot is
considered. Secondly, a sequence of robot motions to fulfill the assembly steps has to be found. For the latter, it
is common to use motion planning by calculating configuration space obstacles (see Section 3.1).
To create an assembly plan, three classes of approaches exist: human interaction, geometry-based reasoning and
knowledge-based reasoning [18].
The first class contains early approaches where the user is queried for information and assembly sequences are
created according to the answers [21]. When the goal is to automate assembly processes, such approaches are not
feasible.
The second class contains approaches to create assembly plans automatically from geometrical part representa-
tions like CAD data. Most of these geometry-based approaches employ the basic idea of "assembly by disassem-
bly". Following this strategy, ways to partition an assembled part into sub-assemblies are searched. This way,
a (reverse) order of assembly steps is obtained. Possible ways to disassemble a part can be found via geometric
reasoning (e.g. collision testing) [82]. The strategy is, for example, used in [69] to create "disassembly trees" by
stepwise removal of sub-assemblies via single-step translations. Representing assembly sequences in tree struc-
tures is widely used [40]. Another possible representation of assembly sequences are AND/OR graphs [28], which
contain all feasible sequences. The optimal sequence is selected by analyzing the arcs of the graph with respect to
a performance criterion.
The third class includes advanced planning approaches that also incorporate non-geometric information. This non-
geometric information can be seen as high-level expert knowledge or experience [18]. By augmenting assembly
plans with situational knowledge, it becomes possible to reuse them or sub-plans of them. An example for stored
assembly knowledge is hierarchy knowledge as used in [86]. In general it is possible to reduce the computational
complexity drastically by integrating knowledge and geometry-based reasoning [18]. New plans only have to be
created if no predefined plans for reuse can be found based on the provided knowledge.
There are various ways to implement assembly planning systems. In [32] a system is presented that allows the
generation of an assembly plan directly from CAD data. This also includes robot motion planning, as executable
robot code is created.

15

3 Compliant Behavior

This chapter presents various approaches for specifying and controlling motions in contact with the environment.
Furthermore, possibilities to incorporate sensing in such approaches are presented.

3.1 Active and Passive Compliant Motion

To perform an assembly task, a robot typically has to move parts it holds with its manipulator to a specified goal
assembly state. The goal state and the path to reach it can either be defined by required spatial arrangements or
contact states relative to the environment or other parts involved. To describe and execute such motions in the
presence of uncertainty, the concept of Compliant Motion can be used. It is defined as "motion constrained by the
contact between the held part and another part in the environment" [62, Section 26.4].
There are two classes of approaches to execute compliant motions, which are described in the following: Passive
Compliant Motion and Active Compliant Motion.

Passive Compliant Motion
In passive compliant motion no active recognition and control of contact states are necessary. Usually this means
that the compliance problem is solved by inherent mechanical solutions. A simple example is the usage of cham-
fering cones in assembly.
The most standard way to achieve passive compliance is the concept of the Remote Center of Compliance (RCC),
which has been developed in the 1970s by Whitney [81]. It has first been employed for a peg-in-hole assembly
task.
The RCC is a mechanical spring structure that is attached to the robot between its wrist and its tool. This structure
introduces a high lateral and angular compliance to the system while maintaining a high stiffness in longitudinal
direction. This shifts the center of compliance to a position near the tip of the part held by the tool and changes the
way the held part reacts to contact forces induced by the environment. This enables the part to move compliantly
according to the forces and to react to small position and orientation errors in the motion path of the part. [62,
Section 26.4.2]
RCC has a broad field of application and is especially used in peg-in-hole tasks (Figure 3.1). Reasons for its suc-
cess are its low cost and great reliability in specific cases. A drawback is that RCC devices have to be specifically
designed for each application and only work for simple shapes. Furthermore, the positioning errors it can handle
have to be small.

Figure 3.1: A Remote Center of Compliance (RCC) device used in peg-in-hole assembly [2]

16

Active Compliant Motion
While passive compliance works effectively for very specific applications, active compliant motion provides the
flexibility to solve a wider variety of problems. In active compliant motion the robot adapts its control based on
recognized contact states. This is achieved by using force-based feedback control. To implement such a system,
the following components are necessary according to [41]:

• A model to describe contact states

• A planner to plan compliant motion commands

• An identifier to identify contact states

• A controller to execute the motion commands

Topological contact state model representations describe contact states as a set of topological contact primitives.
These primitives can be point contacts (e.g. vertex-to-face) like in [45] or contacts between surface elements like
in [16]. Models like this have the drawback that they are hard to distinguish due to uncertainties. Another kind
of topological contact primitive, called principal contacts (PC), was introduced by Xiao [84]. They are high-level
descriptions of contacts between polyhedral objects. PCs are suitable for automatic generation as proposed in
[54].
Another contact state modeling approach is based on specifying controller setpoints in the Task Frame. This
approach is, for example, described in [11] and will be discussed in more detail in Chapter 3.2.1.
The last modeling approach discussed here is based on geometric constraints that are specified among features.
Features are geometrical elements like edges, vertices or faces. This approach is, for example, employed in [60]
and will be described in more detail in Chapter 3.2.2.
To provide motion planning strategies that work in the presence of uncertainty, the concept of pre-images in
configuration space (C-space) was introduced [45]. A pre-image encodes all configurations in C-space from
which a desired goal state can be reached and recognized [62, Section 26.4.3]. For the computation of pre-images,
the obstacles in C-space (C-obstacles) need to be given, especially when compliant motion is involved.
To avoid the expensive computation of C-obstacles, a frequently used approach is to plan compliant motions based
on a predefined topological contact state graph [39]. Traditionally, the contact states in the graph are generated
manually, which is very elaborate even for simple tasks [68].
Automatic contact graph generation was first done by Hirukawa et al. in [27]. Their approach is to enumerate
all possible contact states and transitions between two convex polyhedra and store them in a graph. Afterwards,
a path between an initial and a goal configuration is searched by solving algebraic equations. A more general
divide-and-merge approach working on arbitrary polyhedra was proposed in [30].
In planning approaches that consider uncertainties, it is common to split the planning into two phases: global
planning with no consideration of uncertainties and fine motion planning based on sensing and contact state
analysis. This is, for example, followed in [85].
To execute predefined motion plans it is necessary to identify the current contact state online. In general, there are
two classes of approaches: one that uses a history of previous executions of similar compliant motions and one
that does not use this information.
If history data is available, it is convenient to use learning approaches to circumvent the need of explicit contact
state modeling for identification. The data used for learning can, for example, be obtained by human task demon-
strations. There are several ways to learn contact states. In [25] a hidden Markov model was used to learn wrench
characteristics. The same characteristics can also be learned via a neural network structure [9].
When no training data is used, an explicit physical model is necessary where uncertainty is described by Prob-
ability Density Functions (PDFs). An example for such an approach is to match wrench measurements with
predefined templates in a qualitative way [61].
The last necessary component of a compliant motion system is a controller to execute compliant motion com-
mands. It receives desired setpoints from the planner and computes robot commands by comparing the setpoints to
the measured current robot state. Appropriate control strategies for compliant motion are discussed in Chapter 3.3.

17

3.2 Specification of Compliant Motion Tasks

A robotic motion task can be specified by setting desired values, either on the joint level or the workspace of the
robot. The latter is called Task Level Programming, which is easier if the task features compliant motion. To
do so, motion tasks in compliant motion systems are programmed in specific frames called Task Frames. The
basic concept to program such tasks is called the Task Frame Formalism (TFF). It was introduced by Bruyninckx
[11] and is based on Mason’s compliant motions [46]. An important extension to the TFF is Constraint-Based
Programming, which extends the concept of TFF to multiple feature frames.

3.2.1 Task Frame Formalism

In general, task frames are described as "a set of orthogonal reference frames in which the task specification is very
easy and intuitive" [62, Section 7.3.3]. Tasks are programmed by constraining the degrees of freedom of such a
frame. Constraints can be imposed by specifying desired setpoints for each direction. These values can be forces,
torques, linear velocities or angular velocities, and are also known as artificial constraints in the context of TFF.
Additionally, there are natural constraints which are imposed by the environment [46]. There are six directions in
the task frame that can be independently programmed: the X,Y, and Z axis with their respective rotational degrees
of freedom [11].
To program the degrees of freedom of a task frame individually, the frame has to be described as a 6-dimensional
pose vector. This way, every degree of freedom can be accessed and set individually in an easy way [37].
The commands specified in this formalism are high-level robot commands. To execute them, an appropriate hybrid
low-level control system like hybrid force/motion control (see Chapter 3.3.2) is necessary [87].
TFF-based high-level commands have to be defined as atomic robot actions. Such atomic actions can conveniently
be connected by a concept like the manipulation skill system presented in this thesis. An approach to use TFF in
relation to manipulation primitives is, for example, presented in [37].
Research on the TFF formalism mainly focuses on related topics like hybrid control [87], assembly planning [70]
or compliant motion [11]. More recent implementations featuring the TFF can be found in [38] and [72].
A drawback of the TFF is that it can only be applied to task geometries with limited complexity. The usage is
only possible if it is sufficient to assign the control modes to three purely translational and three purely rotational
directions of a single frame [13]. If this is not ensured, advanced approaches like the Constraint-Based Task
Specification are available.

3.2.2 Constraint-Based Task Specification

The Constraint-Based Task Specification (CBS) is a more general extension of the TFF. It allows the assignment
of different control modes in arbitrary directions of the workspace instead of just along and about the axes of a
single task frame. This makes the approach applicable to more complex task geometries. To accomplish this, the
task frame is replaced by multiple Feature Frames. In each of the feature frames a part of the whole task geometry
is specified by axial constraints in the same way as done in the TFF [13].
In [3], geometric constraints between object features were used to derive a robot’s assembly goal pose. For this
purpose, a desired relative object pose is calculated from the geometric feature relations. An important foundation
of the CBS is the task function approach introduced by Samson et al. [60]. This approach features the general idea
that robot tasks can be described as a positioning problem. The control problem deriving from this specification is
that of controlling a vector function that represents the task function. To execute the control, a general non-linear
proportional control scheme has been introduced.
The approach presented in [13] uses feature and object frames to program a task. A task that is described by this
concept can be specified as a desired relative interaction between two objects. To program such a task, feature and
object frames are assigned to relevant features and objects by the user. In this context, an object is a real physical
object in the robot workspace, while a feature is a physical entity (e.g. a vertex) or a geometric property (e.g. a

18

Figure 3.2: Closed Kinematic Chain that contains the feature frames f , the object frames o and the world frame w.
The frames are related by using the feature coordinates χ f and the joint values q [13].

symmetry axis) of such an object [13]. The object frames are rigidly connected to their respective objects while
the feature frames are linked to the object frames. Relative interaction can now be defined by imposing constraints
between two corresponding features on the objects. To define a constraint, in [13] a closed kinematic chain is
specified. This kinematic chain contains four frames: two feature frames f1 and f2 as well as two object frames
o1 and o2. Furthermore, the world frame w is used to close the kinematic chain, which is shown in Figure 3.3.
The advantage of specifying a kinematic chain is, that the degrees of freedom of the relative motion of the objects
are split into three transformations [13]. Furthermore, each interaction task can be specified by multiple feature
relationships, each expressed through a kinematic chain. This gives the approach a greater flexibility.
The total transformation between two objects is described by a 6-dimensional vector χ f of feature coordinates.
This vector represents the closed kinematic chain as shown in Figure 3.3. Its content are position and orientation
coordinates, described, for example, by Euler angles. As previously described, the total transformation is split
into sub-transformations:

χ f = (χ
T
f I χ T

f I I χ T
f I I I)

T (3.1)

How these sub-transformations are distributed can be seen in Figure 3.3.
In addition to these coordinates, a second set called uncertainty coordinates specified by χU is introduced in [13].
The uncertainty coordinates are used to represent pose uncertainties between the real and modeled version of each
frame. The kinematic chain is extended by one additional frame and one transformation per existing frame, if this
concept is used.
In this framework a task, is now specified by using feature relationships to constrain position-based system outputs
y . These system outputs represent the controlled variables of a robotic system and can, for example, be distances
or contact forces. They are related to the task coordinates χ f by the output equation f (q ,χ f) = y , where q
denotes joint values of the robotic system. Often, feature coordinates are chosen to simplify this relation to χ f =
y . The system outputs are constrained by setting desired values yd .

Figure 3.3: Closed Kinematic Chain that contains the feature frames f , the object frames o and the world frame w.
The frames are related by using the feature coordinates χ f , the uncertainty coordinates χu, and the joint

values q [13].

19

3.3 Advanced Task-Level Robot Control Approaches

A standard industrial robot is moved with position control. As this approach is insufficient to execute compliant
motion tasks where contact with the environment is relevant, more advanced robot control laws are necessary. The
two most important classes of control laws for this kind of tasks are force control and vision-based control which
are described in the following sections. As it is beneficial to describe these control laws in the operational space
of the robot, the operational space formulation of the robotic dynamic model is presented in the first subsection.

3.3.1 Operational Space Formulation of the Robotic Dynamic Model

To control a robot in contact situations, positions, velocities or desired contact forces at contact points have to be
specified. For robot control, desired values are set directly at these contact points in task space. If the values were
instead set at the joint level, inverse kinematics would need to be calculated, which is computationally costly [62,
Section 26.2].
To accomplish control at task level, also called operational space, it is necessary to express the robotic dynamic
model in the operational space. The robotic dynamic model in joint space formulation can be written as

τ = H(q)q̈ +C(q , q̇)q̇ +τg(q) + J(q)T fex t , (3.2)

where q , q̇ and q̈ are vectors of joint position, velocity and acceleration, while τ specifies the torques acting
on the joints. Each is an n-dimensional coordinate vector, where n is the number of (independent) joint variables
in the mechanism. fex t denotes an external force acting on the robot caused by contact with the environment.
H is called the joint-space inertia matrix, and it is an n× n symmetric, positive-definite matrix. C is the matrix
describing the Coriolis and centrifugal forces. Gravity terms are included in the vector τg and the effect of the
external force is given by JT fex t . The matrix J is the Jacobian of the end effector.
To transform this formulation to the operational space, the following relations are necessary [62, Section 26.2.1]:

ẋ = Jx(q)q̇ (3.3)

τext(q) = JT(q) · f . (3.4)

Equation 3.3 links the joint velocities to the velocities ẋ at the operation point. In equation 3.4 the instantaneous
torques τext(q) at the joints are described by the external wrench

f =
�

Fx Fy Fz τx τy τz

�T
, (3.5)

which is a vector containing contact forces Fx , Fy , and Fz , as well as contact torques τx , τy , and τz expressed
in task coordinates.
Using these equations, Equation 3.2 can be mapped to the operational space formulation

Λ(q)ẍ + Γ (q , q̇)ẋ +η(q) = f , (3.6)

where Λ specifies the operational space inertia matrix, Γ describes the Coriolis and centrifugal forces in opera-
tional space and η compensates gravity [62, Section 26.2.1].

20

3.3.2 Direct and Indirect Force Control

In force control, forces acting on the robot’s end-effector are controlled. There are two kinds of force control
strategies: indirect force control approaches control forces via motion control without closing the force feedback
control loop, while direct approaches close the loop and allow forces to be explicitly controlled to a certain desired
value. Members of the former class are, for example, impedance control and admittance control, while an example
for the latter is hybrid force/motion control.

Impedance Control
In impedance control, the relation of the end-effector motion and the contact force is modeled through an equiv-
alent mass-spring-damper system with adjustable parameters [62, Section 7.1.2]. If the robot deviates from its
desired motion path, it generates forces according to this impedance to get back on the desired path. The displace-
ment from the desired motion is the input of the path while the generated wrench is the output. A special case of
this scheme is stiffness control where just the static relationship is considered [59]. Another variation is damping
control where the relation between contact force and end-effector velocity is considered [80].
To describe the dynamic behavior of the end-effector, the acceleration-resolved motion control law [62, Section
7.2.2]

hc = Λ(q)α+ Γ (q , q̇)q̇ + he (3.7)

is employed. This equation is inserted into the operational space formulation of the robot dynamics 3.6, which
results in

v̇vve = α. (3.8)

Herein, α is a control input describing a desired acceleration with respect to the end-effector frame. It is set to

α= K−1
M (v̇vvd + KD∆vvvde + h∆ − he), (3.9)

which results in the following equation describing the dynamic behavior of the end-effector as mechanical
impedance.

KM∆v̇vvde + KD∆vvvde + h∆ = he (3.10)

In this equation ∆v̇vvde and ∆vvvde denote the differences between end-effector velocity and acceleration and re-
spective desired values. h∆ and he are the elastic and end-effector wrenches. KM and KD are 6x6 symmetric
positive-definite matrices. The former describes the mechanical impedance, as it contains the mass and the inertia
tensor, while the latter describes the damping.

Admittance Control
In admittance control, a measured force (input) is used to generate a motion path (output) which is related to
the desired motion path. Contrary to impedance control, this scheme does not control the desired position and
orientation of the end-effector but a reference position and orientation resulting from the impedance control action
[62, Section 7.2.2]. This works by using the desired position and orientation as well as the measured wrench as
input for the impedance control equation. By integrating this equation, a position and an orientation are generated
which are used as input for an inner motion control loop. The decoupling of impedance and motion control has
the advantage that force and position error, do not have a negative influence on each other.

21

Hybrid Force/Motion Control
The idea behind hybrid force/motion control is to split the control of a motion among the degrees of freedom of
its reference frame. This way it is possible to simultaneously control contact forces and end-effector motion in
independent subspaces [62, Section 7.1.2]. Usually, motion is controlled in the unconstrained directions of a task
while force is controlled in the constrained directions. To allow this, it is necessary that a task frame is defined as
a reference frame so that the task can be split into purely motion controlled and purely force controlled directions
(see Chapter 3.2.1).
The selection of the appropriate control for each degree of freedom is done by selection matrices or more advanced
projection matrices derived from explicitly constrained equations [87]. There are various implementations of
hybrid control schemes available, which are, for example, based on inverse dynamics control in operational space
[33], passivity-based control [75], or outer force control loops closed around inner motion loops [14].
The most common approach to design a hybrid force/motion control loop is to use an inverse dynamics control
law [62, Section 7.1.2]. In this approach, the linearization and decoupling of force and motion subspaces of the
nonlinear robot dynamics are handled by a model-based inner control loop. Furthermore, an outer control loop is
used to control forces and motion values via separate control laws.
The foundation for the creation of a hybrid control loop is the description of an interaction task by a desired end-
effector wrench hd and a desired twist vvv d . To ensure that the desired values lie in separate subspaces, they are
defined as

hd = S f λd (3.11)

vvv d = Sv vvv d , (3.12)

where S f and Sv are task-specific selection matrices referring to the task frame (see Chapter 3.2.1). λd and vvv d
are vectors representing the wrench and twist values.
Based on these definitions and the operational space dynamics formulation 3.6 the inner control loop can be
specified as

hc = Λ(q)Svαv + S f fλ +µ(q , q̇) +Λ(q)Ṡv vvv , (3.13)

where hcT is the control wrench and vvv is the current robot velocity. It can be seen that force and velocity subspaces
are completely decoupled in this equation. A derivation of this equation can be found in [62, Section 7.4.1]. The
values αvvv and fλ can be derived from the outer control loop.
For force/velocity-based control, this outer loop can be defined as follows:

fλ = λd + K pλ[λd −λ] (3.14)

αvvv = v̇vv d + K pv [vvv d − vvv] + K Iv

∫ t

0

[vvv d − vvv]dτ, (3.15)

where K specifies suitable matrix gains. Equation 3.14 controls the force, while Equation 3.15 controls the
velocity. To use force/position control instead of force/velocity, Equation 3.15 needs to be exchanged with a
position control law.

22

3.3.3 Vision-Based Control

A different control approach is the use of computer vision data to control robot motions [62, Section 24]. Vision
data can be obtained by one or more cameras mounted on the robot or in the workspace. Schemes based on vision
aim at minimizing errors [62, Section 24.1]

e(t)= s(m(t), a)− s∗. (3.16)

In this equation, a set of image measurements m(t) is used to compute a vector of visual features s(m(t), a)
using a set of system parameters a. This feature vector is compared to the desired values s∗. The measurements
are, for example, image coordinates of interest points while the parameters are, for example, the intrinsic param-
eters of a camera. There are two general approaches to calculate the feature vector s : In image-based visual
servo control (IBVS), features are directly available in image data, while in position-based visual servo control
(PBVSC), features have to be estimated from image data as they usually consist of 3D position data.
If the camera is mounted on the robot manipulator, the camera velocity vvv c is considered as robot controller input.
To relate it to the measured feature vector, the interaction matrix Ls is necessary:

ṡ = Ls vvv c. (3.17)

In IBVS, image coordinates of interest points are used to define the feature vector s , while the parameters a are
the camera’s intrinsic parameters. The interaction matrix is obtained from taking the time derivative of the camera
projection equations which can, for example, be found in [23]. Its entries contain the 2D image coordinates of the
point-of-interest as well as the depth of the point relative to the camera frame [62, Section 24.2.1].
For PBVS the camera pose in a reference frame is used to define s . To derive this pose from image data, a 3D
model of the observed objects has to be known in addition to the camera parameters. The literature [15] refers to
this problem as 3D localization problem. For building the interaction matrix, the translation vector and rotational
parametrization of the camera pose are used [62, Section 24.3].

Using Equations 3.16 and 3.17, the relation between camera velocity and error derivative can be obtained:

ė = Ls vvv c. (3.18)

The control law can now be obtained by integrating Equation 3.19. For an exponential decoupled decrease [62,
Section 24.1] this leads to

vvv c = −λL+s e. (3.19)

In this equation λ is the integration constant, while L+s is the Moore-Penrose inverse of Ls . In practical imple-
mentations, Ls and L+s cannot be obtained exactly and have to be approximated.

23

3.4 Sensing Devices and Approaches

To use robots in assembly under the presence of uncertainty, perception of the workspace is necessary. With
the employment of sensors it is possible to measure the current state of a robot’s kinematics and dynamics and
compare this data to desired contact states. A wide variety of sensors is available for this purpose. They can be
located within the robotic system (internal sensors), attached to the robotic system or located in the workspace
(external sensors).
There are different ways to classify sensors. In [62, Section 4.2] Christensen and Hager differ between proprio-
ceptive and exteroceptive sensors. The former are used to measure the internal state of the robot. This includes,
for example, joint angles, motor currents, and end-effector forces. The latter can perceive information about the
environment like object positions and interaction forces.
A different categorization is presented in [36]. Here, sensors are categorized into contact sensors, which include
force-torque and tactile sensors, and non-contact ones, which include cameras or laser scanners.
To use sensors, an inverse sensor model has to be available in order to convert sensory data into state information
[36]. As all sensory data can be described as vectors with different data types, it is possible to treat different
sensors in a unified way.
For the integration of sensors into robot control open and closed loop configurations can be applied as described
in [36]. In open loop configurations the desired robot state is calculated by the sensor and sent to the controller
without consideration of the actual robot state. Closed loop schemes compare the desired and actual states in each
cycle.
Joint position sensors acquire the angular position of the joint by reading a pattern from a disc [62, Section 4.2].
Using this technique, an accuracy of 1/1000 ◦ can be reached. To get the end-effector position of the robot, the
values calculated by the joint position sensors are used as inputs for the robot’s forward kinematics model.
For the haptic measurement of interaction forces and torques, piezoelectric elements can be used [62, Section
4.2]. They generate a voltage that is proportional to their deformation. By using several carefully placed elements,
it is possible to measure forces and torques in all six degrees of freedom. The force/torque sensors are usually
mounted on the robot’s wrist or at its fingertips.
Forces and torques can also be estimated from measured joint torques [66] (see Chapter 10).
In optical sensing an image is obtained from which local features like points and edges are extracted. From these
feature, state values like positions can be extracted. The most important examples for optical sensors are laser
scanners and camera sensors. With laser scanners, a 3-dimensional representation can be generated on which
different geometric measurements can be carried out. Camera sensors acquire digital images as array data. This
data can be used to extract all kinds of useful information. A common example is to extract significant points from
an image and calculate their position in the real world by applying the inverse model of the camera.
Another possibility to measure position, velocity and forces is the usage of accelerometers and gyrometers. With
these devices, translational and rotational accelerations can be measured and dynamic forces can be calculated
directly if the mass is known. A drawback is that methods like this cannot measure static forces.
To combine sensory information from different sources, a variety of sensor fusion approaches exists. These are
most commonly based on probabilistic methods [74]. The foundation of most approaches is Bayes’ Rule. This
general rule can, for example, be implemented using Probabilistic Grids as done in [67]. Another widely used
approach is the Kalman Filter [4], which is a recursive linear estimator for a continuous valued state [62, Section
25.1.3]. As an alternative to probabilistic approaches fuzzy logic can be employed [19].

24

4 Assembly Skill

In Chapter 2 robotic assembly and its requirements were presented. Chapter 3 described the low-level require-
ments to fulfill assembly tasks. Here, the gap between these two aspects is filled by presenting the concept of
Manipulation Skill for Robotic Assembly (or Assembly Skill).

4.1 General Idea and Requirements

The paradigm shift in manufacturing from mass production towards mass customization [5] demands a new kind
of flexible industrial robot. These robots have to be able to cope with uncertainties in order to be able to operate in
at least partly unstructured environments [5]. It also has to be possible for non-experts to reprogram them quickly
on the shopfloor. These two goals contradict each other: uncertainty handling demands advanced sensor-based
control strategies, which results in even more complicated programming than standard position control.
A possible solution to this conflict is the concept of Assembly Skill. The general idea is to store the ability to
perform elementary robot actions in reusable primitives. A skill is such a primitive that allows the coordination,
control and supervision of a specific task. The primitives can incorporate advanced task specifications (see Chap-
ter 3.2), necessary control (see Chapter 3.3), and sensing capabilities (see Chapter 3.4), which allows a skill to
handle uncertainties during execution. As all of this information is encapsulated, the programmer does not need
to worry about the details and can program the robot by assembling predefined skill primitives. An even more
convenient approach is to eliminate the need for manual programming entirely and derive the robot programs
from an assembly planning algorithm that selects the sequence of skill packages to be executed automatically.
Consequently, skill primitives form a link between high-level planning and low-level control of task execution.

State of the Art
The first approach to use skill primitives as representation of atomic robot motions was employed by Hasegawa
[26]. Another skill-like system was used in [49] for robotic assembly. They used a rule-based logic combined
with hidden Markov models to let the robot autonomously define how a task is executed.
Skill primitives have been combined to discrete motion networks which represent tasks by Kröger et al. [37].
They used the TFF to define manipulation primitives, which were used as building blocks for skill primitives.
Smits [63] used a constraint-based programming approach [13] in his PhD Thesis to create a skill-controlled robot
motion system. He used the iTaSC [64] framework, which is a skill-based low-level motion control framework,
to interpret the motion commands defined by constraint-based programming. A skill is then defined as a set of
constraints that form a functional motion. Linderoth [43] followed a very similar approach. In his thesis, skills
are represented by state machines implemented in JGrafchart1, while each state contains iTaSC-based motion
commands. Additionally, the "Knowledge Integration Framework" (KIF) for storing, sharing, and reusing skills
and other assembly knowledge was introduced in [65].
Discrete motion networks are also used in [51], where the networks represent force-over-position trajectories.
Bøgh et al. [5] proposed a different approach. They see skills as traditional, "unintelligent" robot motion programs
(macros) that are augmented with pre and post-conditions to add situational knowledge. Macros are supposed to
work on objects in the workspace that are recognized via some kind of sensing device (e.g. optical).
Another way to represent skills is as dynamic system. In [29] Ijspeert uses spatially and temporally invariant
dynamical systems. Here, a simple canonical system is transformed to adapt to new environmental constraints.
This was, for example, employed in [55] to acquire new skills by learning techniques.
A novel approach of employing dynamic systems is presented in [48]. Here, skills are firstly recorded as a spline
trajectory. Afterwards, 2-dimensional parts of this spline are instantiated as dynamic systems known from fluid
dynamics: the Navier Stokes Equation for incompressible fluids. For every skill one of these fluid simulations

1 http://www.control.lth.se/grafchart/

25

is created. Robot motions can be described by this approach as flows in a simulated current. This makes the
approach very robust towards environment disturbances because the simulated current bypasses obstacles.
A very recent implementation of a skill-based system by the German Aerospace Center (DLR) can be found in
[72]. In this publication a new programming language based on UML/P statecharts is introduced to describe skills.
The TFF is used for motion description.

To create a robotic system based on manipulation skill, three important aspects have to be considered: Acquisition,
representation and reusability.

Acquisition
The idea of robots acquiring skills is based on human behavior. To fulfill complex tasks like assembly, humans
rely on a limited set of motor primitives. These are acquired in childhood by imitating the surroundings and are
improved by experience.
This idea is used for the acquisition of skills that are usually acquired by human demonstration. Some approaches
introduce additional learning steps to improve the acquired skills.
This was, for example, done in [34], where skills are acquired by learning techniques. The presented approach
combines mimicking a human demonstration via imitation learning with subsequent self-improvement by rein-
forcement learning.
Another popular way to record a skill from human performance is a teaching process as it is, for example, used
in [12] with additional (e.g. learning) steps to generalize it. This way is also used in [48]. To extract skills
from a recorded 3-dimensional trajectory, it is split into 2D parts via a 3D plane fitting algorithm and matched to
previously recorded trajectories.
To identify human actions that are fit for representation as skill, it is possible to analyze industrial tasks performed
by humans [5].

Representation
A skill representation must have the capability to represent a task as well as necessary control and sensing to
fulfill it. Task specifications suited for skills are, for example, the Task Frame Formalism or a constraint-based
specification (see Section 3.2). Appropriate control strategies are, for example, force or vision-based strategies
(see Chapter 3.3). Suited sensors are mainly position, haptic, tactile and optical sensors. This information should
be encapsulated in a way that the primitive can easily be refined, parametrized and reused in different situations.
Various examples for skill representations can be found in Section 4.2.

Reusability
The aspect of reusability is very important when designing skill primitives. It is gained by using a generic template
of an elementary action for a skill primitive that can be parametrized and refined to fit to new situations. Templates
are stored in a library. To select skills from a library, they can, for example, be matched to an assembly plan and
chosen according to identifier attributes [73].
To meet the requirement of reusability, a balance has to be found between specific details and generality in the skill
representation. If it is not possible to adapt a skill to appropriate new situations because it is too specific, a new set
of skills has to be developed for each new task, which contradicts the advantage of this concept. If, on the other
hand, the representation is too generic, the parametrization is too difficult and does not depict a simplification
compared to robot programming.
This balance also has to be considered for the size of task a skill can fulfill. If a primitive is designed to fulfill a
very basic action, it can be reused in many applications. Contrary, larger "action packages" are easier to use as
they reduce the effort to choose and parametrize appropriate skills for a certain task.
It is not only desired to reuse a skill in different situations, but also on different robotic platforms. To achieve
this, the knowledge incorporated in a skill has to be stored and shared in a unifying way. An example is the
knowledge integration framework presented in [65], where semantic web technologies are used for a standardized
representation, storage, and distribution of skill knowledge.

26

4.2 Skill Representation Approaches

In this section, various approaches that are briefly presented in the previous section are described in more detail.

Task Frame Hybrid Commands
Kröger et al. [37] use the Task Frame Formalism (see Chapter 3.2.1) to define skill primitives. According to
[22] skill primitives are defined as a tuple containing a tool command, a stop condition and a hybrid move. A
tool command is a simple action like "open gripper". The stop condition is a Boolean function and it determines
the end of the execution of a primitive. In a hybrid move, a task frame and related setpoints are defined. The
setpoints contain desired control values (e.g. velocities and forces), depending on the applied control strategy.
Hybrid control strategies as described in Chapter 3.3.2 are used to carry out commands defined like this. The
skill primitives can be connected to a skill primitive net to describe complex tasks. This net is implemented as a
Finite State Machine. In the net, each primitive is represented as a node connected to possible successor nodes
via directed arcs. Arcs can be augmented with transition conditions. The disjunction of all transition conditions
of the outgoing arcs of a node form the stop condition of the skill primitive related to the node.
With the advanced concept of the "Adaptive Selection Matrix" [22] it is possible to define several alternative
setpoints in each primitive and switch between them during execution. Each setpoint is connected to a fitting
control strategy.

UML/P Statecharts
A practical approach to robotic skill was followed by the German Aerospace Center DLR [72]. They proposed
the new robot programming language LightRocks (Light Weight Robot Coding for Skills) based on UML/P state-
charts. This approach enables intuitive skill-based robot programming. In their example application they used
this new language for programming compliant motions on a DLR light weight robot arm. The general theoretical
concept behind this implementation is derived from [71]: TFF-based motion primitives are connected to nets to
fulfill complex tasks. In the LightRocks implementation, nets are formed from basic elements called Elemental
Actions. These elements are specified as tuples {Device, DeviceCommand, StopCondition, ReturnValue}. In this
tuple, a device is a tool, robot, or perception unit. If the device is a robot, the device command is specified as a
Cartesian TFF-based motion command containing information about the task frame, the controller setpoint, and
additional controller parameters. As an impedance controller (see Section 3.3.2) was employed in the example
implementation, the additional parameters contain stiffness and damping values. The device commands are sent
to the control unit via a TCP/IP interface. The Skills in the DLR concept are specified as nets where the nodes are
elemental actions connected by transitions. Transitions have pre and post-conditions by which they are triggered.
Another level in the implementation are Tasks built from nets of skills in the same way skills are defined. The
implementation of this concept using UML/P state-charts is convenient as many of the languages elements like
states and transitions can be easily mapped to the skill definition framework.

Constraint-Based Knowledge Framework
As in most of the presented approaches, FSMs are also used for the skill representation presented in [63]. Contrary
to, for example, [71], each skill is described by an individual FSM. This denotes that skill primitives are higher-
level elements and describe a larger part of an overall task. In each FSM, states, actions to be executed within
states, transitions, and events to trigger transitions are specified. A state contains a specific configuration of a
controller interface. This configuration is specified by a constraint-based task description [13] (see Chapter 3.2.2).
A configuration consists of a set of weighted, parametrized constraints. The action that is connected to a state can
produce continuous changes of the constraints defined within it. The continuous changes are limited to the discrete
configuration defined by the state. To change the state of the FSM, transitions are activated based on events. These
events can be triggered from within a state (when a state parameter reaches a certain value) or from the outside
(from a higher-level supervision module). To make transitions smoother, the concept features the possibility to
use a transition parameter. This parameter is simply a weighting coefficient to create blends between states during
transition.

27

For the execution of skills the iTaSC [64] control framework is used. This software is designed to connect
constraint-based task specifications as employed in this approach to robot control. The controller is embedded
in a threefold control structure consisting of a task controller, a skill controller and a motion controller.
While the skill control triggers transitions in the above described FSMs, the motion controller executes the ac-
tions from the FSM states. The task controller represents the high-level knowledge in the system. It accesses a
repository in which skills are stored and connects them to sequences. In such a system, the skill level forms a link
between continuous robot control and symbolic high-level knowledge representation.
In [65], a framework based on iTaSC was used as well. There, the constraint-based skills were employed for a
small part assembly application. A robot workstation like the one used in this thesis is employed with additional
external force/torque sensors to perform the assembly. On the high-level side, a platform to store and share skills
was presented. This "Knowledge Integration Framework" stores the skills in ontology and provides graphical task
specification tools.

Force-Position Trajectories
A different approach to use state machines in skill representations is presented in [51]. The state machines are used
to describe assembly tasks and control them based on the occurring contact situations in the task. To accomplish
this, position-based control actions are selected based on contact states. These contact states are detected by
investigating a trajectory of sensor measurements. Measurements can, for example, be force or position values.
Critical points in this trajectory represent transitions between actions. A critical point can be described as a
discontinuity in the trajectory, for example a rapid decrease of a measured force. For the detection of critical
points in practice, the derivative of the force is used. To make the primitives reusable, the transitions triggered by
the critical points are specified in a qualitative way.

Dynamic Motion Primitives
Instead of a highly engineered approach, where a lot of predefined information is included in skill primitives,
Peters et al. [55] use a more general representation. They represent skills as dynamic systems that are acquired by
human demonstration and refined by trial and error learning approaches. The framework they developed contains
three main components: Primitives represent elementary motions as dynamic systems, a supervisor module selects
and parametrizes the primitives, and an execution module is used to execute the primitives. Furthermore, a superior
learning module can adapt all of these three components.
The motor primitives are based on a formulation by Ijspeert et al. [29], where motions are described as dynamic
systems:

ẋ d = πi(x
d , x , t,ρi) . (4.1)

Herein, x d denotes the system state and t denotes time. The shape of such a primitive is determined by task
parameters ρi = [θi, d, g, A, ...]. This array can contain various elements like duration, amplitude and goal of
the motion. The reusability of the primitive is enabled, as its shape is solely determined by the parameter θi , while
it is invariant under changes of the other parameters.
The main task of the supervisor level is to allow usage of a primitive by selecting it and modifying its task
parameters. Advanced functions are, for example, to create new primitives by creating convex combinations of
existing primitives. Furthermore, different sequencing functions like blending and superposition of primitives are
available.
The execution level has to create motor commands from the primitives. Therefore, control laws employing precise
analytical models are used. To make the models more accurate, they can be adapted online by learning techniques.
Learning is applied to all three components. For the motor primitives, the parameter θi is adapted. In general, the
learning is performed in two steps: imitation learning is used to initialize the skill while reinforcement learning is
used to improve it [55].

28

4.3 Comparison of Skill Representation Approaches

Task Frame
Skills

Constraint-
Based
Skills

Force-
Position

Trajectories

Dynamic
Motion

Primitives

Task Specification ++ + – 0

Uncertainty Handling + + + ++

Reusability ++ + + ++

Semantic Meaning – ++ – –

Engineering Effort – – – ++

Implementation ++ + 0 –

Industrial Usability ++ ++ – –

Table 4.1: Comparison of Skill Representation Approaches presented in Section 4.2. The comparison is based on
the symbols "++" (very good), "+" (good), "0" (neutral) and "–" (not good).

The presented concepts can be compared according to different criteria described in the following:

• Task Specification: How easy is the specification of a task in the concept?

• Uncertainty Handling: How well can uncertainties be resolved?

• Reusability: How well can skill primitives be reused?

• Semantic Meaning: How meaningful are the tasks a skill primitive refers to?

• Engineering Effort: How elaborate is the design of skill primitives?

• Implementation: How easy is the implementation of the concept?

• Industrial Usability: How suited is the concept for industrial use?

Task frame skills, which include the approaches presented in [37] and [72], are very well suited for industrial
use, as demonstrations have shown. Although the Task Frame Formalism limits the applicability of the concept,
it is able to fulfill most industrial tasks. Specifying tasks is intuitive in this approach, but the effort to do so is
considerable.
Constraint-based skills are more flexible, because constraint-based programming is used. A drawback of this
formalism is that the specification of tasks becomes less intuitive. Each skill primitive is responsible for a seman-
tically meaningful task consisting of several basic actions. This has advantages but also limits reusability of the
primitives.
Force position trajectories are well suited to deal with uncertainties. The qualitatively described trajectories that
are used enable the reuse of primitives. Drawbacks are the high effort of designing trajectories and the well
structured environment (regarding sensing and geometry) that is currently necessary to use the concept.
Dynamic motion primitives are a highly flexible and self-adaptive way to fulfill all kinds of motion tasks. The
employed learning techniques enable a reuse of primitives in many situations and a robustness towards uncertain-
ties. The drawback is that it is hard to include the system in today’s industrial setups. In general, the concept
aims more at working in completely unstructured environments like the service sector and it is overpowered for
industrial shopfloors.

29

5 Contribution

The approaches presented in the previous section are either not suited to industrial use or do not feature a generic
skill representation. This thesis contributes to the development of skill-based robot systems to fulfill assembly
tasks by presenting an approach that aims at finding a tradeoff between a generic representation and industrial
usability. The contributions with respect to different levels of the execution of an assembly task are shown in
Figure 5.1.
The main contribution of this thesis is the introduction of a new manipulation skill representation that is used as
an interface between high-level assembly planning and low-level assembly execution. Skill primitives are stored
as reusable templates that can be applied to new situations by parametrization. A skill is represented in two
ways: as a 12-dimensional trajectory describing compliant motions in pose-wrench space and as a Finite State
Machine to execute the motions that are derived from this trajectory. The trajectory can represent a robot motion
independently of the robot’s speed as it is not explicitly dependent on time. A qualitative node-based concept is
proposed to store the trajectory in a generic way. Mapping procedures are introduced to transfer the data from the
trajectory to the Finite State Machine representation. The Finite State Machine uses the Task Frame Formalism
to specify robot control actions. For the parametrization of skill primitives, mappings are introduced that allow
the acquisition of parameters from an assembly tree representation. Furthermore, an interface for fast manual
parametrization is introduced. A categorization of skills based on the proposed skill representation was started.
The two skills Insert and Snapfit were investigated in depth.
On the high-level side of the assembly system, a new assembly specification was introduced. This specification
is an assembly tree structure which incorporates descriptive information about an assembly as well as instructions
on how to perform an assembly. The specification was implemented as an XML data structure. A systematic way
to acquire the assembly tree was out of the scope of this thesis.
On the low-level side, the applicability of such a system to standard industrial hardware was shown. For control,
only standard position control was employed while force/torque information was used to switch between different
position-controlled motions. To circumvent the need for dedicated force/torque sensors to gather the relevant
information, a novel approach to estimate forces from motor data was proposed. The results in this section were
published in [79].
The concept was implemented as a demonstrator using an ABB dual-arm concept robot and standard ABB robot
control software. Its applicability was shown by performing an exemplary small part assembly featuring the skills
Insert and Snapfit among others.
Another contribution is the summary of the state of the art in manipulation skill for robotic assembly.

Figure 5.1: Schematic overview of the different levels of an skill-based assembly system and visualization of the
contributions of this thesis made on the different levels.

30

Part II
Assembly Skill Representation

31

6 Assembly Skill System

As presented in the previous chapters, a manipulation skill-based concept is well suited to conduct assembly tasks.
This chapter presents the understanding of assembly employed in this thesis and the concept derived from it.

6.1 Assembly Definition

Assembly is the process of putting together parts in order to create a complete product [62, Section 26.4]. Several
assembly tasks as described in Chapter 2 are derived from this general topic.
When two parts are assembled, they move at least partially in contact to each other. Subsequently, assembly is a
compliant motion problem where contact forces and torques between parts play an important role (see Chapter 3).
To describe this kind of motion, the relative pose and wrench of the parts can be used. The desired relative motion
of two parts during assembly can be seen as following a desired trajectory embedded in a 12-dimensional space
spanned by the components of the relative pose and wrench (a more detailed description of this concept can be
found in Chapter 7.2).
In relation to this assembly concept, each skill is specified by a pose-wrench trajectory representing a certain
part of an assembly task. For the actual execution this pose-wrench trajectory is transformed into a Finite State
Machine representation. By sequencing skills, the trajectory of an overall assembly task can be generated. A
crucial property of a skill is that it is reusable for tasks of the same type. To accomplish this, the skill is stored
in a generalized way as a template and needs to be parametrized before it can be used. The skill representation is
described in more detail in Chapter 7 while this chapter puts skill into the concept of an overall execution system.

32

6.2 Concept Structure and Information Layers

Figure 6.1: Information Layers of the Proposed Assembly Skill Concept.

The overall goal of the proposed system is to create and oversee a series of robot actions, which leads to successful
completion of a specified assembly application. To accomplish this, a series of skills, represented as reusable
templates, is selected from a library and parametrized according to the tasks the application consists of. Each of the
skills includes the capability to coordinate, control and supervise an elementary robot action. The concatenation
of all the selected elementary actions results in the accomplishment of the assembly application.
To follow this basic course of action, four layers of information are distinguished in the proposed system as shown
in Figure 6.1.
The Application and Task levels are centered around the geometric description of an assembly and are independent
of the system the assembly is performed on. Contrary, the Skill and Motion levels contain information on how
the assembly can be performed on a robotic platform and are centered on motion descriptions. In more detail, the
levels contain the following information:

Application The Application specifies a complete product that is to be assembled. It is represented by a binary
tree structure called Assembly Tree. This data structure contains the whole part described by a hierarchy of
geometrical relations between sub-assemblies and individual components. Furthermore, annotations of the
tree nodes contain information on how the parts have to be assembled.

Task A Task is a traversal step in the assembly tree. In this context, a task is limited to a scenario of two parts
being put together. Each task is instantiated by one or many skills which form a net of skills.

Skill A Skill is an elemental manipulation constituting a step towards achieving a task. It contains all the necessary
data to coordinate, control and supervise the actions necessary to fulfill this step. In the system a skill is
represented by a generic template selected from a skill library and a specific instantiation created from this
template and data from the task. The skill is build from a net of motions that is represented twofold in the
skill: as a Finite State Automaton and as a trajectory in pose-wrench-space.

Motion A Motion is a constrained or unconstrained action that describes which degrees of freedom of a reference
frame are controlled in which way. The frame is associated with the parts to be assembled. This definition of
a motion refers to the Task Frame Formalism described in Chapter 3.2. Specific frame and specific motion
values are set using the parameters from the instantiated skill. Instead of a motion the data on this level can
also represent an elementary tool action.

The application and task levels are described in more detail in the following section, while the skill and motion
levels are presented in Chapter 7.

33

6.3 Assembly Tree Specification

6.3.1 Assembly Tree Structure

Figure 6.2: Assembly tree representation containing individual parts and sub-assemblies as tree nodes that together
form a finished product. Each node contains assembly instructions and a description of resources nec-
essary for assembly. [17]

The application is specified by a tree structure called Assembly Tree. This Assembly Tree is an annotated graph
with an explicit root node representing the completed product and a branch hierarchy representing constitutive sub-
assemblies. Besides descriptive information about the parts and sub-assemblies, annotations contain assembly-
specific instructions and requirements.
In this concept the sub-assemblies are limited to two parts being put together. This is not a hard constraint in
assembly processes as scenarios are imaginable where more than two parts are put together at the same time.
But as two part situations are the most common case in assembly, this limitation was a fair simplification for the
present project. More complex situations can mostly be described by a hierarchy of binary assemblies if necessary.
The tree structure resulting from these specifications consequently is a binary tree.
The hierarchical structure of a tree structure like this implicitly contains the order of the assembly to be performed.
Sub-assemblies on a lower hierarchy level have to be completed before a higher-level assembly can be performed.
By default, assemblies on the same level can be performed independently of their relative order. If a specific order
is desired, this can be accomplished by specifying a sequence indicator valid for one hierarchy level.
The following node types can be found in the assembly tree:

• A Root Node representing the completely assembled product

• Branch Nodes representing sub-assemblies

• Leaf Nodes representing individual parts

34

6.3.2 Assembly Tree Elements

This section describes the elements present in an assembly tree structure in more detail. These elements refer to
the types of nodes in the previously described tree structure.

Part
A part Pi is an individual component used in an assembly and it is represented by a leaf node in the tree structure.
It contains the following:

• A geometric representation of the part (e.g. CAD)

• Additional descriptive information (e.g. mass properties, material)

• A transformation matrix Ti ∈ R4x4 describing the part’s assembly goal position with respect to its parent
node

• Assembly instructions Hi specifying how this part has to be assembled with another part or sub-assembly

• Resources Ri specifying what resources are needed to assemble this part with another part or sub-assembly

The geometric representation implicitly defines a local coordinate frame of the part. This local frame is related to
the local frame of the part’s parent node by Ti . If no assembly instructions are contained in a node, this means that
the part or sub-assembly represented by the node is not manipulated during the task and remains at its position.

Assembly
An assembly Ai can be a sub-assembly in a product structure represented by a branch node or a completely
assembled product represented by the root node. This element contains the following:

• A transformation matrix Ti ∈ R4x4 describing the assembled position of the assembly with respect to its
parent node (equals identity if Ai is the root node)

• Assembly instructions Hi specifying how this sub-assembly has to be assembled with another part or sub-
assembly

• Resources Ri specifying what resources are needed to assemble this sub-assembly with another part or
sub-assembly

• Up to two child nodes of type assembly A j or part P j

Descriptive properties like CAD data do not need to be stored explicitly in assembly nodes, as this information is
derived from a combination of the respective properties of its child nodes. It has to be noted that Hi and Ri refer
to an assembly task specified by this node’s parent assembly node - the task where the sub-assembly specified by
this node is assembled with another sub-assembly or part.

Assembly Instructions
The assembly instructions Hi specify the necessary steps to fulfill an assembly. They consist of a sequence of
assembly actions aik that need to be performed.

Each assembly action aik contains the following:

• An activity indicator specifying the type of action

• A sequence of targets τikl that define a path the associated part needs to follow on the way to its assembly
goal

35

• A task frame T Fi ∈ R4x4 that is used as a reference frame to specify the targets τikl

• Additional process parameters (e.g. speed)

The activity indicator is used to select suitable skills from the skill library to execute the action. Each target τikl
can be explicitly defined as a point in pose-wrench space or as an offset to a previous target.

Resources
The recources node Ri contains information about the hardware requirements of an assembly task. These are
specified by the following:

• A list of necessary sensors

• A list of necessary tools

• Additional requirements of the executing unit (e.g. number of robotic arms, degrees of freedom per arm)

The resources can be used to determine if a task can be fulfilled by the available hardware.

6.3.3 Assembly Tree Traversal

Two kinds of information can be extracted from the assembly tree: the geometrical representation of an assembled
product and instructions how the product has to be assembled. By extracting the latter, an executable assembly
plan is created. To do so, the assembly tree is first split into tasks by traversing it. The hierarchical structure of
the tree ensures that a sequence of tasks with a meaningful execution order is obtained. By default, each traversal
step in the tree represents a task as visualized in Figure 6.2.
Let this traversal step consist of an assembly node A12 and its two child nodes P1 and P2. To define a task, the
actions a1k and a2k are derived from the respective instruction nodes H1 and H2.
As the instruction nodes contain actions in a sequential order, an action sequence for the overall assembly can
easily be generated from the task sequence. These actions are now mapped to skill templates from the library. The
mapping is not necessarily a one-to-one relationship as a skill might be suitable for a sequence of several actions.
After the selected skills have been parametrized with data from the actions, an executable sequence of skills is
generated.
If a task is defined as in Figure 6.3, the skill sequences that are derived from the two involved assembly instructions
are executed simultaneously. If this is not desired, it is more convenient to divide the task into two sub-tasks. This
way, two strictly sequential skill sequences with a defined order are derived.

Figure 6.3: Schematic overview of how a task derived from the assembly tree is split into actions and mapped onto
skill primitives

36

6.4 Skill Selection and Parametrization

Figure 6.4: Schematic overview of the selection and parametrization of skill primitives from the skill library based on
data from the assembly tree [17]

To gain a series of executable robot actions from an assembly specification, a set of skill primitives has to be
selected from a skill library and parametrized with data from the assembly tree. Essentially, the problem is to map
data from the application level onto the skill level. This can be done automatically according to the assembly tree.
If the mapping is ambiguous, additional manual selections can be necessary in the process. The skill selection and
parametrization workflow is shown in Figure 6.4.

Skill Selection
To enable the selection of skill templates from the skill library, a sequence of tasks has to be available. After
the tasks have been obtained according to Section 6.3.3 and a sequence of actions was generated from it, the
skill selection can start. The skill library is queried for the activity indicator and resource requirements of each
action. If the activity indicator of an action is featured in a skill and the skill’s resource capabilities match the
action’s resource requirements, the skill is marked as suited for the action. Some skills are suited for a sequence
of actions instead of a single action. Therefore, they are not described by a single activity indicator but a sequence
of activity indicators. If such a skill is selected, the succeeding actions in the action sequence have to be compared
according to the succeeding activity indicators. When more than one skill is found, the desired one has to be
selected either manually or automatically according to certain criteria. The result of this process is a set of skill
templates each linked to one or many actions. In the current system, this set contains skills in a strictly sequential
order. This arises from the limitation to a binary assembly tree. More complex assembly representations result in
a net structure of skills instead of a sequence.

Skill Parametrization
After a sequence of skills has been selected, it has to be parametrized according to the data of the actions linked
to each skill. This is done by a mapping process described in detail in Chapter 7.

37

6.5 Example Assembly Application

Figure 6.5: Assembly tree for an example assembly application, the assembly of an ABB PLC I/O Module [17]

The different parts of the presented concept can be shown by the following example. It has to be noted that this
example was also used for the implementation of the demonstrator (see Section 9.3). In the example an ABB PLC
I/O Module, which is a small electronic component, is assembled. This is done as follows: At first, three Printed
Circuit Boards (PCB) are inserted into a housing. Then, a cover is assembled by attaching different components to
a plastic plate via snap-fits. Finally the cover is attached to the housing via another snap-fit. The assembly process
can be represented by the following assembly tree:
The overall assembly of the module, as shown in the root node, is represented by the Application, which in this
case is called "Assembly of an I/O Module".
A possible Task in this application is "Insert PCB1 into housing", which is marked as "Task 1" in Figure 6.5. This
task consists of:

• The assembly node A12 : "Housing with PCB"

• Its child node P1 : "PCB"

• Its child node P2 : "Housing"

The actions that need to be performed to assemble the PCB and the housing are stored in P1 and P2. It is assumed
that the housing is at its assembly position and does not need to be moved. This implies that the only node in this
task containing assembly instructions is P1. Its instructions H1 contain the following Actions:

• a11 : Pick up PCB1 (activity: "PickUp")

• a12 : Transfer PCB1 to insertion position (activity: "Transfer")

• a13 : Insert PCB1 into housing (activity: "Insert")

38

To fulfill these actions, two different sets of Skills are selectable:

• Skill Set 1

– PickUp (activities: "PickUp")

– Transfer (activities: "Transfer")

– Insert (activities: "Insert")

• Skill Set 2

– PickUpAndInsert (activities: "PickUp","Transfer","Insert")

It has to be noted that the skill "PickUpAndInsert" implicitly has a transfer motion defined in its net of motions.
Applied to Figure 6.4, this example looks as follows:

Figure 6.6: Schematic overview of the selection and parametrization of skill primitives from the skill library based on
data from the assembly tree in the example assembly application [17]

39

7 Skill Representation

After skills have been described in the context of the overall system in the previous chapter, this chapter describes
their content in more detail.

7.1 Properties of a Skill Primitive

The main purpose of a skill is to provide a simple interface to advanced robot functions. It is an elementary
package encapsulating all necessary information to coordinate, control and supervise a logical part of an overall
assembly task.
The proposed representation of a skill is twofold:

• A motion net representation, which represents the skill as a Finite State Machine, is used for the discrete
coordination and control of robot motions. Specifically, it is used to switch between different continuous
control actions.

• A trajectory representation, which represents the skill in pose-wrench space, supervises the continuous
robot actions and triggers transitions in the Finite State Machine.

To fulfill more complex tasks, skill primitives are connected to nets that can also be described by a Finite State
Machine.

Reusability is a key property of such a package, as the idea is to have a limited set of skill primitives that are
capable of fulfilling a wide variety of complex tasks by connecting them. To achieve this, skill primitives are
stored as generic templates that can be reused in alike situations. They can be adapted to each situation by setting
a limited set of parameters. Therefore, a specific skill parametrization is created for each situation. To create
parametrized skill primitives, mappings are used to merge the skill templates with external parameters. Usually,
the external parameters are acquired from tasks defined in the assembly tree (see Section 6.3).

A skill template has the following content:

• A Trajectory Template to describe a skill qualitatively in pose-wrench space

• A Motion Net Template that specifies the type of the contained robot actions and connections

• A set of Mapping Rules R1 to determine how external parameters are mapped onto the trajectory template
to produce the trajectory

• A set of Mapping Rules R2 to determine how the trajectory is mapped onto the motion net template to
produce the motion net

• Metadata used for identification and selection of skill templates from the library

The metadata of a skill template contains specifications of the resources necessary to execute a skill and a sequence
of activities describing the actions this skill can carry out.

The parametrized skill created from the template contains the following:

• A Trajectory to describe a skill quantitatively in pose-wrench space

• A Motion Net that specifies the robot actions and transition conditions in between

40

Beside the content described above, a skill has input and output signals used for high-level supervision purposes.
Based on these signals the skill’s successor can be selected, for example. The signals are implicitly defined in a
skill by states and transitions in its motion net representation, which are activated under certain conditions.

Precondition If the Precondition is met, the execution of the related robot actions begins. A typical precondition
would be that all involved parts are at a certain position.

Completion Signal The Completion Signal indicates that the last robot action relevant for the successful com-
pletion of a skill execution has been executed. After the completion is indicated, the quality of the skill is
checked.

Quality Criteria The Quality Signal indicates the success of the skill execution. Several degrees of success can be
represented, depending on how many different quality conditions are defined in a skill. Most commonly, it
is only distinguished between "success" and "failure".

Interruption Signal The execution of a skill is interrupted, if an Interruption Signal occurs. Based on this signal,
predefined error recovery actions can be triggered.

The following scheme visualizes the input and output signals of a skill:

Figure 7.1: Assembly skill scheme showing the trajectory and the motion net representation of a skill as well as its
input and output signals [17]

41

7.2 Trajectory Representation

The trajectory representation describes a skill in pose-wrench space. It has the purpose of an abstract high-level
description of a skill as well as the supervision of a skill.

7.2.1 The Pose-Wrench Space Concept

In rigid body kinematics, the pose describes the spatial position and orientation of a body in the 3-dimensional
Euclidean space. To specify a unique pose in space, six independent coordinates are necessary. These coordinates
refer to a Cartesian reference coordinate frame, which allows the pose to be expressed as a relative rigid body
displacement between two frames. The position is described by a 3-dimensional vector containing the coordinates
of the origin of a frame in relation to the reference frame. To describe an orientation, a variety of representations
exists. Some of these representations contain superabundant coordinates like 3x3 rotation matrices or quaternions.
A minimal 3D orientation representation are Z-Y-X Euler angles, which will be used in the following (e.g. [62,
Section 1.2.2]). They consist of a vector of three angles, where each of the angles describes a rotation about an
axis of a moving frame.
With these definitions the pose can be described by a 6-dimensional vector:

p =
h

px py pz φx φy φz

iT

(7.1)

To describe the dynamics of a rigid body, a spatial equivalent of the pose, called wrench, is used. A wrench
describes forces and torques acting on the center of gravity of a body. They derive from external forces and
torques applied to the body. The wrench can be written as a 6-dimensional vector, where each of its entries
describes a force f or torque τ acting in or about an axis of a specified reference frame:

f =
h

Fx Fy Fz τx τy τz

iT

(7.2)

The desired relative motion of two parts during assembly can be seen as following a desired trajectory embedded
in a 12-dimensional space spanned by the components of the relative pose and wrench. It consists of a sequence
of 12D state vectors describing the relative position, orientation, contact forces, and contact torques between two
frames, each attached to one of the parts to be assembled. Using the above definitions the vectors can be rewritten
as follows:

vvv =
h

px py pz φx φy φz Fx Fy Fz τx τy τz

iT

(7.3)

A trajectory expressed by such a representation is not explicitly dependent on time. This is a useful property as it
allows the representation of a motion independent from time-related properties like motion speed.

It has to be noted, that not every motion needs all 12 dimensions to be specified for its control and supervision. In
many cases it is sufficient to consider a subset of these dimensions for supervision. To represent allowed regions
instead of strict values, the trajectory can be extended to a hypertube in 12D space by adding tolerance values for
each dimension.

In robotics, pose and wrench usually refer to the motion of the end effector frame of the manipulator with respect
to a reference frame in the workspace. Here, both frames are usually attached to parts either held by the end
effector or located in a fixture in the workspace. One of the frames is called the task frame. In this frame, the
pose-wrench configuration of the other part is expressed.

42

7.2.2 Elements of a Trajectory

A trajectory consists of a sequence of trajectory nodes. Each trajectory node consists of a sequence of trajectory
states. These definitions refer to a fully parametrized trajectory. A trajectory template, which is described in
Section 7.2.5, contains a subset of this information.

Trajectory Node
A trajectory node Ni is defined by :

• A set of 12 node types ηik ∈ {unsupervised, constant, finiteChange, infiniteChange, zero}

• An initial trajectory state SI

• A final trajectory state SF

• An interpolation rule H ∈ {linear, polynomial, spline, . . . } to acquire inner trajectory states

While the initial and final trajectory states SI and SF are explicitly set during parametrization, the inner states of
the node are acquired by employing an interpolation rule H .

Trajectory State
A trajectory state Si is defined by :

• A state vector vvv i ∈ R12

• A tolerance vector ri ∈ R12

The state vector vvv i and the tolerance vector ri specify the represented region in the 12D pose-wrench space. In
most cases this region has to be understood as desired or allowed region. The values in a trajectory state refer to a
specific task frame defined on the skill level. Consequently it is used for the whole trajectory related to a skill.

Node types
The node types ηik specify the qualitative shape of a trajectory without referring to explicit numeric values. A
node type assigns one of the values ηik ∈ {unsupervised, constant, finiteChange, infiniteChange, zero} to each of
the 12 dimensions of the trajectory states. Node types are set once for a trajectory node and refer to all trajectory
states contained in the node.
They are predefined in the trajectory template. If a qualitative shape descriptor like this is defined in the template,
its usage (and thereby the usage of the skill templates) for a class of motions instead of one specific motion is
enabled.
The advantage of using node types is a significant reduction of the amount of parameters that need to be set during
the creation of a parametrized trajectory. Without their definition, 24 parameters would have to be set for each tra-
jectory node (two trajectory states SI and SF with 12 dimensions each). Most importantly, the unsupervised node
type excludes dimensions from the respective node. Therefore, this dimension can be ignored during parametriza-
tion and evaluation of the trajectory. Furthermore, the constant type allows to derive trajectory state values from
the previous trajectory state. If a type is set to zero, the value can be set to zero without further efforts.
Another task of the node types is to define the subset of the node’s dimensions that is used for the evaluation of
the trajectory. All dimensions with node type unsupervised are excluded from the evaluation.
A further advantage of this kind of representation is the great simplification of the mapping rules used to map the
trajectory to the states and transitions of a motion net. To define a rule, it is sufficient to define a desired type and
use all dimensions of a trajectory state which are of this type for the parametrization. Furthermore, the node types
are an indicator of how a node is mapped to the motion net: infinitly changing values indicate a mapping of the
node onto a motion net transition, while constant or unsupervised values refer to a motion net state.

43

7.2.3 Example Trajectory

Node types are visualized using the follow-
ing example trajectory (Figure 7.2). It has to
be noted that the shown trajectory does not
refer to any specific assembly task, but is a
fictional example. The example describes a
process where the only relevant dimensions
are the z-component of the position z and the
z-component of the contact force Fz . These
two dimensions form the considered subset
for the example. Therefore, dimensions other
than these two have the node type ηik =
unsupervised. Five nodes Ni are featured in
the trajectory.

N5 features a constant, non-zero force in z-
direction. For example this could be caused
by a constant friction force during a motion
in contact with the environment (e.g. sliding
a block on a plane).

Figure 7.2: Example Trajectory

At nodes N2 and N4 a rapid increase in Fz followed by a sudden decrease can be observed. A scenario that would
cause such a force profile is, for example, the occurrence of an obstacle on a movement in z-direction. When
contact with the obstacle is made, the force increases rapidly. If the contact force gets too large, the obstacle might
be destroyed (e.g. a membrane is ripped apart), which would cause a sudden force decrease.
Node N3 has a steadily increasing Fz . This could, for example, be caused by the insertion of a part into a canal
with flexible, narrowing walls. The further the part moves in z-direction, the narrower the wall gets, which causes
an increase in the contact force.

Node Node Type Example Motion

N1
z = finiteChange Free motion in z-direction, no

contact with the environmentFz = constant

N2
z = constant

Obstacle in z-direction
Fz = infiniteChange

N3
z = finiteChange Motion in z-direction with

increasing contact forceFz = finiteChange

N4
z = constant

Obstacle in z-direction
Fz = infiniteChange

N5
z = finiteChange Motion in contact with constant

contact forceFz = constant

Table 7.1: Nodes in the Example Trajectory

44

7.2.4 Motion State Evaluation

While the motion net representation of a skill is used as discrete switch between continuous robot motions, the
main task of the trajectory representations is to supervise these continuous motions in pose-wrench space. Conse-
quently, the trajectory is continuously evaluated during the execution of a motion by comparing the current state
of the assembly with the desired state from the trajectory.

Desired State
The desired state of an assembly task is defined by a specific point in pose-wrench space, which can be expressed
by trajectory state Si . This state is acquired from the trajectory node Nk , which is linked to the currently active
motion net state Mk of the currently executed skill (see Section 7.3.1). For the acquisition of the desired state, the
interpolation rule H stored with Nk has to be applied. To apply the interpolation rule, one of the 12 dimensions
has to be used to acquire the interpolation point. Ideally, the dimension d , in which the difference between the
values of the initial and final states SI and SF of Nk is at its maximum, is used. This results in the best resolution
when interpolating between SI and SF . When applying the interpolation, the value specified by dimension d of
the current assembly state SC is used as an interpolation point. The desired values in the other 11 dimensions are
interpolated at this point.

Current State
The current state of an assembly task can also be expressed in pose-wrench space as a trajectory state SC . For
its acquisition the executing system has to be equipped with appropriate sensors. The pose of SC can usually
be acquired by applying the forward kinematics model of the robot manipulator performing the assembly task
to sensed angles of its joints. Joint angle sensors are available in all current robotic system. The acquisition
of the wrench dimensions is more challenging, since additional sensors (see Chapter 3.4) or an advanced force
estimation scheme (see Chapter 10) based on available robot properties are necessary.

Figure 7.3: Schematic overview of how the current state of the robot SC is compared to the current desired state Si ,
which is derived from the trajectory node Nk

45

Comparison
To detect errors during execution, the deviation of Si and SC is calculated. As it is not always necessary to
supervise this deviation in all 12 dimensions, the supervised subspace is defined by the Node types ηkl of the
current trajectory node Nk . If ηkd has the value unsupervised, dimension d is excluded from the supervision.
As small deviations might not be problematic, it is necessary to define confidence ranges for each dimension
instead of a specific value. These ranges are specified by the tolerance vector ri of trajectory state Si . Including
these tolerance values, the trajectory becomes a hypertube in pose-wrench space instead of a 12-dimensional
"line".
If a deviation between Si and SC is detected, SC is evaluated against the transition conditions of the currently
active transitions in the motion net. The transition conditions are also expressed as trajectory states Sl j (see
Section 7.3.1). If a transition conditon is evaluated as true with respect to a certain comparison operator 2 ∈ {≤
,≥,=,<,>}, the respective transition fires. This can, for example, indicate an interruption in the motion (the
motion net enters an error recovery state) or its completion (the motion net enters its "complete" state). If the
execution is already completed, the deviation from the final desired state can be used as a quality indicator (and
consequently triggers a "quality check" transition in the motion net).

7.2.5 Trajectory Template and Parametrization

To be reusable in alike situations, the skill template contains the trajectory as a Trajectory Template. This template
consists of a sequence of Template Trajectory Nodes.

Trajectory Template Node

A trajectory template node N
′

i contains:

• A set of 12 node types ηik ∈ {unsupervised, constant, finiteChange, infiniteChange, zero}

• An interpolation rule H ∈ {linear, polynomial, spline, . . . } to acquire inner trajectory states

The initial and final trajectory states SI and SF are specified during a mapping process by employing the skill
template’s mapping rule set R1.
The trajectory template can be seen as a qualitative shape descriptor of a trajectory. It defines what kinds of nodes
are contained in which order and specify the principle characteristics of a trajectory. No specific values of the
trajectory are set at this point, thus the trajectory sections represented by the template nodes still have variable
lengths and magnitudes. The values are set in the mapping process described in the following.

Mapping Process
A prerequisite to perform the mapping process is that a sequence of skills has been selected, and each skill has
been linked to an action or a sequence of actions from an assembly tree task (see Section 6.4).
Each rule contained in mapping rule set R1 that is stored in the skill template relates a template trajectory node N

′

k
to an assembly action ai . It may be noted that this is not a one-to-one relation and an action ai can be employed
in several mapping rules. Contrary, only one mapping rule is allowed for each node template N

′

k .

To create a trajectory node Nk , the template node N
′

k has to be augmented with initial and final trajectory states
SI and SF . The trajectory states can be acquired from the targets τi l defined in an action ai . In the mapping
rule it is specified which target should be used to define SI and SF . There is one exception to that scheme: if the
trajectory does not have a discontinuity between two trajectory nodes, the initial trajectory state of a node can be
set according to the final trajectory state of the previous node.

46

7.3 Motion Net Representation

The Motion Net contains the execution logic of the robot actions contained in a skill and is represented as a Finite
State Machine (FSM) (e.g. [24]). An FSM is a useful mathematical model employed to design and supervise
logical connections. It consists of a finite number of states connected by state transitions, while it can only be in
one state at a given time called the active state. Its tasks are the coordination and control of a robot’s motions.
In particular, an FSM consists of the following elements:

• States

• Actions

• Transitions

Actions are performed when entering a state (some implementations allow entry and exit actions), while transitions
are used to switch between states. In the motion net each state contains a robot action that needs to be performed.
To switch between robot actions, transitions are triggered. Accordingly, the motion net elements are referred to as
Motion Net States, Motion Net Transitions and Motion Net Actions.

7.3.1 Elements of a Motion Net

The definitions presented here refer to the data present in a motion net of a fully parametrized skill. A skill
template contains a subset of the data presented here. For an overview of the data in a skill template, refer to
Section 7.3.3.

Motion Net State
A motion net state Mi is defined by:

• A state type Γ ∈ {motion, tool, initial, complete, success, failure, goal}

• A robot command type K , e.g. K ∈ {linearMotion, openGripper, . . . }

If the state type Γ is motion, a motion net state aditionally contains:

• A set of control values Ci

• A trajectory node Ni

Furthermore, an action executed upon entering a state can be linked to the state. As it is not contained in the state
itself, it is not listed here. In a system with multiple execution units, it has to be specified in the state to whose
execution unit it refers.
While the control values Ci are used to control the execution of the action, the trajectory node Ni is used for its
supervision.

Motion Net Transition
A motion net transition Ti j is defined by:

• An initial motion net state Mi

• A final motion net state M j

• A set of n transition conditions tik (optional)

If all n transition conditions t ik are evaluated as true, transition Ti j fires and the final state M j is the new active
state of the motion net. There are primitive transitions which do not contain any transition conditions. These
transitions fire as soon as their initial state is active.

47

Motion Net Action
A motion net action linked to a state Mi is executed when the FSM enters this state. The action always consists
of the execution of the robot command specified by the robot command type K of state Mi . This command can,
for example, be a motion or a tool action. For the former, the control values Ci are employed for the execution. It
is highly dependent on the executing platform, how the command is executed in detail.

Control Values
A set of control values Ci is defined by:

• A controller setpoint ci

• A task frame T Fi ∈ R4x4

This definition follows the Task Frame Formalism explained in Section 3.2.1. The task frame is defined in relation
to an arbitrary reference frame. Usually this is the world frame in the robot’s workspace.
Depending on the employed controller, additional controller parameters have to be stored with the control values.
This can, for example, be damping and stiffness values if an impedance controller is employed.

Controller Setpoint
A controller setpoint ci is defined by:

• A set of six control values vvv i

• A set of six control mode indicators µi ∈ {force, position, . . . }

The setpoint ci defines the desired values and control types along and about each of the task frame’s axis. It has
six entries in total, one for each of the degrees of freedom of T Fi . If a degree of freedom is not controlled, it has
the control mode unused.

Transition Condition
A transition condition tik is defined by:

• A trajectory state Sik representing the condition

• A comparison function

h(Sc2Sik)→ {t rue, f alse} (7.4)

where 2 ∈ {≤,≥,=,<,>} is a comparison operator and Sc is the current state of the robot.

When a transition condition is evaluated, only the entries l of Sc and Sik, for which the state entry typesηcl ,ηikl 6=
unsupervised, are used for the evaluation.

48

7.3.2 Structure and Execution Behavior

Figure 7.4: States and Transitions in an Example Motion Net

Figure 7.4 shows the typical structure of a motion net in the proposed system. Depending on the current state
of the motion net, the behavior of the system changes. There are several different types of states and transitions
present in the illustrated motion net:

• M0 is called the Initial State (mandatory: 1)

• M1 is called a Motion State (optional)

• M2 is called a Tool State (optional)

• M3 is called an Interrupt State (optional)

• M4 is called an Unproductive State (optional)

• MC is called the Complete State (mandatory: 1)

• MS is called a Success State (optional)

• MF is called a Failure State (optional)

• MG1 and MG2 are called Goal States (mandatory: 1:N)

• T01 is called the Precondition (mandatory: 1)

• T13 is called an Interruption Criterion (optional)

• T33 is called a Retry Transition (optional)

• T2C is called the Completion Criterion (mandatory: 1)

• TCS and TC F are called Quality Criteria (optional)

Some of the states are marked as "mandatory", which means they have to be included in every motion net. The
following explains, how the system behaves when a state of a certain type is active or a transition of a certain type
is fired.

49

Initial State When a motion net is in the initial state, the precondition is evaluated. The precondition is fired if the
current state of the executing unit meets the transition condition contained in it. Consequently, the motion
net enters the first regular state of the motion net which is usually a motion state. If the precondition is not
met, the execution of the skill’s motion net cannot start.

Motion State Motion states represent all kinds of controlled actions a robot performs during the execution of a
skill. These actions are usually desired motions on a path towards a goal pose in the workspace. On entering
a motion state Mi , the related action is executed according to the robot command type K with respect to the
control values Ci . During the execution, the desired robot state defined by the trajectory node Ni and the
current robot state acquired by sensor input are continuously compared (see 7.2.4). If a deviation between
the desired and current state is recognized, the outgoing transitions of the motion state are evaluated. A
deviation can be undesired - when an error occurs during execution - or desired - to indicate the completion
of the execution. In the first case an interruption transition has to be triggered (if one is defined), while in
the latter case a transition to the next regular state has to be fired.

Interrupt State An interrupt state is a motion state that was entered through an interruption transition. Its action
represents a error recovery motion to return to the desired motion path. As the interrupt state does not
represent a distinct state type, it has the same properties as a motion state. A feature mostly used in the
context of interruption is the Retry Transition (although it is not limited to these states). When this transition
is triggered, the state is reentered and its entry action is performed once more. This can, for example, be
useful when an error recovery motion did not yield the desired results (that is, the recovery from an error).
To prevent a potential deadlock situation in the FSM, the allowed number of retries needs to be limited.

Unproductive State Unproductive states are motion states which are executed after the skill related to the motion
net has yielded its result. They occur after the completion transition was triggered and the quality check
was performed. The reason for this concept is that there are actions which are not relevant for the successful
execution of a task. An example is the retraction of a robot arm.

Tool State A tool state represents a primitive action of a tool attached to a robot. In the proposed concept, tool
actions are supposed to be activated by binary information (e.g. "on/off"). Therefore, the execution of a tool
state does not need dedicated supervision. It only contains one transition that is fired when the tool action is
finished. In general, tool states can also be defined as more complex elements that allow supervision of the
current execution state via a trajectory. The simplification was made because tools with appropriate sensing
to enable this kind of supervision are still rare and were not available for the work on this thesis.

Complete State The complete state marks the completion of all productive and therefore quality-relevant actions
in the motion net. However, this does not mean that it is the final state of the motion net as unproductive
states may be present. When the FSM enters the complete state, the quality criteria are evaluated, if defined.
According to the result of this quality check, the FSM enters a success or failure state. If no quality criteria
are defined, the FSM enters an unproductive state or a final state.

Success State If the quality check is positive, the FSM enters a success state. It is possible to define several
success states, if an adequate number of positive quality criteria are defined. Following the success state, an
unproductive state or a goal state is entered.

Failure State If the quality check is negative, the FSM enters a failure state. It is possible to define several
failure states, if an adequate number of negative quality criteria are defined. Following the failure state, an
unproductive state or a goal state is entered.

Goal State A goal state indicates the complete execution of a skills motion net. Upon entering, a transition in
the skill net is fired and therefore the execution of the next skill is triggered. If the skill has no successor,
the overall execution is finished. It is possible to define multiple goal states and choose the succeeding skill
accordingly. For this concept to be useful, the different goal states should be related to the different success
and failure states.

50

7.3.3 Motion Net Template and Parametrization

To be reusable in similar situations, the skill template contains the motion net as a Motion Net Template. The
motion net template contains states and transitions with limited amount of information compared to the above
definitions. They are called Template States and Template Transitions in the following.

Template State

A template state M
′

i is defined by:

• A state type Γ ∈ {motion, tool, initial, complete, success, failure, final}

• A robot command type K , e.g. K ∈ {linearMotion, openGripper, . . . }

The control values Ci and the connected trajectory node Ni of the motion net state Mi are specified during a
mapping process employing rules from the skill template’s mapping rule set R2.

Template Transition

A template transition T
′

i j is defined by:

• An initial template state M
′

i

• A final template state M
′

j

• A set of n transition conditions tik

The equivalent motion states Mi and M j as well as the transition conditions tik of the motion transition Ti j are
specified during a mapping process by employing the skill template’s mapping rule set R2.

The motion net template can be seen as an empty skeleton of a motion net. It defines what kinds of actions are
connected in which way, but does not provide concrete values to perform these actions. The values are set in a
mapping process described in the following.

Mapping Process
The mapping rule set R2 stored in the skill template consits of two subsets R2.1 and R2.2. The set contains one
mapping rule for each state and each transition in the template motion net that requires a mapping. The only states
that require mapping are motion states. All other states do not contain actions that employ sensing or control
and therefore do not need control values or a trajectory node. All transitions require mapping except primitive
transitions, as these do not contain any transition conditions.
Each rule relates a template state M

′

i or a template transition T
′

i j to a trajectory node Nk . It may be noted that this
is not a one-to-one relation and a node Nk can be employed in several mapping rules. Contrary, only one mapping
rule is allowed for each template state or transition.

Subset R2.1 contains all rules that map nodes to template states to produce motion net states. To create a motion
net state Mi , the template state M

′

i has to be augmented with control values Ci and a related trajectory node Ni .

Nk can be acquired directly from the connection between M
′

i and Nk . To create Ci , two decisions have to be
made by the mapping rule:

• Which trajectory state is used in the mapping, initial state SI or final state SF (D1)

• Which of the 12 dimensions of the used trajectory state are mapped to Ci (D2)

Control mode and value of Cis setpoint are defined by the used dimensions of the trajectory state. The task frame
T Fi can be acquired directly from the trajectory state.

51

Subset R2.2 contains all rules that map nodes to template transitions to produce motion net transitions. To create
a motion net transition Ti j , the template transition T

′

i j has to be augmented with transition conditions tik . To
create tik , three decisions have to be made by the mapping rule:

• Which trajectory state is used in the mapping, initial state SI or final state SF (D1)

• Which of the 12 dimensions of the used trajectory state are mapped to which condition tik (D2)

• Which operator 2 ∈ {≤,≥,=,<,>} should be used in the transition condition’s comparison function
h(mc2mik)→ {t rue, f alse} (D3)

The condition values represented by the condition’s trajectory state Sik can be acquired directly by the used
trajectory. The operator has to be preassigned in the mapping rule.
In both cases decision D2 can be made according to the node types ηik of a trajectory state Sik . By specifying a
desired (or undesired) node type, all state dimensions that are (or are not) of this type can be selected.

Figure 7.5: Schematic visualization of mapping R2.1, which describes how a motion net state Mi is generated from
a trajectory node Nk

Figure 7.6: Schematic visualization of mapping R2.2, which describes how a motion net transition Ti j is generated

from a trajectory node Nk

52

8 Skill Categorization

The skill representation presented in the previous chapter can be used to describe a wide selection of robotic
tasks relevant for assembly and beyond that. This chapter gives examples for skills using the previously described
representation.
Every skill is presented as a data sheet in this chapter. The data sheet features the most important properties of a
skill based on the representation and definition presented in the previous chapters. In the following, the template
used for the data sheet is presented with explanations of its categories (Table 8).
In this thesis the skills Insert and Snapfit, which are discussed in more detail in the following, were mainly
investigated. Other skills are presented in brief as data sheets. The skills presented here are used for the example
assembly implemented in the demonstrator (see Chapter 11). Further skills necessary for the example assembly
application are presented in short in Appendix C. Section 8.3 contains short descriptions of further skills not used
in the demonstrator.

Name The name of the skill; should be
unique and intuitive Symbolic visual representation

Category The category of the skill
depending on the fulfilled task

Description A short description of the skill

Trajectory A symbolic visualization of the trajectory representation according to Section 7.2

Motion Net The motion net representation according to Section 7.3

DOF The supervised dimensions of the
trajectory

The controlled dimensions of the
skill (which are a subset of the

supervised dimensions)

Precondition The precondition according to Chapter 7

Interruptions Possible interruption conditions according to Chapter 7

Completion The completion criteria according to Chapter 7

Quality The quality criteria according to Chapter 7

Resources The necessary tools for the
execution of the skill

The necessary sensors for the
execution of the skill

Skill Dependencies If the skill is a concatenation of
other skills, its "subskills" are

listed here.

If the skill has dependencies from
other skills that have to be

executed in advance, these skills
are listed here.

Table 8.1: Template for data sheets used to describe the properties of skill templates

53

8.1 Insert Skill

Insertion tasks in robotics refer to the classic peg-in-hole problem which has been widely discussed in literature
(e.g. [83]). In insertion, a part is inserted into a fitting hole. Part and hole can have rectangular or round geometries,
while the focus here is on the former. Different sub-problems derive from this problem like searching the hole
and appropriate alignment of the part. Also, different insertion strategies like tilted insertion in combination with
different compliant motion strategies exist. This is omitted here, as these problems are already extensively covered
in literature. Here the focus is on a simple insertion task with a rectangular geometry where the part is already
correctly aligned above the hole and is inserted straight into it. From the mathematical model of this task, the
"Insert" skill is derived.

8.1.1 Mathematical Model of an Insertion Task

In straight insertion, a part is moved in z-direction while resulting forces Fx , Fy , and Fz are generated by the
contact between the part and the hole. The resulting torques are not employed in this analysis and therefore are
omitted.
Ideally, if a part is inserted straight into a hole, no contact with the walls occurs except a final contact at the bottom
of the hole. In practice, this is not realistic, as positioning uncertainties prevent a perfectly straight insertion.
Depending on the geometry, a tilted orientation of the part can cause several contacts with the environment, which
can be described by the following contact states. It has to be noted that this analysis was done in two dimension,
but all assumptions about Fx can easily be transferred to Fy .

Figure 8.1: Contact states that can occur during the insertion of a rectangular peg into a rectangular hole

54

For each contact situation the resulting forces Fx and Fz can be calculated. In the following equations [83] the
geometric relations shown in Figure 8.2 are employed.

• (a) No contact: no contact forces, Fx = Fz = 0

• (b) Line contact: constant wall friction, Fx = fa, Fz = µ fa

• (c) One-point contact: like two-point contact with fa = 0 or fb = 0

• (d) Two-point contact: contact forces dependent on tilt angle θ

Fx = f1 sinθ + f2 cosθ + k1 fa − fb

Fz = f1 cosθ + f2 sinθ − k2 fa −µ fb

k1 = cosθ −µ sinθ

k2 = sinθ +µ cosθ

(8.1)

In these equations, µ denotes the friction coefficient between the part and the hole. θ is the tilt angle of the part,
while fa and fb denote the contact forces at the contact points. f1 and f2 are the reaction forces in longitudinal
and transverse directions of the part.
In contact state (b) an interruption situation called jamming can occur, which will prevent the part from further
insertion. Jamming is a situation where forces and moments applied to the peg through the support are in the
wrong proportions [83]. To detect jamming, the ratios Tx

Fz
,

Ty

Fz
, Fx

Fz
,

Fy

Fz
are analyzed with the help of the jamming

diagram (e.g. [83]). A simplified analysis as used in this case is possible: as jamming will always prevent a part
from a motion in z-direction, it is sufficient to use a contact force threshold in the Fz dimension for its detection.

To acquire a trajectory from these contact states, contact state (a) or (b) is chosen as desired state for the process,
depending on the geometry. This means that the desired trajectory can be expressed by a constant or zero forces
Fx ,Fy , and Fz throughout the motion in z-direction. If the bottom of the hole is reached, a peak in Fz is detected.
When additional force peaks in Fx or Fy are detected, this indicates a two-point contact according to Equation
8.1 instead of a ground contact and therefore a failed insertion. Fx and Fy can consequently be used as a quality
indicator. Interruptions can be detected by a peak in Fz according to the jamming analysis described above.

Figure 8.2: Visualization of the contact forces fa and fb, and the resulting forces f1 and f2 at a two-point contact
situation

55

8.1.2 12D Pose-Wrench Trajectory of the Insert Skill

As described in Section 8.1.1, the trajectory shown in the following is derived from the previously described
contact states. For the definition of this trajectory it is assumed that the task frame of the motion is set in such a
way that the predominant direction of the motion is z and the geometry allows insertion without wall contact.
It has to be noted that the change in z at node N2 is infinitely small, since the maximum z position has already
been reached.

Figure 8.3: Trajectory of the Insert skill shown for the dimensions Fx , Fy and Fz

Node Node Type Example Motion

N1

z = finiteChange Free motion in z-direction; no
contact with the environmentFx = zero

Fy = zero

Fz = zero

N2

z = constant Bottom of the hole reached;
rapidly increasing forceFx = zero

Fy = zero

Fz = infiniteChange

Table 8.2: Explanation of the nodes of the Insert trajectory shown in Figure 8.3

56

8.1.3 Motion Net Finite State Machine of the Insert Skill

Figure 8.4: Motion Net of the Insert Skill

State/Transition Type Control Value/Condition Referring Node

M0 Initial - -

T01 Precondition t01 : SC ,pos = SI ,pos N1

M1 Motion C1 = [-, -, zd , -, -, -] N1

T12 Interruption Criteria t12 : SC ,Fx ,y,z
> Si,Fx ,y,z

N1

M2 Motion C2 = [-, -, zd , -, -, -] N1

T21 - t21 : SC ,Fx ,y,z
= Si,Fx ,y,z

N1

T1C Completion Criteria t1C : SC ,Fz
>= SF,Fz

N2

MC Complete - -

TCS Quality Criteria Success tCS : SC ,Fx ,y
<= SF,Fx ,y

N2

MS Success - -

TC F Quality Criteria Failure tC F : SC ,Fx ,y
> SF,Fx ,y

N2

MF Failure - -

TS3 / TF5 - Always True -

M3 Tool (unproductive) Open Gripper -

T34 - Gripper Open -

M4 Motion (unproductive) C4 = [-, -, zd , -, -, -] N1

T4G1 - SC ,pos = SI ,pos N1

M5 Motion (unproductive) C4 = [-, -, zd , -, -, -] N1

T5G2 - SC ,pos = SI ,pos N1

MG1 / MG2 Goal - -

Table 8.3: Description of the States and Transitions in the Insert Motion Net

57

8.1.4 Insert Data Sheet

Name Insert

Category Assembly

Description Skill to fulfill insertion tasks
where a part is inserted straight

into a hole (no alignment)

Trajectory

Motion Net

DOF Supervised : z, Fx , Fy , Fz Controlled : z

Precondition Start position reached

Interruptions Fx ,y,z > Fx ,y,z,desired

Completion Fz = Fz,desired

Quality Success: Fx ,y < Fx ,y,threshold , failure: Fx ,y > Fx ,y,threshold

Resources Tools: gripper Sensors: force, position

Skill Dependencies Subskills: none Preceeding skills: none

Table 8.4: Insert Data Sheet

58

8.2 Snapfit Skill

The Snapfit skill is designed to fulfill tasks that involve the handling of snap-fit mechanisms. Snap-fits are me-
chanical joint systems where part-to-part attachment is accomplished by a deflecting latch that is snapped into a
hole [8] under the influence of an applied force. Mostly this is realized using plastic parts. Mechanisms like this
can be found in assembly tasks as well as in every day live (e.g. the battery cover of a remote control). There is a
wide variety of snap-fit types such as cantilever hooks (see Figure 8.5), compression hooks, or torsional snaps. A
detailed discussion about the different types of snap-fits can be found in [8], for example.
The mechanical design of the snap-fit is crucial, especially when the snap-fit is performed by a robot. An example
of how to ease a robotic snap-fit operation is the mechanical guidance of the latch. Such design choices are
necessary in order to reduce the risk for unforeseen situations during assembly. While manipulation skill for
robotic assembly is able to handle uncertainty to some extent, it is still desired to keep the assembly as simple as
possible.
To create a skill for snap-fit tasks, it is necessary to create an abstracted representation of the tasks according to
the skill definition. As there is a great variety of snap-fit types, the abstraction can be very challenging.
Snap-fits may consist of multiple deflective latches instead of a single one, which introduces an additional level
of complexity to the abstraction. Multiple snaps can occur at the same time or consecutive, depending on how
the force is applied. If the force is applied in the middle of the part, the latches snap in an undefined order or
even simultaneously, which makes an abstraction of the process nearly impossible. The solution employed in this
case is to divide a multi-latch snap into multiple single-latch snaps. This is accomplished by applying consecutive
forces near the latches to gain a defined order of snaps.
In the following sections a mathematical model to describe snap-fit processes is presented, from which a trajectory
and motion net representation necessary to create a skill are derived.

Figure 8.5: Snap-fit working principle shown on a cantilever hook [1]

59

8.2.1 Mathematical Model of a Single Latch Snap-Fit Operation

Figure 8.6: Motion Scheme of a Single-Latch Snap-Fit [78]

For the modeling of a snap-fit operation, a single latch that is snapped into the respective opening of a part is
considered. The latch is moved in z-direction, while a resulting force Fz is generated by the contact between the
latch and the part. This motion can be visualized by the scheme shown in Figure 8.6.
To estimate the resulting force Fz , the deflection of the latch is described as a beam bending problem. The latch is
therefore described as a rectangular beam for which the following bending formula is valid:

x =
l3

3EJ
Fx , J =

1

12
ab3 (8.2)

In this equation x describes the deflection of the beam under the influence of the force Fx . J denotes the inertia
tensor of the beam while a,b and l denote its geometric dimensions width, height and length. E is the modulus
of elasticity. Figure 8.7 shows the geometric composition of the bending problem in detail.

Figure 8.7: Geometric Composition of the Snap-Fit [78]

60

The force Fz can be calculated from the deflection force Fx by using the rela-
tionship of the friction between the latch and the guidance described by

FR = µFN , µ= tanβ , (8.3)

where µ is the coefficient of friction, FR the resulting force caused by friction
and FN the normal force. In order to get Fz , FR is partitioned into its x and z
components, which leads to

FZ = FX

µ+ tanαe f f

1−µ tanαe f f
= Fxµe f f . (8.4)

In this equation µe f f denotes the effective coefficient of friction in z-direction.
It has to be noted that the effective angle αe f f , and therefore also µe f f , in-
creases due to the bending of the beam according to the position in z:

αe f f (z) = α+ arctan
z tanα

l + L1 − z
. (8.5)

When the latch is fully deflected (see 3. in Figure 8.6), FN coincides with Fx ,
and FR coincides with Fz . Therefore, µ can be used instead of µe f f .
By joining Equations 8.4 and 8.2, the resulting model for Fz can be written as
follows:

Fz(z) =

3µe f f (z)EJ · tan(α) z
(l+L1−z)3

: 0< z ≤ L1

3µEJ · tan(α) L1
l3

: L1 < z ≤ L1 + L2

0 : otherwise

(8.6)

This model can be employed to plot Fz against z using example values as shown
in Figure 8.9.

Figure 8.8: Friction Geometry [78]

Figure 8.9: MATLAB plot of Equation 8.6 using the example values a = 5mm, b = 1mm, l = 10mm, L1 =
1mm, L2 = 0.5mm, alpha = 30, E = 10GPa, mu= 0.3 [78]

61

8.2.2 12D Pose-Wrench Trajectory of the Snapfit Skill

Figure 8.10: Trajectory of the Snapfit Skill

From this model the trajectory can easily be acquired. For the definition of this trajectory it is assumed that the
task frame of the motion is set in such a way that the predominant direction of the motion is z. This assumption
leads to the conclusion that all dimensions except z and Fz are of the type unsupervised.
It has to be noted, that for most geometries N2 and N3 can be merged into one trajectory node. The reason for this
is that the motion phase referring to N3 (3. in Figure 8.6) is usually very short and can be omitted.

Node Node Type Example Motion

N1
z = finiteChange Free motion in z-direction; no

contact with the environmentFz = zero

N2
z = finiteChange Bending of the latch; increasing

forceFz = finiteChange

N3
z = finiteChange Latch fully bent; constant wall

frictionFz = constant

N4
z = constant Latch snapped in; contact force

releasedFz = zero

Table 8.5: Description of the nodes in the Snapfit trajectory shown in Figure 8.10

62

8.2.3 Motion Net Finite State Machine of the Snapfit Skill

Figure 8.11: Motion Net of the Snapfit Skill

This trajectory is mapped to the motion net shown in Figure 8.11 to enable the execution of the Snapfit skill.

State/Transition Type Condition/Control Value Referring Node

M0 Initial - -

T01 Precondition t01 : SC ,pos = SI ,pos N1

M1 Motion C1 = [-, -, zd , -, -, -] N2

T12 - t12 : SC ,Fz
= SF,Fz

N2

M2 Motion C2 = [-, -, Fzd , -, -, -] N3

T2C Completion Criteria t2C : SC ,Fz
< SF,Fz

N3

MC Complete - -

TCS Quality Criteria Success tCS : SC ,Fz
<= SI ,Fz

N4

MS Success - -

TC F Quality Criteria Failure tC F : SC ,Fz
> SI ,Fz

N4

MF Failure - -

TS3 - Always True -

TF4 - Always True -

M3 Motion (unproductive) C3 = [-, -, zd , -, -, -] N4

M4 Motion (unproductive) C4 = [-, -, zd , -, -, -] N4

T3G1 - t3G1 : SC ,pos = SF,pos N4

T4G2 - t4G2 : SC ,pos = SF,pos N4

MG1 / MG2 Goal - -

Table 8.6: Description of the States and Transitions in the Snapfit Motion Net

63

8.2.4 Snapfit Data Sheet

The most important data can be summarized in the following data sheet according to the template described in 8.

Name Snapfit

Category Assembly

Description Skill to fulfill snap-fit tasks
involving a single bending latch

Trajectory

Motion Net

DOF Supervised : z, Fz Controlled : z, Fz

Precondition Start position reached

Interruptions None

Completion Rapid decrease in Fz

Quality Success: Fz <= Fz,desired , failure: Fz > Fz,desired

Resources Tools: none Sensors: force, position

Skill Dependencies Subskills: none Preceeding skills: none

Table 8.7: Snapfit Data Sheet [77]

64

8.3 Other Skills

The skills presented in this chapter are further skills that are defined using the previously presented manipulation
skill concept. They are presented in short by means of the data sheet template described in the beginning of this
chapter. The skills presented here were not implemented in the demonstrator or used in the example assembly
application, both described in Part III.

Bayonet Mount
The Bayonet Mount skill is used to handle bayonet like mounts, which are, for example, used to install lightbulbs.
This skill is a combination of the subskills Insert and Search Rotational Contact. It has to be noted that the latter
skill is not described in this thesis.

Name Bayonet Mount

Category Assembly

Description Skill to fulfill tasks where a
bayonet mount is closed using an
"Insert" and a "Search rotational

contact" skill

Trajectory Concatenation of the "Insert" and the "Search Rotational Contact" trajectories

Motion Net Concatenation of the "Insert" and the "Search Rotational Contact" motion nets

DOF Supervised : z, φz , Fz , τz Controlled : z, φz

Precondition Start position reached

Interruptions Interruption conditions from "Insert" and "Search Rotational Contact"

Completion τz > τz,desired

Quality Success: z ≥ zdesired , failure: z < zdesired

Resources Tools: gripper Sensors: position, force, torque

Skill Dependencies Subskills: Insert, Search
Rotational Contact

Preceeding Skills: none

Table 8.8: Bayonet Mount Data Sheet [71]

65

Screw
The Screw skill is used to tighten a screw that has already been positioned in a screwhole. It is mainly presented
as control and supervision in the rotational dimenions is used. A variation of this skill is the tightening of a nut on
a screw.

Name Screw

Category Assembly

Description Skill to fulfill tasks where a screw
is screwed into a hole

Trajectory

Motion Net

DOF Supervised : z, φz , Fz , τz Controlled : z, φz

Precondition Start position reached

Interruptions τz > τz,inter ruption

Completion Fz > Fz,desired

Quality Success: τz ≥ τz,desired , failure: τz < τz,desired

Resources Tools: screw bit Sensors: position, force, torque

Skill Dependencies Subskills: none Preceeding Skills: Screw
positioning

Table 8.9: Screw Data Sheet [77]

66

Part III
Application Results

67

9 Experimental Setup

In this chapter, the laboratory setup used for the implementation of the assembly skill system is introduced. For
the implementation of the demonstrator, an ABB dual-arm concept robot (DACR), which is controlled by an ABB
IRC5 robot controller, is used. The robot can be accessed by a standard PC via different communication interfaces.

9.1 ABB Dual-Arm Concept Robot

The dual-arm concept robot is a prototypical robot design by ABB [35]. Its application area is small part assembly,
for example, the assembly of consumer electronics. To be suited for assembly tasks like this, it is necessary that
the robot can work in mixed human-robot environments.
As can be seen in Figure 9.1, the robot design is highly inspired by a human torso in its dimensions as well as in
its kinematic abilities. The reason for this is to maintain maximal compatibility, safety and acceptance when the
robot is embedded into a human-centered workspace.
The most crucial analogy to the human body are the two manipulator arms. They have seven degrees of freedom
(DOF) each and can operate completely independent of each other. With one additional DOF compared to the
six spatial DOF of Cartesian space, kinematic redundancy is introduced. This redundancy can be used in order
to choose between different joint configurations to reach a motion goal. For human robot collaboration, this can,
for example, mean that the robot reorients its arm while maintaining a certain motion to avoid collision with a
human entering the workspace. In general, a much higher flexibility can be gained by kinematic redundancy,
which allows the robot to work in a more constrained environment.
An important aspect for guaranteeing the safety of the robot and its surroundings is the limitation of the maximum
forces it can exert. This is mainly accomplished by limiting the allowed payload of each manipulator to 0.5 kg
and the resulting low power of the drives. Due to this requirement, the moving parts of the mechanism all have
low inertia. The tool center point (TCP) speed is limited to 1.5 m/s during normal operation.
Another factor of the safety concept is the inherently safe design of the parts themselves. By leaving enough
clearance in the geometric design of the manipulator links and applying soft foam padding to them, the risk of
injury when working with the robot is minimized.

Figure 9.1: ABB Dual-Arm Concept Robot with Operator [35]

Within each arm there are electric, pneumatic, and communication (LAN) connections to each of the joints and to
the tool. While there is a specifically designed multi-purpose gripper for the system, all kinds of pneumatic and/or
electrically powered tools can be attached to the wrist of the robot. In the current setup a simple "open/close"
clamp is employed.

68

The fact that all the wires are on the inside of the arm is a great benefactor to safety. Furthermore, the robot
controller as well as the motor power electronics, which are normally in an external device, are inside the robot
body. The low weight of this unit and the handles on its backside make sure that a single person can carry the
robotic system and deploy it on a workstation.
The robotic system has already been used in various projects and experiments, mostly in the context of human-
robot collaboration and assembly.

9.2 ABB IRC5 Robot Controller

The IRC5 controller is used to operate the ABB dual-arm concept robot as well as ABB’s conventional industrial
robots. It has a modular design to make it applicable to a wide range of different robot models. For each model
different power electronic modules, called drive packs, can be included to provide power to the robots motors.
To connect the controller to the robot and additional devices like sensors, serial and ethernet connections are
available by default. Additional field buses like PROFIBUS can be added if necessary. The DACR is connected
to its controller by ethernet.
The controller runs a real-time operating system that executes different robot control applications. To program
the robot movements, the RAPID programming language is used. With this high-level language developed by
ABB, positions and other properties of the robot motion can be defined. It can be interpreted by the controller
and translated to movement commands that can be executed by the motion planning kernel. This motion kernel
computes trajectories needed to reach the programmed motion paths in real-time and sends control signals to the
drive packs. To compute the trajectories, the kernel uses optimization based on advanced dynamic modeling. As
optimization goals either the shortest cycle time (QuickMove option) or the most precise path accuracy (TrueMove
option) is used.
There are two options for the user interface to the controller: the Flex Pendant terminal or a PC with the control
and simulation software ABB RobotStudio. While the former is mostly used for manual robot control (jogging)
and small modifications on the shopfloor, the latter is an extensive software package containing a RAPID develop-
ment environment and a graphical design interface with simulated robotic systems. The Flex Pendant is directly
connected to the controller, while the RobotStudio connection is established via ethernet.
With the Multi Move feature up to four robots can be controlled by a single controller. This is very important for
the usage in the DACR, as its two arms are each represented as separate robots.
The real-time architecture of the controller allows an interruption-free execution of the robot motions. If mo-
tions are influenced from outside of the controller, as necessary in the proposed manipulation skill system, a
communication delay in the range of 10-100 ms has to be considered.

69

9.3 Setup of the Example Assembly Application

This section describes the example assembly process performed by the previously described robot to demonstrate
the capabilities of the manipulation skill system. The example assembly refers to the example assembly tree
presented in Chapter 6.5. It consists of small plastic parts that are assembled to an ABB PLC I/O Module.

Figure 9.2: Workstation with Assembly Parts

The following parts are involved in the assembly:

• A: Three Printed Circuit Boards (PCB)

• B: Housing

• C: Cover

• D: Light Guide

• E: Light Guide Cover

In figure 9.2, these parts are shown in their initial po-
sition at the workstation before the assembly is per-
formed.
All parts are placed within fixtures that are in the
reachable area of the robot’s arms. Both of these arms
can be used in the assembly. Each arm has a gripper
suited to grasp and hold the involved parts.
The steps the robot needs to perform to create a com-
plete ABB PLC I/O Module from these components
are described in the following.

Step 1 : Provide Housing
At first, the housing has to be transferred to the empty fixture in front of the robot. This motion is purely position-
controlled and has no special requirements. The following operations have to be performed in this step:

• Pick up housing

• Transfer housing to fixture

• Place housing in fixture

Step 2 : Insert PCBs
To insert the PCBs into the housing, three identical steps have to be carried out. They consist of the following
operations:

• Pick up PCB

• Transfer PCB to housing

• Insert PCB in housing

During the insertion of the PCBs, contact between the PCB and the housing is established (see Figure 9.3 (a)). As
the geometry only allows a small clearance between the two components during insertion, the contact situation
can become critical ("jamming", see Chapter 8.1). To prevent this, the contact force has to be controlled.

70

Step 3 : Install Light Guide
The light guide is installed by placing it on the cover plate, where it is kept in place by two plastic pegs (see Figure
9.3 (b)). For an easier placement, these pegs are chamfered. The following position-controlled operations have to
be performed in this step:

• Pick up light guide

• Transfer light guide to cover

• Place light guide on cover

In order to enable the gripper to hold the light guide during the assembly, the part was designed with a handle at
its side. As this handle is very small, the gripper has to be positioned with high precision.

Step 4 : Install Light Guide Cover
To install the light guide cover, it is placed on the cover plate and tightened by two snap-fits (see Figure 9.3 (c)).
For an easier placement, the previously attached light guide contains a guidance for the light guide cover. The
following operations have to be performed in this step:

• Pick up light guide cover

• Transfer light guide cover to cover plate

• Place light guide cover on cover plate

• Close snap-fits of light guide cover

To close the snap-fit, the gripper pushes the left and the right latch down with its tip. This is done successively for
one latch at a time to produce clearly defined contact states (see Chapter 8.2). During the snap-fit operations, the
contact force is supervised.

Step 5 : Install Cover
The last step is to install the cover. To do so, it is placed on the housing and tightened by a snap-fit consisting of
four latches that are closed simultaneously (see Figure 9.3 (d)). The following operations have to be carried out in
this step:

• Pick up cover

• Transfer cover to housing

• Place cover on housing

• Tighten cover by snap-fit

The snap-fit is very powerful as it is performed with the robot’s arm padding. This reduces the precision re-
quirements to the placement of the cover, as it is pushed into place by high operational forces combined with
mechanical guidance. The high forces also eliminate the need for successive performance of the snap-fits as done
in step 4. For the picking up of the cover, higher precision is required, as it is held at its border, which is very
narrow.

71

(a) Housing with Inserted PCB (b) Light Guide on Cover Plate

(c) Light Guide Cover on Cover Plate (d) Assembled ABB PLC I/O Module

Figure 9.3: Goal state of the parts involved in the ABB PLC I/O Module assembly after the assembly steps 2-4

72

10 Contact Force Estimation

This chapter introduces a method to estimate the external wrench without force/torque sensors. The results pre-
sented here were published in [79].

10.1 Schematic Overview and Previous Work

For tasks in robotic assembly a basic requirement is the capability of the robotic system to detect contacts with
the environment. While this information can be obtained from dedicated force-torque sensors, it might either be
technically difficult to mount such sensors or too expensive to do so. An alternative approach is presented here. It
reconstructs the external forces and torques based on signals that can be obtained without a force sensor, namely
motor currents/torques and joint angles. The approach is visualized in Figure 10.1.
To calculate external contact forces, firstly the motor torques caused by the contact forces have to be extracted
from the measured motor torques. To do so, the motor torques caused by friction have to be estimated. A simple
friction model, which has to be identified offline, is employed. From the external motor torques the contact forces
can be calculated by employing the robot’s Jacobian. Prior knowledge of the contact forces is included in the
calculation by employing weighting matrices which are calibrated offline via a defined calibration procedure.
The method proposed here can be regarded as an extension of [44, 66]. Here, methods for torque-based contact
force estimation are proposed. Only joint angles and motor torques that directly depend on motor currents are
used as input data, while prior knowledge of the variance of contact forces and measured motor torques is incor-
porated. The main novelty of the approach presented here is that the unknown covariance matrices are obtained
systematically from a calibration measurement instead of going through a trial-and-error procedure.

Figure 10.1: Schematic overview of the steps performed during the contact force estimation [76]

73

10.2 Problem Statement

We consider robotic systems that can be described by

H(q)q̈ +C(q̇ ,q)q̇ +τgrav(q) +τfric(q̇) +τext = τmot. (10.1)

With the inertia matrix H(q) and the Coriolis matrix C(q̇ ,q) the term H(q)q̈ + C(q̇ ,q)q̇ in Equation 10.1
captures dynamic effects, τgrav(q) are torques resulting from gravity, and τfric(q̇) describes friction torques. In
addition, external forces and torques lead to reaction torques τext in the robot joints. The robot movement is
driven by the motor torques τmot, which are assumed to be available from motor current measurements. Apart
from the motor torques of each joint and the corresponding joint angles, no other measurements are necessary for
the proposed contact force estimation scheme.
An approximation of H(q)q̈ +C(q̇ ,q)q̇ as well as τgrav is available from low-level controls.
To estimate the friction torques τfric, a method is proposed in Section 10.3.2.
The torques τext resulting from the external wrench are given by [62, Section 1.10]

τext(q) = JT(q) · f , (10.2)

where J(q) is the robot’s Jacobian and

f =
h

fx f y fz τx τy τz

iT

(10.3)

is the external wrench vector containing contact forces fx , f y , and fz , as well as contact torques τx , τy , and τz .
f is expressed in base-frame coordinates.
The objective is to estimate f , i.e. the external wrench based on the measured motor torques and joint angles.

10.3 Contact Force Estimation Scheme

10.3.1 Basic Idea

The motor torques τmot can be split into a dynamic feed-forward term τff to cancel H(q)q̈+C(q̇ ,q)q̇ , a gravity
compensation term τgrav,comp, a friction compensation term τfric,comp, and remaining effective torques τmot, i.e.

τmot = τff +τgrav,comp +τfric,comp +τmot. (10.4)

Obviously, due to parametric uncertainties and unmodeled effects, the compensation of dynamic effects, gravity,
and friction are never exact. This is summarized in the error

e = H(q)q̈ +C(q̇ ,q)q̇ −τff
︸ ︷︷ ︸

edyn

+ . . .

+τgrav(q)−τgrav,comp
︸ ︷︷ ︸

egrav

+ . . .

+τfric(q̇)−τfric,comp
︸ ︷︷ ︸

efric

.

(10.5)

Notice that, while edyn and egrav are small if an accurate model is available, efric comprises the major part of the
error vector e.

74

By combining Equation 10.1 with Equations 10.4 and 10.5,

τext(q) + e = JT(q) · f + e = τmot (10.6)

is obtained. The first step in estimating the external wrench f is thus to compute τmot. Following Equation 10.4,
this can readily be achieved by

τmot = τmot −τff −τgrav,comp −τfric,comp. (10.7)

While the dynamic feed-forward and gravity compensation torques are available from low-level robot controls
and the motor torques τmot can be measured, the friction torques τfric(q̇) have to be estimated. This is described
in detail in Section 10.3.2.
The next step is to obtain an estimation of f based on Equation 10.6. This problem is non-trivial due to the fact
that the disturbance torques e are unknown. Furthermore, since each arm of the ABB DACR has seven DOF,
J(q) ∈ R6×7 is a non-square matrix. Consequently, the six components of the external wrench are mapped to the
seven robot joints by Equation 10.2.
Neglecting the disturbances e, a simple approach to obtain an estimate f̂ would be to employ the Moore-Penrose-
Inverse of JT(q), i.e.

f̂ =
�

JT(q)
�+

·τmot. (10.8)

However, similar as proposed in [44, Section 10.2], [66], it is possible to include prior knowledge or assumptions
on e and f in the estimation by employing a Bayesian approach. Here, both the disturbances e and the external
wrench f are modeled as random variables, where E [e] = 0, E

�

f
�

= 0 is assumed. The covariance matrices
are denoted by Var [e] = E

�

e · eT
�

= Re and Var
�

f
�

= E
�

f · f T
�

= RF , and the variables f and e are
assumed to be uncorrelated, i.e. E

�

f · eT
�

= 0, E
�

e · f T
�

= 0. How the contact force estimation can be derived
is shown in detail in Appendix A.
The optimal solution for the contact force estimation based on τmot and the prior knowledge on f and e is given
by

f̂ = RF J(q) ·
�

JT(q) · RF · J(q) +Re

�−1
·τmot. (10.9)

In practice, the weighting matrices Re and RF are not known precisely. However, from Equation 10.9 it is obvious
that they have a major influence on the quality of the contact force estimation. While it is possible to select the
matrices based on intuitive reasoning or to adjust them in a trial-and-error procedure [66], a more systematic
solution is to acquire them based on calibration measurements. This is presented in Section 10.3.3.

10.3.2 Friction Identification

As discussed above, joint friction is a major issue for contact force estimation, and a friction estimation τfric,comp is
needed to compensate for it prior to the actual contact force estimation. In this approach, a simple model capturing
the effects of Coulomb and viscous friction is employed.
For each joint, the friction torque τfric,comp,i(q̇i) is modeled as

τfric,comp,i(q̇i) =

¨

c+Coulomb,i + c+visc,i · q̇i, q̇i > 0,
c−Coulomb,i + c−visc,i · q̇i, q̇i < 0.

(10.10)

The friction model in Equation 10.10 only captures the most basic effects and can, of course, be refined (see
[7, 53] for an in depth discussion on friction models in robotics). However, such a simple friction model leads to
reasonable results as, for example, shown in [20, 52].

75

To identify the friction coefficients c, identification measurements are performed. Therein, the manipulator is
moved around freely in the workspace, which leads to τext = 0. Based on this, the robot dynamics in Equation
10.1 can be reformulated as

τfric(q̇) = τmot −
�

H(q)q̈ +C(q̇ ,q)q̇ +τgrav(q)
�

. (10.11)

By similar reasoning, as presented in Section 10.3.1, the friction torques can be estimated from motor torques and
dynamic feed-forward and gravity compensation torques as

τfric,comp(q̇) = τmot −
�

τff +τgrav,comp

�

= τ̃mot. (10.12)

The joint speeds q̇ are assumed to be known since they can either be measured or calculated by numerical differ-
entiation from the joint angles.
Based on the above considerations, an identification of the friction coefficients can be obtained by solving the
optimization problems

minimize
c+Coulomb,i ,c

+
visc,i

N
∑

k=1

�

τ+
k

fric,comp,i(q̇
k
i)− τ̃

+k

mot,i

�2
, ∀i = 1, . . . , 7, (10.13a)

minimize
c−Coulomb,i ,c

−
visc,i

N
∑

k=1

�

τ−
k

fric,comp,i(q̇
k
i)− τ̃

−k

mot,i

�2
, ∀i = 1, . . . , 7. (10.13b)

Here, τ+
k

fric,comp,i(q̇
k
i) and τ̃+

k

mot,i are samples of the friction and motor torques for the i-th joint with positive joint

speed q̇i , while τ−
k

fric,comp,i(q̇
k
i) and τ̃−

k

mot,i collect all samples with negative joint speeds.
The problems given in Equation 10.13 are standard least squares problems.
For each joint the Equation 10.13a is solved by

c+Coulomb,i

c+visc,i

=

1 q̇1
i

...
...

1 q̇N
i

+

·

τ̃+
1

mot,i
...

τ̃+
N

mot,i

, (10.14)

with N samples with positive joint speeds available. Equation 10.13b can be treated in the same way.
Figure 10.2 shows a result of a friction identification measurement for robot joints 3 and 5.
As Figure 10.2 demonstrates, the simple friction model in Equation 10.10 allows an estimation of the friction
torques with reasonable accuracy.

10.3.3 Calibration of the Weighting Matrices

Calibration measurements with a defined external wrench fdef are performed to tune the weighting matrices Re
and RF automatically.
To do so, a defined load mass mcalib is attached at the TCP, resulting in

fdef =
h

0 0 −mcalib · g 0 0 0
iT

, (10.15)

due to the formulation of the external wrench in base frame coordinates. With the defined wrench applied, cali-
bration measurements are performed. These can be any contact-free movement of the TCP in the workspace.

76

Figure 10.2: Friction identification results (−: measured motor torques with dynamic feed-forward and gravity com-
pensation, −−: estimated friction torques) [79]

Since dynamic feed-forward torques are used to compute τmot, the motion trajectory of the TCP should not result
in any jerk during the calibration measurement. This avoids large values for q̈ and thus undesired peaks in τmot
are avoided.
Having performed the calibration measurement, the weighting matrices for contact force estimation following
Equation 10.9 are determined in an offline optimization. The objective is to find Re and RF , so that the estimated
wrench f̂ matches fdef best in the sense of mean-squared errors over the whole measurement. This can be written
as

minimize
Re ,RF

N
∑

k=1

 f̂ k − fdef

2

2
s.t. (10.16a)

f̂ k = RF J(q k) ·
�

JT(q k) · RF · J(q k) +Re

�−1
·τk

mot, (10.16b)

τk
mot = τ

k
mot −τ

k
ff −τ

k
grav,comp −τ

k
fric,comp, (10.16c)

τk
fric,comp,i(q̇

k
i) =

¨

c+Coulomb,i + c+visc,i · q̇k
i , q̇k

i > 0,
c−Coulomb,i + c−visc,i · q̇k

i , q̇k
i < 0.

(10.16d)

Due to the stochastic interpretation of the weighting matrices, additional contraints Re � 0, RF � 0 have to be
taken into account. Furthermore, Re and RF are constrained to be diagonal matrices as e and f are mutually
uncorrelated.
Figure 10.3 shows results of a calibration following Equation B.4. A load mass with mcalib = 0.165g has been
applied to the TCP with the resulting external forces (fx = 0, f y = 0, fz = 1.65N). The estimated external forces
are obtained employing the friction identification (see Section 10.3.2) and the Equation 10.9 with the calibrated
weighting matrices and match the actual forces reasonably.

Figure 10.3: Calibration results (−−: actual forces due to attached calibration load, −: estimated external forces)
[79]

77

10.4 Results

Summarizing the previous section, the following steps have to be completed to properly calibrate the method:

1. Run an experiment without external wrench

2. Perform the friction estimation based on measurement data and Equation 10.14

3. Run an experiment with calibration load attached at TCP

4. Perform the calibration of Re and RF by solving Equation 10.16 based on measurement data

While the computational effort in Step 4 is considerable, it only has to be performed once and offline in order to
tune the matrices Re and RF . In the actual application of the estimation scheme, the matrices are constant values.
The operations that have to be executed online are:

1. The friction estimation τfric,comp according to Equation 10.10, based on the constant identified friction
coefficients and computed joint speeds

2. The computation of τmot, based on the measured torques, dynamic feed-forward torques τff, gravity com-
pensation torques τgrav,comp, and estimated friction torques τfric,comp

3. The computation of the robot’s Jacobian J(q) for the current pose

4. The evaluation of the contact force estimation equation (Equation 10.9) using the calibrated matrices Re and
RF

Except for motor torques and joint angles, no other signals have to be measured.

The proposed scheme has been applied to the ABB DACR to estimate external forces arising from a contact of the
gripper with the ground. In Figure 10.4 the contact forces fx , f y , and f y are plotted over the z-coordinate of the
TCP. In the experiment, the z-position decreases, i.e. the plots in Figure 10.4 have to be read from right to left. For
z > 0 the gripper is moving freely and consequently, all contact forces are approximately 0. At z = 0, contact
to the ground is established as can clearly be detected by the sharp peak in fz . Since the gripper is moving also
in x and y-direction at the contact point, there are force components in these directions due to friction between
gripper and ground.

Figure 10.4: Estimated contact forces fx , f y , and fz over z-position of TCP [79]

78

11 Implementation

In this chapter, the implementation of the concept proposed in Part II is presented. A demonstrator that provides
the necessary functionality to perform an example assembly by using manipulation skill on an ABB dual-arm
concept robot (see Chapter 9) was the result of the implementation.

11.1 Overall Program Structure

The overall structure of the program can be visualized by the following data flow diagram.

Figure 11.1: Overview of the overall program workflow, split into the execution steps 1, 2 and 3

79

The program provides the functionality to create a sequence of robot motions based on skill primitives and control
the execution of the motions. To create a motion output, an assembly tree data structure and a library containing
skill primitives is necessary as input. Three consecutive execution steps have to be performed by the program
before actual robot motion is generated (see Figure 11.1):

1. Assembly Tree Reading The assembly tree data structure is traversed. Its content is parsed and stored in an
internal representation that is used for the selection and parametrization of skill primitives.

2. Skill Setup Skill primitives are selected from a library containing several predefined skill templates. The se-
lection is based on the data specified in the assembly tree. An additional manual selection based on a GUI
can be performed. After a set of skill templates has been selected from the library. This set is parametrized
based on the information from the assembly tree. Additional manual GUI-based parameter input is possible.

3. Motion Execution The motions contained in the skill primitives are executed. After they have been sent to
the robot controller via a communication interface, a robot control program carries out the robot motions.
During the execution, the actual motion state of the robot is continuously compared to the desired motion
state defined in the skill primitives. The current state is acquired by processing data received from the robot
control program via the communication interface. This data processing generates the current pose-wrench
state (see Section 7.2.1) of the robot through contact force estimation and stores it in an internal robot
representation.

Steps 1 and 2 are executed "offline", which means in advance to the execution of the robot motion. From a practical
viewpoint, the demonstrator consists of the following main program parts to carry out the execution steps:

• A main application written in C# for the representation, coordination and execution of skill primitives

• A robot control program written in the ABB RAPID programming language to carry out robot commands
provided by the main application and to acquire the current motion state of the robot

• An XML data structure representing the assembly tree, which is used as a data source to select and
parametrize skills

In the following sections, the program parts and execution steps are explained in more detail.

80

11.2 Assembly Tree Reading

In this section, the XML representation of the assembly tree is presented. Furthermore, it is described how to
convert this representation to an internal data structure in the main application.

11.2.1 Assembly Tree Representation

An XML tree data structure implements the assembly tree presented in Section 6.3. This node-based data structure
consists of two components: an XSD scheme defining the structure and data types of the nodes of the assembly
tree XML files, and the XML files themselves, which are derived from it. Based on the definitions in Section
6.3.2, the following main data types are specified in the XSD scheme:

Part A Part node contains descriptive and procedural information about an individual component used in an as-
sembly. Descriptive information is represented by a transformation stored as a 4x4 matrix, which describes
the part’s goal assembly position with respect to its parent node. Furthermore, a link to a CAD represen-
tation and a picture can be stored. The procedural information describes how the part has to be handled
during assembly and is represented as a sequence of Actions. As part nodes are the leaf nodes in the tree
structure, they do not have any child nodes.

Assembly An Assembly node is a branch node in the tree structure and contains up to two child nodes, the left
and the right child, which can be Part or Assembly nodes. They represent the components assembled in
this assembly step. If such a child node contains assembly instructions in the form of Action nodes, their
data is used for the creation of an AssemblyTreeTask (see Section 6.3.3). The node itself contains the same
information as the part node, except the for CAD representation. A resource list stored in the node contains
information on which resources are necessary to perform these assembly processes.

Action An Action node contains all necessary information to select and parametrize skill primitives. The Activity
indicator plays the crucial role in skill selection as it describes the kind of action represented by a node.
Process parameters like Speed and path information stored as Targets are used for the parametrization of
skill primitives. Up to three targets can be stored in an Action node. As the system is implemented using
a dual-arm robot, an indicator, which robot arm (mechanical unit) has to be used to carry out the action, is
necessary. This is provided by the node’s MecUnit descriptor. It is possible to store an interruption condition
specified as a 12-dimensional vector that represents the 12 dimensions of pose-wrench space. Furthermore,
a task frame can be stored as 4x4 matrix, which is used as a reference frame for the skill that executes the
action.

Target A Target can be represented as a 12-dimensional pose-wrench vector. Furthermore, it can be specified as
a RobTarget, which is the target data type used in ABB RAPID, or as a set of translational and rotational
offset values. Tolerance values can be stored in the node for each of the 12 pose-wrench dimensions.

Beside these main types, which are defined as ComplexTypes in the XML Schema programming language, different
utility types are defined. Utility types that define numerical arrays of different length are used to represent vectors
and matrices. Enumeration types are used to enlist different values, for example tools or sensors. The latter two
types are specified as SimpleTypes in XML Schema. Furthermore, predefined types like "Boolean" are used.

81

11.2.2 Assembly Tree Traversal

By traversing the assembly tree, a sequence of tasks is generated from the XML representation. This sequence
is employed in the selection and parametrization of skill primitives. The traversal of the assembly tree XML
and the parsing of its data to an internal data structure is carried out by the class AssemblyTreeReader, which
is inherited from the class ReadXML. The latter class contains the basic functionality to parse XML data, while
the former contains specific functions to read the assembly tree XML structure. To read the assembly tree, the
tree’s root node, which is always of type Assembly, is processed first. Aftwards, its child nodes are processed
successively. The function createAssemblyTreeTask() is the central function in this processing, as it creates internal
data representations from the data stored in the Action nodes of a part or assembly. The data generated by the
function is stored internally in instances of the classes AssemblyTreeTask and AssemblyAction. The function only
creates an AssemblyTreeTask if Action nodes are contained in the processed node. Each task that is generated is
stored in a stack data structure. To generate the output task sequence, the task stack order has to be reverted after
all nodes have been processed. The tree traversal process is visualized by the following flowchart:

Figure 11.2: Assembly Tree Traversal Flowchart

82

11.3 Skill Setup

After the assembly tree has been converted from XML to an internal representation, skill primitives have to be se-
lected and parametrized. How this process, which represents the concepts presented in Chapter 7, is implemented,
is described in the following.

11.3.1 Template Skill Representation

A template skill is represented by the class TemplateSkill which is inherited from a general Skill class. The Skill
class is the superclass for the TemplateSkill and ParametrizedSkill classes. It contains the following metadata used
by both of these classes:

• A list of Activities the skill is suited for

• A list of Sensors required for the execution of the skill

• A list of Tools required for the execution of the skill

The TemplateSkill class contains the following data that refers to the motion net and trajectory template concepts
presented in Chapters 7.2.5 and 7.3.3.

Trajectory Template
Trajectory templates as presented in Chapter 7.2.5 are implemented by the TrajectoryPattern class. This class
contains a list of objects of type TPNodeTemplate. Each of these objects refers to a trajectory template node
N
′

i . Their only content is a list of 12 motion types described by the enumeration type TPNodeMotionType. The
enumeration contains the values {unsupervised, constant, finiteChange, infiniteChange, zero} as described in
Section 7.2.5.

Motion Net Template
The motion net template represents the "skeleton" of a motion net as described in Chapter 7.3.3. It is implemented
by the class MotionNetTemplate that contains a list of MotionNetTemplateState objects and a list of MotionNetTem-
plateTrigger objects representing the states and transitions in the template motion net. A MotionNetTemplateState
contains a state type, which can have the values {motion, toolAction, initial, final, complete, success, failure},
and the type of the robot command it represents (if a command is represented). The values {linearMotion, off-
setMotion, openGripper, closeGripper, toolOffsetMotion, collisionOffsetMotion, homeMotion, idleState}, which
represent all commands implemented in the system, are valid as robot command type. Both types are stored as
enumeration types. A MotionNetTemplateTrigger contains its initial and final MotionNetTemplateStates.

Trajectory Mapping
The trajectory mapping implements the mapping rule set R1 described in Chapter 7.2.5, which is used to
parametrize a template trajectory according to information from an assembly tree task. The mapping is im-
plemented by a key-value pair list ("Dictionary" in C#) linking a template node of type TPNodeTemplate to a
mapping rule of type TrajectoryNodeMappingRule and an AssemblyAction from which the parameters are de-
rived.
Mapping rules are implemented as C# delegates. The trajectory node, represented by the node type TPNode, which
is parametrized during the mapping, and the AssemblyAction, from which the mapping parameters are derived,
are passed to the delegate as arguments. A mapping rule specifies which target of an AssemblyAction is used to
parametrize a TPNode. How the mapping works in detail is described in Section 11.3.4.

83

Motion Net Mapping

The trajectory mapping implements the mapping rule set R2 described in Chapter 7.2.5, which is used to
parametrize a motion net according to information from a parametrized trajectory. Two different motion net
mapping rule sets are stored in a TemplateSkill object: one for the parametrization of MotionNetTemplateStates
referring to the set R2.1 and one for the parametrization of MotionNetTemplateTriggers referring to the set R2.2.
Both are implemented as a key-value pair list linking a template state or trigger to a mapping rule of type Mo-
tionNetStateMappingRule or MotionNetTriggerMappingRule. Furthermore, the TPNodeTemplate of the trajectory
node used for the parametrization is stored in each list entry.

MotionNetStateMappingRules are implemented as C# delegates that use the MotionNetState to be parametrized
and the TPNode from which the parameters are derived as arguments. The rules define which MotionState of
a TPNode is used to set the control values of a MotionNetState. A MotionState is the implementation of a 12-
dimensional pose-wrench state (see Section 11.3.2).

MotionNetTriggerMappingRules are implemented as C# delegates that use the MotionNetTrigger to be
parametrized and the TPNode from which the parameters are derived as arguments. The rules define which
entries of which MotionState of a TPNode are used to create the transition condition of the motion net trigger.
Furthermore, the condition type is set during the mapping, which refers to setting the operator (>,<,=,. . .) of the
transition condition’s comparison function as described in Section 7.3.1.

Beside the described data, an instance of TemplateSkill can store a list of parametrizations of the represented skill
template. TemplateSkill instances themselves can be stored in the SkillLibrary class. To define a TemplateSkill in
the library, the data described above has to be set, including the metadata in the Skill class.

11.3.2 Parametrized Skill Representation

A parametrized skill is represented by the class ParametrizedSkill, which is inherited from a general Skill class.
The ParametrizedSkill class contains the following data that refers to the trajectory and motion net concepts
presented in Chapters 7.2 and 7.3.

Trajectory

The pose-wrench trajectory is represented by the Trajectory class. In this class, a sequence of trajectory nodes,
each represented by the class TPNode, is stored.

A TPNode refers to a trajectory node Ni as described in Section 7.2.2. Each TPNode is defined by an initial and
a final pose-wrench trajectory state, both of which are represented by the MotionState class.

The MotionState class refers to trajectory state Si as defined in Section 7.2.2 and represents a state in pose-wrench
space as 12-dimensional vector. A second 12-dimensional vector is included to specify a tolerance value for
each dimension. Furthermore, a Boolean array with 12 entries is specified that defines the relevant subset for the
evaluation of the MotionState. A MotionState contains several functions to compare it to other MotionStates.

An interpolation rule for 12-dimensional vectors defined by the Interpolation12D class is included to retrieve
states between the initial and final MotionState. To use the interpolation with a given motion state as input, an
index has to specified that defines which of the 12 dimensions of the given state is used as an interpolation point.
This index is stored as an integer in the TPNode. It is calculated as the index of the absolute maximum difference
of the initial and final MotionStates of the TPNode.

An additional MotionState can be specified in a node to define a condition for an interruption that can occur during
the motion represented by the TPNode.

It has to be noted that for the storage of a trajectory in a ParametrizedSkill, the trajectory is split into its TPNodes
which are stored individually in the motion net states they refer to represented by the class MotionNetState.

84

Motion Net
The motion net described here implements the elements defined in Section 7.3.1. Its functionality is encapsulated
in the MotionNetFSM class. This class implements a Finite State Machine (FSM) by using the Stateless1 library.
Stateless is a lightweight C# library that allows the definition of FSMs in C# using a simple syntax. The simplicity
and the good performance of this library were the main reason to choose it among the wide variety of FSM
libraries. Like any FSM, it models a behavior as transitions between a finite set of states. Custom data types can be
used to define states and transitions. In the motion net specified here, states are represented by the MotionNetState
class and transitions are represented by the MotionNetTrigger class.
A MotionNetState contains the same data represented in a MotionNetTemplateState, which is a state type and a
robot command type, to describe the kind of motion the state represents. Furthermore, ControlValues are included
to control the motion represented by the state. A part of the skill’s trajectory in the form of a TPNode is included
to supervise the motion. ControlValues contain all necessary information for the controller to carry out a robot
motion. The main part of this information are six control values, each referring to a spatial dimension of a
reference frame. Each control value is specified as a tuple consisting of a numeric value and a control mode.
The control mode is defined as an enumeration type and can, for example, be "force" or "position" (even though
the currently employed controller only has position control available). This definition is consistent with the Task
Frame Formalism (see Section 3.2.1). Furthermore, the reference frame the control values refer to is stored as a
matrix. A MechanicalUnit descriptor specifies which arm of the dual-arm robot performs the motion.
Beside the data from the MotionNetTemplateTrigger, a MotionNetTrigger contains a list of TransitionConditions
that have to be met before a transition fires. TransitionConditions consist of a condition represented as a Motion-
State, and a condition type defined by an enumeration type. The condition type refers to the comparison operator
2 ∈ {≤,≥,=,<,>} as defined in Section 7.3.1.

To be available for execution, parametrized skills are themselves stored in an FSM called the "Skill Net". The
structure of this FSM is much simpler than the structure of the motion net, as it contains the skills in a strictly se-
quential order. For the implementation, the Stateless library was employed as well. The net of skills is represented
in the SkillNet class. The states in the skill net represented by the class SkillNetState each contain a parametrized
skill. The transitions specified by the class SkillNetTrigger do not contain any conditions but are fired if the final
motion state of the skill represented by the transition’s initial state is reached.

11.3.3 Skill Selection

The functionality to select skill templates from the skill library is located in the class SkillSelection. During the
selection process, a list of skill templates for each task is created. Necessary inputs for the skill selection are
the library containing the skill templates and the list of assembly tasks created during the assembly tree reading
process. To generate a list of skill templates, the selectSkills() function is called for each task in the input task list.
In this function, three consecutive steps are performed, which are described in the following.

Step 1 - Search Skills by Activity For each AssemblyAction contained in an AssemblyTreeTask given as input, all
TemplateSkills with fitting activities are selected. If more than one activity is specified in a TemplateSkill,
it has to be checked if the succeeding AssemblyActions of the currently processed task also fit to the skill’s
activities. If the actions fit, the skill can be used for a sequence of AssemblyActions instead of a single one.
The result of this step is a list of suitable TemplateSkills for each AssemblyAction of an AssemblyTreeTask.

Step 2 - Check Robot Capabilities In this step the list resulting from the previous step is filtered with respect to
the capabilities of the currently employed robotic system. For each skill in the list of suitable TemplateSkills
it is checked if the necessary tools and sensors defined in the TemplateSkill match the tools and sensors of
the current robotic system. If the values do not match, the TemplateSkill is deleted from the list. The tools
and sensors of the current system are stored in the RobotRepresentation class.

1 http://code.google.com/p/stateless/

85

Step 3 - User Input In the last step of this process, a TemplateSkill has to be selected from the list of suitable
TemplateSkills generated in Steps 1 and 2. If only one skill is contained in the list for a certain Assembly-
Action, this selection can be skipped. If more than one skill is contained, the selection is performed manually
by the user. For this purpose, a GUI is employed that allows the selection of a TemplateSkill for each
AssemblyAction from a drop-down menu.

The result of these steps is a list of TemplateSkills linked to one or many AssemblyActions. This list is used in the
Skill Parametrization process to parametrize the TemplateSkills according to the AssemblyActions.

11.3.4 Skill Parametrization

From the list of TemplateSkills acquired by the skill selection, a list of ParametrizedSkills is generated. For each
TemplateSkill in the list, a new instance of the ParametrizedSkill is created with data from the AssemblyAction the
template is linked to. During this parametrization, first the trajectory is created and afterwards the motion net is
created based on the trajectory. These two basic steps are described in the following.

Trajectory Creation
To create the trajectory, a trajectory node represented by the TPNode class is created for each TPNodeTemplate
stored in the TrajectoryPattern of the TemplateSkill. For the creation of a TPNode, the mapping described in
11.3.1 is employed. To do so, the delegate representing a TrajectoryNodeMappingRule is invoked using the
AssemblyAction linked to the TemplateSkill as argument. Each mapping rule specifies, which target of the action
is mapped to which MotionState of a TPNode.

Motion Net Creation
To create the motion net, MotionNetStates and MotionNetTriggers are created from the MotionNetTemplateStates
and MotionNetTemplateTriggers stored in the MotionNetTemplate of the TemplateSkill. The MotionNetStateMap-
pingRules and MotionNetStateMappingRules described in Section 11.3.1 are invoked for each state and trigger
using the TPNode that is stored in the template with the mapping rule and the template state or trigger.

The result of the above described process is a list of ParametrizedSkills. Before the parametrization is finished,
one additional step is necessary: As the final position of a motion represented by a skill in the list might not
coincide with the initial position of the motion represented by the skill’s successor, transfer motions have to be
created.
To create these motions, a transfer AssemblyAction is created. The final position of the first skill and the ini-
tial position of the second skill are used as Targets in this action. This action is then used to parametrize the
"Transfer" TemplateSkill from the skill library. The newly created transfer skill is inserted at a position in the
ParametrizedSkill list in between the two skills involved in the transfer.
A modification of the process described above is the manual parametrization of a TemplateSkill. If a skill is
parametrized manually, the source data stored in the AssemblyAction used to parametrize the skill is altered by
user input. This approach was used to keep the changes in the process at a minimum. An assembly tree is still
necessary to select skills. To trigger the manual parametrization of the skill, the according Action node in the
assembly tree XML is tagged as "manual". If this tag is set, the parameters defined in the respective action are
overwritten in the internal representation of the AssemblyAction. The manual parameters that are used are acquired
from an input mask stored with the TemplateSkill. These input masks are, for example, capable of acquiring targets
from the current robot arm position or via written input. This way, a manual teaching process can be employed to
parametrize a skill. It is also possible to set a subset of parameters manually while acquiring the rest of the data
from the assembly tree.

After the list of ParametrizedSkills is created, it is converted to a SkillNet FSM described in Section 11.3.2. This
can easily be done by creating a SkillNetStates for each skill and a SkillNetTransition leading from the current
state to the next state. The initial and final state in the skill net are empty dummy states.

86

11.4 Motion Execution

This section describes the program execution during the actual robot motion execution, i.e. the execution of the
RAPID program on the robot controller. The next sub-section describes the execution of the rapid program itself,
while the following sub-sections describe the workflow in the PC application. The latter is mainly based on events
and is visualized in Figure 11.4.4.

11.4.1 RAPID Robot Control Code

To control the ABB dual-arm concept robot described in Section 9.1, a program written in the ABB RAPID
programming language is stored on the IRC5 robot controller.
In RAPID, a program is arranged in several tasks that represent sub-programs that are executed in parallel on
the controller in different threads. Tasks can represent robot motions or different other kinds of operations (e.g.
communication or output operations). While tasks are executed independently of each other by default, they can
be synchronized by adding "sync" commands to their code. Each task can consist of several modules containing
the source code of the robot application as procedures and variables.
The robot program implemented here has two main purposes: carrying out robot commands generated by the main
application and providing input data for the calculation of the current motion state of the robot by the contact force
estimation module. Additionally, a collision detection is implemented to prevent damage to the robot during the
motion execution. The functionality is distributed over four RAPID tasks, which are described in the following:

Signal Acquisition Task
The main purpose of the signal acquisition task is the reading of the joint angles and joint torques of the robot
arms. The read values are sent to the PC application via the communication interface (see Section 11.4.2) and are
used as input data for the contact force estimation. After the task’s initialization, a loop starts which continuously
performs the following steps:

Step 1 - Read Joint Angles The current joint angles of both robot arms can directly be acquired in RAPID by
using the CJointT() command. In addition to the current angles, the previously read angles and the time
passed since the last reading are stored for numerical speed calculation.

Step 2 - Read Joint Speeds As the joint torques have to be compensated for friction to be used in the contact
force estimation (see Section 10.3.1), the angular joint speeds are necessary to calculate the viscous friction
torques. They are acquired by numerical differentiation from the joint angles. To do so, the difference
between the current angles and the previous angles is calculated and divided by the stored time difference.
Optionally, a moving average filter can be employed for a smoother speed signal.

Step 3 - Read Joint Torques As described in Section 10.3.1, the joint torques derived from external forces acting
on the robot arm are necessary for contact force estimation. These torque values can be acquired from the
joint servos by employing the TestSignal interface in RAPID. This interface allows the definition and reading
of several signals for each robot joint. To get the torques referring to the external forces, the difference
between the signal representing the total motor torque and the signal representing the dynamic and gravity
effects is calculated for each joint. Both of these signals are available from the TestSignal interface. The
calculated torques are compensated for friction by calculating the friction torques as described in Section
10.3.2. To do so, the read joint speeds and predefined friction coefficients are used. The friction coefficients
are acquired by calibration measurements (see Section 10.3.2). A drawback of the TestSignal interface is
that it can only handle 12 signals at a time. As four signals are necessary for the collision detection, only
eight signals remain to be used for contact force estimation. Consequently, the contact force estimation can
only be performed using torques from four joints per arm (as two signals are necessary per joint). The joints
with the lowest absolute joint values were omitted in the calculation.

87

Step 4 - Send Values to PC To send the acquired values to the PC application, a Remote Message Queue is used.
This queue is created on the robot controller. At the end of each cycle, the read values are stored in the
queue as Remote Messages. The queue can be accessed from the PC application as described in Section
11.4.2.

The loop takes about 15 ms for one execution cycle of these four steps.

Motion Tasks
The robot motions are controlled by two separate tasks: T_ROB1 and T_ROB2. These two tasks have an identical
structure and are each responsible for the execution of the motions of one of the robot’s arms.
Several variables are defined in a motion task that represent necessary input data for a motion to be executed.
These variables are set externally from the PC application via the communication interface (see Section 11.4.2).
The following variables are used for the motion execution:

• The motionType describes the type of motion command that has to be executed.

• The currentGoalPosition describes the motion goal of a linear motion command.

• The currentOffset describes the motion goal of an offset motion command.

• The currentWobjdata describes the reference frame for the motion command (frames are defined as
"Workobjects" in RAPID). The default value for this variable is the world coordinate system of the
workspace.

• The speedLevel defines the speed to be used in the motion command (the speed is selected from several
predefined speed values according to the level).

• The collisionTorque defines the collision threshold value that is used for collision detection during the
motion command.

The key feature of a motion task is a TRAP function, which reacts to new motion input data from the PC appli-
cation. A TRAP function is the RAPID equivalent to an event listener function. The TRAP serverDataReceived
specified here is called when new data from the PC application arrives, which is indicated by a Boolean variable.
The function’s main purpose is the selection of a motion routine according to the specified motionType which is
then executed by using the other input variables.
The motion routines represent the most common robot actions that can be executed in RAPID in a generic form.
In the following, the implemented routines are described:

idleState: No motion is executed and the robot awaits the arrival of new server data. This is the default motion
routine the motion task enters upon initialization.

linearMotion: The robot arm moves to a specified position on a straight line.

homeMotion: The robot arm moves to its home position.

openGripper: The gripper employed on the robot arm opens.

closeGripper: The gripper employed on the robot arm closes.

toolOffsetMotion: The robot arm moves to a position specified by a linear and angular offset to the current posi-
tion. The offset is defined in the tool coordinate system.

offsetMotion: The robot arm moves to a position specified by a linear offset to the current position. The offset is
defined in the current coordinate system.

collisionOffsetMotion: Like offsetMotion but with collision supervision during the motion

88

In addition to the motion functionality, the motion tasks contain a module that is responsible for the definition
of the signals used for the signal acquisition and collision detection. They are defined in these tasks because the
arrival of new server data is handled here and signal definitions may have to be changed when such an event
occurs.

Collision Detection Task
Collision detection is implicitly included in the proposed manipulation skill concept. A main purpose of the
supervision of the current robot state in pose-wrench space during the execution of a skill is the detection of
collisions with the environment. When a collision is detected, appropriate interruption motions defined in the
motion net of a skill can be triggered. In the implemented system the communication and data processing time
delay is too high to use this data directly for collision detection. If a collision is not handled immediately, the robot
controller’s inherent motion supervision shuts down the system. This motion supervision can be deactivated, but
this is not recommended. A motion without immediate motion supervision can easily cause damage to the system
or the workpieces. Consequently, a workaround is necessary.
The problem is solved by implementing a "first-aid" collision detection, which triggers a small retraction motion
if a critical contact situation is detected. This motion moves the robot to a position that is uncritical regarding
the contact forces. The robot remains at this safe position until it receives the next motion command, which is
selected based on the estimated contact forces after a delay.
To enable immediate detection of a collision, this detection is based on joint torques that do not need to be
processed any further instead of estimated contact forces. Specialized collision detection torques are directly
available from the TestSignal interface. These torques represent absolute normalized values of external torques. It
has proved sufficient for robust collision detection to supervise these torques on four joints per robot arm. When
such a torque exceeds a certain threshold value (which can be defined for each motion by the variable collision-
Torque as decribed above), the current motion is stopped immediately and the retraction motion is initiated. This
motion is defined as a motion along the planned motion path in reverse direction.

89

11.4.2 Communication Between Robot and PC

To supervise the state of the robot on the one hand and to send new execution commands to it on the other hand, a
communication interface between the PC application and the robot control program located on the IRC5 controller
is necessary. The communication is established by using the controllers PC Interface. This interface is designed to
enable the controller to communicate with custom PC-based applications via an ethernet connection. To access the
interface from the PC side, the PC SDK can be used, which is available with ABB RobotStudio. The PC SDK is a
toolkit to develop custom PC applications that can access the IRC5 controller without employing external software.
To use the SDK, the C# libraries ABB.Robotics.dll and ABB.Robotics.Controllers.dll have to be included in the
software project. All functionalities that access the SDK for communication purposes are encapsulated in the
FRIDARobotConnectorPCI class. To use the class, firstly a Controller object has to be initialized. This is done
by scanning the network for available controllers, creating a Controller object from the first controller found, and
logging on to this controller. After the Controller object has been created, it is used to send and receive robot data,
which is described in the following.

Receiving Robot Data
To calculate the current state of the robot in pose-wrench space in the Contact Force Estimation module, its joint
angles and joint torques have to be received from the robot as input values. These values have to be acquired
continuously with a high frequency to enable a reliable supervision of the robot’s state. The best performance
was achieved by using the Messaging domain of the PC SDK. Alternative approaches, like the direct access to
RAPID variables, significantly slow down the performance of the robot if they are used at a high frequency. The
Messaging domain enables a message exchange between the PC and the controller by using a queue on each
side. The first queue is located on the robot controller. A task in the RAPID program is continuously reading the
required data, stores it as messages, and enqueues the messages in the message queue (see Section 11.4.1). The
PC application accesses this queue, retrieves its content and stores the received messages in a second queue on
the PC side. From this second queue, the data is successively processed by the Contact Force Estimation module.
With this technique, which is visualized in Figure 11.3, it is possible to avoid data loss due to a communication
and data processing delay. It has to be noted that the queue on the controller side can overflow and cause execution
errors if the PC application is not running.

Sending Robot Data
To execute new motion commands, the values of the necessary variables to execute the command as well as
command identifier and trigger signal are sent to the robot (see Section 11.4.1). Sending data is not as critical to
performance as receiving it, because it is performed infrequently with great time gaps in between compared to the
receiving process. Hence, direct access to the RAPID variables can be used which is the easiest way to manipulate
the data of the robot. To manipulate a variable, the variable is firstly acquired from the robot controller by the
getRapidData() function from the Rapid domain of the PC SDK. If its value has to be changed, write access to
the variable has to be acquired by requesting controller mastership. The value can then be set to any data derived
from the IRapidData interface of the PC SDK, which is used to represent RAPID data types. After all necessary
variables have been set, mastership needs to be disposed again.

Figure 11.3: Schematic overview of how robot data is received by the main application

90

11.4.3 Contact Force Estimation and Robot Representation

This section describes how the current robot state in pose-wrench space is calculated, stored and passed to other
program parts based on the input data from the RAPID robot control program. The workflow described here refers
to the part of the workflow shown in Figure 11.4.4 marked by the upper curly bracket.
To calculate the current robot state, joint angles and joint torques are continuously read from the input data queue
of the PC application as described in 11.4.2. Beside angles and torques, supervision data for the robot’s tools are
included in the input data. Each package of input data is stored in the ReceivedData class. When the data in this
class is updated, the ReceivedDataUpdated event is fired. If the tool supervision data indicates that one of the
robot’s tools is finished, corresponding tool events are fired. These tool action events can directly be processed on
the motion evaluation level.
The RobotRepresentation class, which is an internal representation of the employed robotic system, has a listener
function that reacts to the ReceivedDataUpdated event. When this listener function is called, the joint angle and
joint torque data of the robot representation is updated. Furthermore, the calculation of the contact force based on
these values is initiated.
The contact force estimation is encapsulated in the class ContactForceEstimation, which implements the concept
described in Chapter 10. To use this class, it has to be initialized with a set of parameters containing the weighting
matrices Re and RF , which are calculated by an offline optimization (see Section 10.3.3).
To estimate the contact forces, the following steps have to be performed during runtime:

1. Calculation of the robot’s forward kinematics from the joint angles and the DH-parameters stored with the
RobotRepresentation

2. Calculation of the robot’s Jacobian from the forward kinematics

3. Estimation of the contact force by using the Jacobian, the weighting matrices and the input joint torques in
Equation 10.9

It has to be noted that the input torques are already compensated for friction, as the friction torque is calculated on
the RAPID level.
The calculated contact force is stored in the RobotRepresentation class. Each time these calculations have been
performed, the RobotRepresentationUpdate event is fired, which is processed on the motion evaluation level.

11.4.4 Motion Evaluation and Robot Command Execution

The motion evaluation is a crucial part of the PC application, as it supervises the current motion state of the
robot, compares it to the desired motion state and triggers transitions in the motion net if necessary. A change
of the motion net state leads to the execution of robot motions. This functionality is encapsulated in the class
MotionEvaluation. It is visualized by the lower part of Figure 11.4.4.
The evaluation is event-driven. Four different events can start an evaluation:

• The skill net enters a new state (event: FSMSkillStateUpdated).

• The motion net enters a new state (event: FSMMotionStateUpdated).

• The current robot state changes (event: RobotRepresentationUpdate).

• A tool action is finished (event: toolActionFinishedEvent).

These four cases are described in the following.

91

New Skill Net State
When the skill net enters a new state, this is indicated by the FSMSkillStateUpdated event. The event denotes the
start of the execution of a new skill.
If such an event occurs, the evaluateSkillNetState() function is called by a referring listener function. This function
evaluates the type of the skill net state. A SkillNetState only contains a ParametrizedSkill, if it is not the initial or
the final state in the skill net. If this is not the case, the new skill is initialized for evaluation by the initializeSkill-
State() function. This function mainly registers the motion net contained in the ParametrizedSkill for evaluation
and calls the updateMotionNetState() function.

New Motion Net State
The updateMotionNetState() function is also called when the FSMMotionStateUpdated indicates that the current
skill’s motion net enters a new state. The evaluateMotionNetState() function is called, which evaluates the type of
the motion net state. If it is "success" or "failure", the currently active transitions in the motion net are evaluated
directly without previous motion state comparison. If the state is "final", a transition in the skill net is fired
and the next skill is activated. If the motion net state type is "motion" or "tool action", the event listeners for
RobotRepresentationUpdate and toolActionFinishedEvent are initialized.

New Robot State
A RobotRepresentationUpdate indicates that the calculation of a new robot motion state is finished as described
in 11.4.3. Each time a new robot state occurs, it has to be evaluated and compared to the desired robot state. This
evaluation refers to the concept decribed in Section 7.2.4.
To do so, the updated robot state is stored in an internal representation in the MotionEvaluation class and an
internal event named currentStateUpdated is fired. This event causes the execution of the compareMotionStates
function. Before the desired and the current motion state can be compared, it has to be checked whether the current
motion net state is of type "motion". If the type of the motion net state is different, the active transitions in the
motion net can directly be evaluated.
If the type is "motion", it is checked if the current state lies within the tolerance region of the desired state. Both
states are represented by an instance of the MotionState class. In case the current state is outside the allowed
region, the currently active transitions are evaluated with respect to the current state.
The transitions are evaluated in the function evaluateTransitions(). Essentially, this process is equal to the com-
parison of motion states, as a transition condition is also represented by a MotionState. Contrary to the former
process, different operators except "equals" can be used.
If all conditions of a transition are evaluated to be true, the referring condition in the motion net fires. A new state
in motion net is entered. Upon entering, a robot command referring to the command type and the control values
stored in the state is executed.
To execute a robot command, the RobotCommandExecution class is used. For each robot command defined on
the RAPID level, an equivalent representation is stored in the RobotCommandExecution class. This representation
consists of a list of RAPID variables that have to be changed to execute the motion. These variables are set to
the values from the ControlValues stored in the motion net state. These command specifications are sent to the
RAPID program by the sendRapidData() function of the RobotConnection class.

Tool Action Finished
If the toolActionFinishedEvent indicates the end of a tool action, the transitions in the motion net can be evaluated
directly as a "tool action" state does not contain motion that has to be supervised.

92

�����������
�	��
����������
���

�
��������������� �
���������������
���������
��	��
��
�������������
���������������� ���

�����
�� �����!���

��
��
�"�����
��"�##��

����������	�

$%&��
��	��
�'�
����
�	��
�&�	�
��
��� �������
�(��)�
�����*��������

����
��	�����
�
���	��
�
�	��
�%�����
+
�
�

�
�
	�������	�	�
�

�������
�%��
��
 ������

�
�	��	�
����	���	�
�

������
+
�
��	��
��
��)	���,�
��+
�
��

,�
��-�
+
�
��".	��
������
�%�����
,�
��+
�
���

������
+
�
��/�������+
�
��

,�
��
������
�"����
����� !���

���

"����
���0�"����

 +,+1��+
�
��	��
��

�������	

�	��
�+1��-�
+
�
�
������
�+1��-�
+
�
���

�
	�
�������	�
�

+1��+
�
��".	��

&�
��

���

�
��2�+1��+
�
���
�	��
�,�
��-�
+
�
���

���+1��-�
"����
����

������
�,�
��-�
+
�
��� ,�
��-�
+
�
��".	��

!��� +������3 ����� ���

���,�
��-�
"����
����
���

 +,,�
��+
�
��	��
���
	�
���	
�
��2�!���
���!���

 ���

�����

�
�
	�
����	�
� ����	�����	����	��������	�
��

�
�
	�
����������	�
� �
�
	�
����	�
��4���
�����
%�))����� ������	���
���

�
�
�
��
��
��
�
	�

��
��
�

�
�
�
�
��
�
�
��
�
�
�
��
�

�
	

�

�
��
�
�
�

�
�
�
�
�
��
�
�
��
�
�
�
�
��
�
�
��
�

��

�
�
�

Figure 11.4: The program workflow during the execution of robot motions. This includes the acquisition and evalua-
tion of the current robot state as well as the coordination and execution of the robot’s motions.

93

12 Results

In this chapter, the results obtained from using the implemented concept in an example application are presented.
The first section describes the performance of an example assembly sequence, while the second section compares
the manual parametrization of a skill template to traditional robot teaching.

12.1 Performance of an Example Assembly Application

This section describes how the example assembly application described in Section 9.3 can be performed by using
a set of implemented skill primitives.

12.1.1 Reference Frames and Robot Setup for the Assembly

To perform the example assembly, both arms of the ABB dual-arm concept robot presented in Section 9.1 with 7
degrees of freedom each are used. The right arm is denoted as "Arm 1", while the left arm is denoted as "Arm 2".
Both arms can be modeled by the same set of DH parameters as they are identical. Each arm is equipped with an
open/close gripper as a tool, which is sufficient for all tasks in this assembly sequence. To allow the grasping of
differently sized parts, two different clamps are employed on the gripper, which can be seen in Figure 12.1.
Even though the concept as well as the implemented system can handle the use of a different Task Frame for
the execution of each parametrized skill, it was sufficient to use one task frame for the execution of the whole
assembly. As the motions are controlled by position control in the present implementation, the choice of the task
frame is not very critical. All motions in the assembly sequence are coordinated as motions of the tool frames T1
and T2, which are located at the wrist of each arm’s tool, relative to the task frame TF located at the base of the
robot. The kinematic chain between TF and T1 and T2 describing the robot’s forward kinematics is used to cal-
culate Cartesian task frame motions from joint angles. The chain is available from the total transformation matrix
between task frame and tool frames. This matrix can be obtained from the arm’s DH parameters. Furthermore, a
"mounting matrix" has to be considered describing the arm’s mount position with respect to the task frame. Figure
12.1 shows the frame locations of TF, T1, and T2 at the robot.

Figure 12.1: Locations of the task frame TF and the tool frames T1 and T2 in the robot workspace

94

12.1.2 Used Skills in the Assembly Sequence

The overall ABB PLC I/O Module assembly sequence described in Section 9.3 was performed using a set of skills
implemented in the skill library. Beside the skills Insert and Snapfit described in Sections 8.1 and 8.2, the simple
position-based skills PickUp, Place, and Transfer were used in the sequence (see Appendix C).
Table 12.1 shows an overview of the assembly application described in Chapter 9.3 divided into Tasks and Actions.
This refers to the way a task is described in an assembly tree as presented in Section 6.3. An action is described
by its activity as well as the robot arm and the TCP speed it is performed with. For each action, the skill template
as well as the index of its parametrization used for the execution of the action is listed. Furthermore, the execution
time of each step is presented. The total execution time of the assembly sequence is two minutes, which is slower
than the execution of the sequence by a standard position-based RAPID program. The reason for the increase
in execution time is the delay caused by the evaluation of transition conditions between the motions. The total
execution time includes transfer times for transfers between the various skills.

Task
Action

Skill Template Nr. Time Step
Activity Arm Speed

Provide Housing

PickUp 2 100 mm/s PickUp 1 3 s 1

Transfer 2 400 mm/s Transfer 1 3 s 2

Place 2 100 mm/s Place 1 3 s 3

Insert PCB1
PickUp 1 100 mm/s PickUp 2 3 s 4

Insert 1 50 mm/s Insert 1 5 s 5

Insert PCB2
PickUp 1 100 mm/s PickUp 3 4 s 6

Insert 1 50 mm/s Insert 2 5 s 7

Insert PCB3
PickUp 1 100 mm/s PickUp 4 4 s 8

Insert 1 50 mm/s Insert 3 6 s 9

Install Light Guide
PickUp 2 100 mm/s PickUp 5 3 s 10

Place 2 100 mm/s Place 2 2 s 11

Install Light Guide Cover

PickUp 2 100 mm/s PickUp 6 2 s 12

Transfer 2 400 mm/s Transfer 2 2 s 13

Place 2 100 mm/s Place 3 3 s 14

Snap 1 50 mm/s Snapfit 1 4 s 15

Snap 1 50 mm/s Snapfit 2 4 s 16

Install Cover

PickUp 1 100 mm/s PickUp 7 6 s 17

Transfer 1 100 mm/s Transfer 3 5 s 18

Place 1 100 mm/s Place 4 4 s 19

Snap 1 50 mm/s Snapfit 3 7 s 20

Table 12.1: Skills used in the execution of the ABB PLC I/O Module assembly sequence described in Section 9.3

95

12.1.3 Performance of the Insert Skill

The Insert skill is used for the assembly steps 5, 7, and 9 described in Table 12.1. These steps represent the
insertion of the PCBs into the housing. To perform the insertions, the PCBs are grasped at their center by the
small clamp of the tool and moved into a slot in the housing in z-direction.
The skill template of Insert is implemented according to its description presented in Chapter 8.1. Although
the general structure coincides with the presented template, some adjustments were made to account for the
challenging geometry in the assembly setup.

Figure 12.2: PCB Insertion Geometry

The clearance in y-direction between the PCB and the
housing is very small (1 mm on either side of the
PCB). As Figure 12.2 shows, even a small tilt angle
θ about the x-axis leads to wall contact and resulting
contact forces in z and y-direction, Fz and Fy . As a
small tilt is always present, also a contact situation at
the ground of the hole leads to an additional contact
force Fy and not only in Fz as presented in Chapter
8.1.
Insertion experiments showed that it is more conve-
nient to use Fy for the coordination of the insert mo-
tion instead of Fz as presented in Section 8.1. As the
part moves in z, the magnitude of Fz during an uncon-
strained motion is higher than the one of Fy , due to
friction and dynamic effects. The compensation of these parts of the total force is only implemented in a basic
version, so a certain amount of friction and dynamic forces is still present in the signal. In contrast, forces in
y-direction are relatively small during a motion in z-direction. Consequently, it is easier to identify peaks in the
force profile of Fy to distinguish contact situations from unconstrained motions. The force profile in y-direction
during the consecutive performance of the parametrizations 1,2, and 3 of the insert skill is presented in Figure
12.3.
The execution process of an insertion can be described as follows:

• After the initial position of the insertion, described by the Precondition, is reached, a motion in z-direction
is started. The motion is specified by an offset. It is not necessary to define this offset precisely, but it needs
to be big enough that the bottom of the hole can be reached.

• If a contact force Fy larger than a force threshold Fcri t,success is detected (see Figure 12.3), the Completion
Criterion is fulfilled. After completion, the gripper opens and retracts. This mostly happens due to wall
contact and not due to ground contact. It is not problematic if the gripper opens in advance to the ground
contact, as the PCB falls into place due to the guidance provided by the hole.

• To evaluate the Quality Criteria of the skill performance, it is checked if the force is lower than a force
threshold Fcri t, f ailure. If it is larger, the execution failed, otherwise it was successful. The idea behind this
definition is to account for jamming situations (see Section 8.1). If Fy exceeds Fcri t, f ailure, it is very likely
that jamming occurred. In this case the PCB will not fall into place after opening the gripper, but is jammed
between the walls of the housing.

• The same condition that describes the quality can be used as an Interrupt Condition during the insertion. If
Fcri t, f ailure is exceeded during insertion, a motion to handle the interruption can be triggered. As different
interruption motions are imaginable, like for example a reorientation of the PCB or a retry with reduced
speed, a simple retry was implemented. The PCB is moved back to the initial position of the insertion and
the insertion motion is executed again.

The following values were determined for the force thresholds: Fcri t,success = 0.8N , Fcri t, f ailure = 1.0N . It has
to be noted that these values might differ from the actual acting forces as they represent estimated values.

96

500 1000 1500 2000 2500

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Contact Force in Y−Direction

F
y [N

]

Measurement Point [−]

Measured Force F
y

F
crit,success

F
crit,failure

Figure 12.3: MATLAB plot of the estimated force in y-direction during the execution of the Insert skills 1, 2, and 3.
The force was recorded at a frequency of 40 Hz. The shown force values might differ from the actual
acting force as they are estimated forces based on the presented contact force estimation scheme (see
Section 10).

12.1.4 Performance of the Snapfit Skill

The Snapfit skill is used for the assembly steps 15, 16, and 20 described in Table 12.1. These steps represent the
tightening of the light guide cover to the cover plate, as well as the fitting of the cover to the housing. Snaps 1
and 2 are performed by pushing the tip of the gripper onto the snap-fit latches of the light guide cover. Snap 3 is
performed by pushing the cover down with one the robots foam paddings as visualized in Figure 12.4. All motions
are performed in z-direction.

Figure 12.4: Attaching the cover to the housing by execut-
ing Snapfit skill 3

The skill template of Snapfit is implemented accord-
ing to its description presented in Chapter 8.2. As pre-
sented in that chapter, the trajectory of Snapfit can be
simplified to a single force peak if the phase between
the bending of the latch and the final ground contact
is very short. In this case, the total height difference
the latch has to pass during the snap is only 2 mm
for the snaps 1 and 2 and 3 mm for snap 3. It can
be assumed that the simplification is admissible under
these circumstances. As the main motion direction of
the snap-fits is z, the contact force Fz is used to coor-
dinate it. The force profiles for snaps 1, 2, and 3 are
visualized in Figure 12.5.

The execution process of a snap-fit can be described
as follows:

• After the initial position of the insertion, de-
scribed by the Precondition, is reached, a motion in z-direction is started. The motion is specified by
an offset. It is not necessary to define this offset precisely, but it needs to be big enough so that the part to
be snapped is reached.

• If a contact force Fz is detected that is larger than the force threshold Fcri t, f ailure (see Figure 12.5), the
Completion Criterion is fulfilled. After completion, the robot arm retracts. Fcri t, f ailure has to be large
enough to ensure that the latch is bent and passes the guidance.

97

• To evaluate the Quality Criteria of the skill performance, it is checked, if the force is large enough. If
the force is smaller than the force threshold Fcri t,success, it can be assumed that the snap was not performed
successfully. In this case, a retry of the skill can be triggered. Otherwise, the snap is assumed to be
successful and the execution of the next skill can be started.

As it can be seen in Figure 12.5, the trajectories for snaps 1 and 2 differ from the one for snap 3. The different
trends of the curve can be explained by the different material pairings involved in the snap: While in snaps 1 and
2 the plastic gripper meets the plastic light guide cover, in snap 3 the soft foam padding meets the plastic cover as
can be seen in Figure 12.4. This leads to slower increase of the contact force and a smoother curve resulting from
it. On the one hand, the lower magnitude can be explained by the different geometry, as the latches employed in
snap 3 are smaller than the latches in 1 and 2. On the other hand, it has to be taken into account that the contact
force is estimated at the tool frame located at the robot arm’s wrist while the contact in snap 3 is established with
a padding on the arm. Obviously, the force measured at the tool frame has to be smaller than in a direct contact
situation.
For snaps 1 and 2, force thresholds of Fcri t,success = −2.5N and Fcri t, f ailure = −1.0N were used, while for snap
3 thresholds of Fcri t,success = −1.0N and Fcri t, f ailure = −0.5N were used. It has to be noted that these values
might differ from the actual acting forces as they represent estimated values.

3300 3400 3500 3600 3700 3800
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Contact Force in Z−Direction

F
z [N

]

Measurement Point [−]

Measured Force F
z

F
crit,success

F
crit,failure

(a) Snapfits 1 and 2

4550 4600 4650 4700 4750 4800 4850
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1
Contact Force in Z−Direction

F
z [N

]

Measurement Point [−]

Measured Force F
z

F
crit,success

F
crit,failure

(b) Snapfit 3

Figure 12.5: MATLAB plot of the estimated force in z-direction during the execution of different Snapfit skills. The
force was recorded at a frequency of 40 Hz. The shown force values might differ from the actual acting
force as they are estimated forces based on the presented contact force estimation scheme (see Section
10).

98

12.2 Comparison of Manual Skill Parametrization and Robot Teaching

One of the main reasons to use encapsulated skill primitives is to ease the programming of a robot (see for example
Chapter 1.1). In this section, the traditional way to teach a motion procedure to a robot is compared to the manual
parametrization of a skill primitive designed to fulfill a similar motion. For this comparison, the execution of the
snap-fits 1 and 2 (see Table 12.1) were programmed on the ABB dual-arm concept robot (DACR) used in the
scenario described in the previous sections.
Traditionally, the easiest way to teach a motion procedure to an ABB robot is by modifying a sequence of motion
targets predefined in a RAPID program by using programming by demonstration. To do so, the following steps
have to be performed for each target contained in the motion sequence:

• A rough positioning of the arm is done by manually moving it to a position. This can only be done on the
DACR or other small robots, as the arms of traditional industrial robots are usually too heavy to carry them
manually.

• The fine positioning of the arm is done by jogging it to the desired position using the joystick on the
FlexPendant controller input device (see Section 9.2). Before jogging can be used, the motors have to be
switched on and the incremental jogging mode has to be selected to gain a higher precision. Instead of using
jogging, which is very slow, the fine positioning can also be done manually. In most situations this requires
two persons to hold the robot arm to gain a decent precision.

• The position has to be stored in a predefined RAPID variable. Usually the structure of a motion sequence
is programmed in advance by defining a series of motion commands which each use a target variable. The
values of the target variable can be set to the current position of the robot arm in the "Program Editor" mode
on the FlexPendant. This editor is capable of editing the RAPID programs currently stored on the robot
controller. If no target variable to modify is available, a RAPID variable can be created in the editor.

In the case of a snap-fit motion, three targets have to be programmed using the previously described process. The
snap-fit motion is specified by one position in advance to the snap, one position for retraction from the snap and
one position where the actual snap happens. While the former two positions have lower requirements on precision,
the latter has to be set precisely. By the positioning, contact between the robot’s gripper and the latch of the snap-
fit has to be enabled. If the snap position is not set precisely, either the snap does not work because the contact
forces are too small, or the motion supervision of the controller stops the program execution because the contact
forces are too high.
If skill primitives are used, the contact force during the motion is supervised. This fact eliminates the need for
high precision position teaching. To teach a motion sequence by using a skill template, a manual parametrization
process can be employed to parametrize the template. In this process, the assembly tree is used instead of a RAPID
program to define the structure of a motion sequence. Contrary to the automatic parametrization, the parameters
defined in the assembly tree to parametrize a skill template are partially or completely overwritten with manually
set values. It is possible to set a value by moving the robot arm to a desired position and use this position for the
parametrization. Also, values can be set by written input.
For the parametrization of one Snapfit skill template, only two parameters have to be set: The position prior to
the snap and the force threshold denoted as Fcri t,success in the previous section. The position does not have high
precision requirements, so it can be set completely manual without using jogging. It has to be noted that the setting
of the offset is omitted here. As described in Section 12.1.4, its value does not need to be set precisely, it only
has to be large enough to reach the snap position. For the sake of simplicity, the value defined in the assembly
tree was used in the manual parametrization of the Snapfit skill template. Another possibility would have been to
predefine the offset as a very large value in the skill template.
The manual parametrization was evaluated for the installation of the light guide cover. This includes the snaps 1
and 2 specified in Table 12.1. Using traditional teaching, it took 1 min 30 s to teach one snap-fit motion. This
time was reduced to 30 s per snap-fit by employing the manual parametrization of skill templates.

99

Part IV
Summary

100

13 Conclusion

In this thesis, a new Manipulation Skill concept to fulfill robotic assembly tasks was developed, implemented
and used for an example application. To accomplish this, several steps were necessary that are described in the
following.
Firstly, the state-of-the-art of Manipulation Skill concepts was captured and summarized. In Part I, the require-
ments and individual components necessary for a skill concept as well as existing skill approaches were presented.
It was determined that most approaches employ compliant motion specifications like the Task Frame Formalism,
advanced sensor-based control strategies and Finite State Machines to coordinate robot motions.
A new skill representation was proposed, in which skills are stored as reusable templates that can be applied to
new situations by parametrization. The parameters are derived from an assembly specification. Each skill has
two main components: a 12-dimensional trajectory describing compliant motions in pose-wrench space and a
Finite State Machine (FSM) to execute the motions that are derived from this trajectory. As the trajectory is
not explicitly dependent on time, it can represent robot motion independently of time-related parameters like
the robot’s speed. A qualitative node-based concept was proposed to store the trajectory in a generic way. The
motions in the FSM are based on the Task Frame Formalism. While the motions represented by states in the FSM
are position-controlled, the transitions in the FSM can also be based on force measurements.
Skill templates were created and categorized according to the proposed representation. Two of the skill tem-
plates, Insert and Snapfit, were investigated and modeled in detail. Other skills were presented in brief, like the
position-based skills Transfer, PickUp, and Place, which were necessary for the example application. Beside
these templates, which were all implemented in the demonstrator, the two skills Screw and Bayonet Mount, which
were not implemented, were presented in short.
A framework was developed to embed the proposed skill representation in a system that is able to coordinate robot
motions. This includes mapping procedures to map parameters between the assembly specification, the trajectory
representation and the Finite State Machine. Furthermore, interfaces to robot control and sensing as well as to the
assembly specification are included. A main task of the framework is to compare a desired motion state derived
from the skill representation to the current robot state derived from the robot itself. Another task is the execution
of the robot motions defined in the skill representation.
A new assembly specification used as a data source for the parametrization of skill templates was introduced. This
specification is an assembly tree structure which incorporates descriptive information about an assembly as well
as instructions on how to perform an assembly.
The proposed concept was implemented as a demonstrator consisting of an assembly tree XML structure, a C#
application containing the skill representation and framework as well as a robot control program written in the
ABB RAPID programming language to carry out robot commands. By using the RAPID language as an interface
to the robot, the applicability of the system to standard industrial control software was shown.
The implemented demonstrator was used to carry out an example application using an ABB dual-arm concept
robot equipped with an ABB IRC5 robot controller. In the example application, an ABB PLC I/O Module was
assembled using the skills Insert, Snapfit, Transfer, PickUp, and Place. Beside the general applicability of the
concept to such an example application, the ease of use was demonstrated for the Snapfit skill. For this purpose, a
comparison was made between the time it takes to manually parametrize a Snapfit skill (30 s) and the time it takes
to teach an alike motion by only using RAPID (1 m 30 s).
Finally, a novel approach to estimate the robot’s external wrench solely based on motor torques and joint angles
was proposed to circumvent the need for dedicated force/torque sensors. It employs the identification of a simple
friction model as well as the tuning of covariance matrices in a Bayesian approach by means of calibration mea-
surements and the solution of an optimization problem. The results accomplished in this area were published in
[79].

101

14 Discussion

In this chapter, advantages and drawbacks of the different components of the proposed concept are discussed.

Skill Representation And Categorization
The proposed skill representation, especially the 12-dimensional pose-wrench trajectory representation, is a novel
way to describe motions or other robot actions as primitives. Its main advantage is that it is a very general
representation that is well suited to motion supervision. By analyzing the trajectory, complex patterns can be
detected and used to trigger actions. The proposed generalization as a trajectory template allows the use in generic
reusable skill primitives. A trajectory representation is also well-suited to be acquired by demonstration and
refined by learning. The drawback at this point is that the full potential of this representation is currently not used.
The trajectory is currently created manually, like the rest of a skill template. Furthermore, instead of complex
pattern analysis, only thresholds are considered.
Beside the novel trajectory representation, a tool is used in the skill representation that is well known and easily
extendable: The Finite State Machine motion net. By adding this more concrete level to the abstract trajectory
skill representation, the usability of the concept is increased. A drawback is that parameter mappings between the
two representations are necessary.
The motion specification employed in the motion net is based on the Task Frame Formalism (TFF), which allows
a very intuitive specification of motion commands. It is flexible and applicable to a wide variety of assembly tasks
as it supports different control modes (like for example force or position) for different motion directions. The
full potential of the TFF could not be used in the implementation, as the currently employed robot controller only
supports position control. Furthermore, the used contact force estimation scheme is not yet reliable enough to be
used as a reference for force control.
The skill categorization based on the proposed skill representation provides a set of properties by which skills can
be classified. This, together with the list of skills presented in this thesis is a good starting point for future skill
developments.

Assembly Tree Specification
The proposed assembly tree specification contains all necessary information that are necessary to parametrize skill
templates. The concept and its implementation as an XML data structure is kept minimal, easy to understand, and
intuitive. While all necessary data for the present application is included, the approach lacks generality as it was
created based on the requirements of the Manipulation Skill concept. Another drawback is that it has to be created
manually. A systematic approach to create it automatically, for example from CAD data, was out of the scope of
this thesis.
While the results in this area are nicely applicable for the proposed concept, they remain a tailored solution. The
representation and creation of assembly specifications are extensive topics on their own that cannot be solved in a
general way in one thesis alone. The proposed representation is a valuable starting point for further developments
of assembly specifications for skill-based concepts.

Implementation and Example Application
The implementation applies the proposed concept to an example application. All basic properties and functions
of the concept are shown in the example. Only standard industrial robot control software and hardware was used
in the implementation, which shows the applicability of the concept to such resources. The implementation has
to be understood as a demonstrator software, showing the basic functionality of the system and not a complete
software package, which is able to carry out all kinds of robotic tasks. It is, for example, currently tailored to a
specific robotic platform, the ABB dual-arm concept robot, and needs some adaptions before it can be used on
other platforms.

102

The performance of the demonstrator is currently mainly limited by the used communication interface. Because
of the communication delay introduced by this interface, the collision detection workaround described in Section
11.4.1 is necessary and contact forces cannot be used directly for collision detection. Furthermore, the interface
used for the acquisition of the input signals for the contact force estimation has some major drawbacks. Most
importantly, it is limited to the definition of 12 signals at a time. Also, it is very difficult to identify the correct
signals with this interface.
The shown example application demonstrates all important functions, but to demonstrate the full generality of the
concept, a more complex task featuring a wider selection of skills is necessary.
While the implementation is able to demonstrate the basic functionality, there are several program parts where
modifications could increase the performance and generality of the implementation. The performance could easily
be increased if different interfaces for signal acquisition and communication were available.

Contact Force Estimation
The proposed contact force estimation scheme only used motor torques and joint angles to estimate the external
wrench of the robot, which is a novelty in the context of skill. It enabled the use of the proposed concept without
any dedicated force/torque sensor. As the measurements presented in Sections 12 and 10.4 showed, force peaks
can easily be identified. While this qualitative information can be extracted, it cannot be guaranteed that the
quantitative force values are consistent with the real acting forces. The reasons are that there is no guaranteed
information about the scaling of the torque values acquired from the Testsignal interface. As no sensor that could
be used for comparison was available, it could not be verified if the calibration process described in Section 10.3.3
is scaling the estimated forces to the correct magnitudes.
Another drawback is that a new calibration process is currently necessary for each motion type (e.g. vertical and
horizontal motion). This decreases the generality of the approach. Furthermore, the optimization process of the
calibration is currently tailored to the estimation of forces instead of torques (see Appendix B), which means that
the estimated contact torques are currently not useful.
It has to be noted that the employed friction model in the contact force estimation is a very simple one (Coulomb
and viscous friction), which leads to remaining friction disturbances in the force signal.
The obtained results were very useful for this specific project, as force-based motion executions were made pos-
sible without a dedicated force/torque sensor. Before the approach can be used in general, some modifications
to solve the previously described problems are necessary though. The contact force estimation will be further
investigated and refined in a dedicated project in the future.

In summary, the created concept works well for the shown example application and bears great potential for other
more complex applications. It demonstrates how a Manipulation Skill interface, which was build from scratch, can
be used to coordinate different individual components of a robotic manufacturing system. The main drawbacks
of the system are in the various interfaces and individual components and not at skill level. Despite the presented
drawbacks, a strong foundation for future developments was built.

103

15 Outlook

This chapter presents possible extensions to different components of the Manipulation Skill concept. The pre-
sented topics were not considered in this thesis but are potential subjects to future projects.

Automatic Skill Acquisition
A skill template, including the trajectory and motion net representation, in the present concept is created manually.
It would increase the usability drastically, if skill templates could be acquired automatically, for example from
human demonstrations. In [31], a method is proposed to use programming by demonstration for the acquisition
of robotic skill. The presented approach uses human performances of specific tasks to record sets of training data
that are used to learn skills. The data contains the humans motion data. This learning also includes the generation
of a suited control strategy. An alike approach could be employed to create the trajectory representation featured
in the concept presented in this thesis. By recording the object poses and acting contact forces during a human
performance of a task that refers to a specific skill, a specific trajectory can be recorded. If multiple recordings are
created, this data can be used as training data to refine the recorded trajectory by learning approaches. To obtain
a generic template from the recorded trajectory, patterns like peaks or constant sections have to be recognized in
the multiple dimensions of the trajectory. From these patterns, trajectory nodes can be generated. To convert a
recorded trajectory to a motion net, unique mapping rules have to be defined. These rules can possibly also be
acquired by learning based on a set of example trajectory and motion net pairs.

Automatic Assembly Planning
An alternative to the manually created assembly tree representation presented in Section 6.1 is an assembly speci-
fication that can automatically be derived from assembly planning systems. In [50] an approach that automatically
creates assembly plans from CAD data and maps these plans to skill primitives is presented. It uses a relational as-
sembly model to determine feasible assembly tasks. This model includes the assembly components as constructive
solid geometry (CSG) representations but other types of CAD data can also be used. From the relational model,
an assembly sequence is generated by employing an assembly-by-disassembly strategy combined with a cut set
method. Local and global assembly constraints like geometry feasibility or assembly stability are considered in
the sequence generation. The set of all feasible assembly sequences is represented in an AND/OR graph. As there
can be many possible sequences, the best one has to be selected by employing evaluation criteria. Afterwards, the
operations in the AND/OR graph are classified and mapped to robot tasks. The robot tasks are then decomposed
into skill primitives.

Advanced Force Sensing
The contact force estimation scheme presented in Section 10 is a novel way to work with contact forces without
employing a dedicated force sensor. Even though it worked well for the presented example application, it is still
just a basic version that has a lot of potential for further extensions. One possible improvement is the employment
of a more sophisticated friction model as described in [7]. In addition to Coulomb and viscous friction, the Stribeck
effect can be considered in the friction model. Dynamic effects like hysterese can be captured by dynamic friction
models. A friction model that takes all known effects into account is the LuGre friction model. To further improve
the friction identification, an online identification instead of an offline process can be employed.
Another improvement to the contact force estimation scheme would be to increase the quality of the input data.
This can be accomplished by employing a different interface to obtain the input signals. As presented in Section
11.4.1, the employed Testsignal interface can only provide a limited amount of signals and unreliable signal
scaling. Furthermore, the frequency at which forces can be estimated would be increased by providing a faster
communication interface.
To further improve the estimation scheme, it is necessary to provide a force/torque sensor as a baseline to compare
the estimated values to. A sensor could also be used to ease the weighting matrix calibration process described

104

in Section 10.3.3. An optimized way to obtain forces would open new possibilities like using force-controlled
motions.

Advanced Force Analysis
To supervise the robot’s motion during assembly based on the 12-dimensional pose-wrench trajectory, the current
concept only considers the use of threshold values in one or many of the 12 dimensions. A greater flexibility can
be gained by using complex pose-wrench signatures to recognize special events like contacts during the assembly.
In [58], the force signature recorded by a force sensor is used to determine the success or failure of a small part
assembly process. A supervised learning approach using Support Vector Machines (SVM) is employed. Using
this SVM, a classifier is trained that automatically learns the decision rule between success and failure. A set of
signatures of successful and unsuccessful processes is necessary as training data. This approach can be extended
to signatures in multiple dimensions, like for example the 12 dimensions of the pose-wrench trajectory, which
would increase dimensionality of the feature space of the SVM.

Workspace Object Recognition
To parametrize a skill primitive, explicitly defined workspace positions are necessary in the concept presented in
this thesis. The positions are passed to a skill primitive in the parametrization process. An easier way to use skill
primitives would be a parametrization based on objects. This would enable the robot to understand commands like
"PickUp Red Box". To permit the handling of objects like "Red Box" on a robotic platform, an object recognition
and localization scheme as well as suitable sensing hardware is necessary.
Objects can be recognized by identifying features in images obtained from visual sensors. In [6] an approach is
presented where the color and depth image information from an RGB-D camera is used to identify features. The
features itself are obtained by an unsupervised learning approach from raw image training data. An extension
to this passive recognition approach is the introduction of an active recognition scheme. In [10] a scheme is
proposed that links perception directly to action and enables the robot to either move the part or the camera during
the recognition process. The idea behind this approach is to resolve the ambiguity between different 3D objects
that look similar in a 2D projection.
For the spatial localization of objects in the workspace, the depth information used for feature recognition in [6]
can be employed as well. Instead of depth image data, also stereo image data can be used for the localization task
like, for example, employed in [42]. To obtain information about a 3D location of an object from 2-dimensional
images, a triangulation is performed on two images that represent the object captured from different directions.
The intrinsic parameters of the cameras as well as the rigid body transformations between the cameras and the
robot reference frame have to be known to perform the triangulation. The presented approach employs Neural
Network machine learning to acquire the camera parameters and transformations, which eliminates the need for
prior calibration.

105

Appendix

106

A Derivation of the Contact Force Estimation

This appendix describes how the scheme for the estimation of the external wrench f is derived. The disturbances
e and the external wrench f are modeled as random variables, where E [e] = 0, E

�

f
�

= 0 is assumed. While
zero mean is thus assumed for both variables, the covariance matrices are denoted by Var [e] = E

�

e · eT
�

= Re

and Var
�

f
�

= E
�

f · f T
�

= RF , and the variables f and e are assumed to be uncorrelated, i.e. E
�

f · eT
�

= 0,
E
�

e · f T
�

= 0.
To incorporate this knowledge into the estimation of f given τmot, the error between the actual wrench f and
the estimated wrench f̂ as δ = f − f̂ is denoted. The objective then is to find a matrix W minimizing the total
variance of δ resulting from f̂ = W ·τmot. Since the total variance of δ is given by tr

�

Rδ
�

= tr
�

E
�

δ ·δT
��

and δ = f −Wτmot is valid, the above reasoning can be summarized as

minimize
W

tr
�

E
�

δ ·δT
��

s.t. (A.1a)

δ = f −Wτmot. (A.1b)

With Equation 10.6, the error covariance Rδ can be expressed as

Rδ = E
�

�

f −Wτmot

�

·
�

f −Wτmot

�T
�

= E

�

��

I6 −W JT
�

f −We
�

· . . .

·
��

I6 −W JT
�

f −We
�T

�

=
�

I6 −W JT
�

E
�

f · f T
��

I6 −W JT
�T
+ . . .

−
�

I6 −W JT
�

E
�

f · eT
�

W T + . . .

−WE
�

e · f T
��

I6 −W JT
�T
+ . . .

+WE
�

e · eT
�

W T,

(A.2)

where the argument of the Jacobian matrix has been omitted for the sake of notational brevity. Due to the prior
assumptions on f and e, Equation A.2 can be simplified to

Rδ =
�

I6 −W JT
�

RF

�

I6 −W JT
�T
+WReW

T. (A.3)

To analytically solve Equation A.1, the matrix derivative rules (cf. e.g. [56])

∂ tr
�

AXT
�

∂ X
= A, (A.4a)

∂ tr (XA)
∂ X

= AT, (A.4b)

∂ tr
�

XAXT
�

∂ X
= XAT + XA (A.4c)

are employed. They allow the computation of

∂ tr
�

Rδ
�

∂W
= −2RF J + 2W

�

JTRF J +Re

�

. (A.5)

107

Since ∂ tr
�

Rδ
�

/∂W = 0 is a necessary condition for an extremum in Equation A.1, the matrix W is given by

W = RF J
�

JT · RF · J +Re

�−1
. (A.6)

Note that due to the fact that Equation A.1 is a convex problem, ∂ tr
�

Rδ
�

/∂W = 0 is also sufficient.
The optimal solution for the contact force estimation based on τmot and the prior knowledge on f and e is given
by

f̂ = RF J(q) ·
�

JT(q) · RF · J(q) +Re

�−1
·τmot. (A.7)

108

B Remarks on Contact Force Estimation

Remark 1 For the special case of RF = I6, Re = 0, Equation 10.9 reduces to Equation 10.8, since

W = J(q) ·
�

JT(q) · J(q)
�−1
=
�

JT(q)
�+

(B.1)

is obtained. The interpretation of this fact is that the estimation scheme (Equation 10.8) implicitly assumes that
the gravity compensation as well as the dynamic feed-forward compensation and friction estimation are exact,
resulting in Var [e] = 0. Furthermore, Equation 10.8 implies that the variance of all elements in f is the same.

Remark 2 Note, that

RF J(q)
�

JT(q) · RF · J(q) +Re

�−1

=
�

J(q) · R−1
e · JT(q) +R−1

F

�−1
J(q) · R−1

e

(B.2)

can be shown by employing the Woodbury matrix identity (cf. e.g. [56]). Thus, Equation 10.9 is equivalent to the
estimation formula

f̂ =
�

J(q) · R−1
e · JT(q) +R−1

F

�−1
· J(q) · R−1

e τmot (B.3)

proposed in [66] for invertible matrices Re, RF . Note, that Equation 10.9 has the advantage of avoiding inversions
of Re and RF and thus only positive semi-definiteness of the weighting matrices is necessary. Furthermore, it is
emphasized that while the contact force estimation equation is similar, the matrix Re has a different interpretation
in our approach compared to [66]. It does not only describe the covariance of friction torques but of the com-
plete disturbance torque e comprised of errors in the dynamic feed-forward, gravity compensation and friction
compensation.

Remark 3 In many applications, only contact forces (and no torques) have to be estimated. In order to exploit
this in the calibration, the optimization problem (Equation 10.16) can be slightly modified to

minimize
Re ,RF

N
∑

k=1

�

f̂ k − fdef

�T
· M ·

�

f̂ k − fdef

�

s.t. (B.4a)

f̂ k = RF J(q k) ·
�

JT(q k) · RF · J(q k) +Re

�−1
·τk

mot, (B.4b)

τk
mot = τ

k
mot −τ

k
ff −τ

k
grav,comp −τ

k
fric,comp, (B.4c)

τk
fric,comp,i(q̇

k
i) =

¨

c+Coulomb,i + c+visc,i · q̇k
i , q̇k

i > 0,
c−Coulomb,i + c−visc,i · q̇k

i , q̇k
i < 0.

(B.4d)

with an additional matrix M . By choosing M = diag (1,1, 1,0, 0,0), estimated contact torques do not contribute
to the error term in Equation B.4. Thus, the degrees of freedom provided by Re and RF are completely exploited
in the optimization to match the estimated contact forces to the force components of fdef. Note, that for M = I6,
Equation B.4 reduces to the original problem Equation 10.16.

109

C Position-Based Skills Used in the Example Assembly Application

The skills presented in this appendix represent basic position-based motions necessary to fulfill the example as-
sembly application presented in Section 12.1. It has to be noted that these skills are only described by a symbolic
trajectory representation. This representation omits all scalings and dimensions. The vertical axis of the trajectory
represents the wrench dimensions, while the horizontal axis represents the pose dimensions. The shown progres-
sion represents the force/position relationship in the predominating motion direction. Red lines indicate borders
between trajectory nodes.

Transfer

Name Transfer

Category Motion

Description Skill to fulfill tasks where a part
is transfered between two points

on a linear motion path

Trajectory

Motion Net

DOF Supervised : x , y, z, r x , r y, rz Controlled : x , y, z, r x , r y, rz

Precondition Start position reached

Interruptions -

Completion End position reached

Quality End position reached

Resources Tools: none Sensors: position

Skill Dependencies Subskills: none Preceeding Skills: none

Table C.1: Transfer Data Sheet

110

PickUp

Name PickUp

Category Tool Action

Description Skill to fulfill tasks where a part
is picked up by a binary
controlled tool (on/off)

Trajectory

Motion Net

DOF Supervised : z Controlled : z

Precondition Start position reached

Interruptions -

Completion Part in gripper

Quality Part gripped correctly

Resources Tools: none Sensors: position

Skill Dependencies Subskills: none Preceeding Skills: none

Table C.2: PickUp Data Sheet

111

Place

Name Place

Category Tool Action

Description Skill to fulfill tasks where a part
is placed by a binary controlled

tool (on/off)

Trajectory

Motion Net

DOF Supervised : z Controlled : z

Precondition Start position reached

Interruptions -

Completion Part released from gripper

Quality Part placed at correct position

Resources Tools: none Sensors: position

Skill Dependencies Subskills: none Preceeding Skills: none

Table C.3: Place Data Sheet

112

Bibliography

[1] Cantilever hook snapfit. http://www.gotstogo.com/misc/engineering_info/snap_
design_files/image024.gif. Accessed: 2014-04-18.

[2] Remote center of compliance for peg-in-hole assembly. http://commons.wikimedia.org/
wiki/Commons:\Valued_image_candidates/Remote_Center_of_Compliance.
svg. Accessed: 2014-01-10.

[3] A. P. Ambler and R. J. Popplestone. Inferring the positions of bodies from specified spatial relationships.
Artificial Intelligence, 6(2):157–174, 1975.

[4] Y. Bar-Shalom and X.-R. Li. Multitarget-multisensor tracking : Principles and techniques. 1995.

[5] S. Bøgh, O. Nielsen, M. Pedersen, V. Krüger, and O. Madsen. Does your Robot have Skills? VDE Verlag
GMBH, 2012.

[6] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for rgb-d based object recognition. In In Interna-
tional Symposium on Experimental Robotics (ISER), 2012.

[7] B. Bona and M. Indri. Friction compensation in robotics: an overview. In IEEE Conference on Decision and
Control and European Control Conference, pages 4360–4367, Seville, Spain, 2005.

[8] P. R. Bonenberger. The First Snap-Fit Handbook. Carl Hanser Verlag GmbH & Co. KG, 2005.

[9] L. Brignone and M. Howarth. A geometrically validated approach to autonomous robotic assembly. In IROS,
pages 1626–1631. IEEE, 2002.

[10] B. Browatzki, V. Tikhanoff, G. Metta, H. Bulthoff, and C. Wallraven. Active object recognition on a hu-
manoid robot. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 2021–
2028, 2012.

[11] H. Bruyninckx and J. De Schutter. Specification of force-controlled actions in the task frame formalism - a
synthesis. Robotics and Automation, IEEE Transactions on, 12(4):581–589, 1996.

[12] C. Carøe, M. Hvilshøj, and C. Schou. Intuitive programming of aimm robot. Master’s thesis, Aalborg
Universitet, 2012.

[13] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbelien, K. Clase, and H. Bruyninckx.
Constraint-based task specification and estimation for sensor-based robot systems in the presence of geomet-
ric uncertainty. International Journal of Robotics Research, 26:433–455, 2007.

[14] J. De Schutter and H. van Brussel. Compliant robot motion ii. a control approach based on external control
loops. Int. J. Rob. Res., 7(4):18–33, 1988.

[15] D. F. Dementhon and L. S. Davis. Model-based object pose in 25 lines of code. Int. J. Comput. Vision,
15(1-2):123–141, 1995.

[16] R. Desai, J. Xiao, and R. Volz. Contact formations and design constraints: A new basis for the automatic
generation of robot programs. In B. Ravani, editor, CAD Based Programming for Sensory Robots, volume 50
of NATO ASI Series, pages 361–395. Springer Berlin Heidelberg, 1988.

[17] H. Ding and B. Matthias. Manipulation skills for robotic assembly scope & workplan. ABB internal presen-
tation, 2014.

113

http://www.gotstogo.com/misc/engineering_info/snap_design_files/image024.gif
http://www.gotstogo.com/misc/engineering_info/snap_design_files/image024.gif
http://commons.wikimedia.org/wiki/Commons: \ Valued_image_candidates/Remote_Center_of_Compliance.svg
http://commons.wikimedia.org/wiki/Commons: \ Valued_image_candidates/Remote_Center_of_Compliance.svg
http://commons.wikimedia.org/wiki/Commons: \ Valued_image_candidates/Remote_Center_of_Compliance.svg

[18] T. Dong, R. Tong, J. Dong, and L. Zhang. Knowledge-based assembly sequence planning system. In
Computer Supported Cooperative Work in Design, 2004. Proceedings. The 8th International Conference on,
volume 2, pages 516–521 Vol.2, May 2004.

[19] D. DuBois. Fuzzy Sets and Systems: Theory and Applications. Academic Press, Inc., Orlando, FL, USA,
1997.

[20] K. S. Eom, I. Suh, W. Chung, and S.-R. Oh. Disturbance observer based force control of robot manipulator
without force sensor. In IEEE International Conference on Robotics and Automation, pages 3012–3017,
1998.

[21] T. L. D. Fazio and D. E. Whitney. Simplified generation of all mechanical assembly sequences. Robotics
and Automation, IEEE Journal of, 3(6):640–658, 1987.

[22] B. Finkemeyer, T. Kröger, and F. Wahl. The adaptive selection matrix – a key component for sensor-based
control of robotic manipulators. In IEEE International Conference on Robotics and Automation, pages
3855–3862, 2010.

[23] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice Hall Professional Technical
Reference, 2002.

[24] A. Gill. Introduction to the Theory of Finite State Machines. McGraw-Hill, New York, 1962.

[25] B. Hannaford and P. Lee. Hidden markov model analysis of force/torque information in telemanipulation.
In V. Hayward and O. Khatib, editors, Experimental Robotics I, volume 139 of Lecture Notes in Control and
Information Sciences, pages 135–149. Springer Berlin Heidelberg, 1990.

[26] T. Hasegawa, T. Suehiro, and K. Takase. A model-based manipulation system with skill-based execution.
Robotics and Automation, IEEE Transactions on, 8(5):535–544, Oct 1992.

[27] H. Hirukawa, Y. Papegay, and T. Matsui. A motion planning algorithm for convex polyhedra in contact
under translation and rotation. In in Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pages 3020–3027, 1994.

[28] L. Homem de Mello and A. Sanderson. A correct and complete algorithm for the generation of mechanical
assembly sequences. Robotics and Automation, IEEE Transactions on, 7(2):228–240, Apr 1991.

[29] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor primitives. In in
Advances in Neural Information Processing Systems, pages 1523–1530, 2003.

[30] X. Ji and J. Xiao. Automatic generation of high-level contact state space. In ICRA, pages 238–244. IEEE
Robotics and Automation Society, 1999.

[31] M. Kaiser, A. Retey, and R. Dillmann. Robot skill acquisition via human demonstration. 7 th International
Conference on Advanced Robotics (ICAR ’95), Sant Feliu de Guixols, Spain, 1995.

[32] S. Kaufman, R. Wilson, R. Jones, T. Calton, and A. Ames. The archimedes 2 mechanical assembly planning
system. In Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on, volume 4,
pages 3361–3368 vol.4, Apr 1996.

[33] O. Khatib. A unified approach for motion and force control of robot manipulators: The operational space
formulation. Robotics and Automation, IEEE Journal of, 3(1):43–53, February 1987.

[34] J. Kober and J. Peters. Learning motor primitives for robotics. In Proceedings of the 2009 IEEE International
Conference on Robotics and Automation, pages 2509–2515, 2009.

114

[35] S. Kock, T. Vittor, B. Matthias, H. Jerregard, M. Kallman, I. Lundberg, R. Mellander, and M. Hedelind.
Robot concept for scalable, flexible assembly automation: A technology study on a harmless dual-armed
robot. In IEEE International Symposium on Assembly and Manufacturing, pages 1–5, 2011.

[36] D. I. Kosmopoulos. A Design Framework for Sensor Integration, pages 1–22. Advanced Robotic Systems
International, 2006.

[37] T. Kröger, B. Finkemeyer, U. Thomas, and F. M. Wahl. Compliant motion programming: The task frame
formalism revisited. In Mechatronics and Robotics, pages 1029–1034, Aachen, Germany, September 2004.

[38] T. Kröger, B. Finkemeyer, and F. M. Wahl. A task frame formalism for practical implementations. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on, volume 5,
pages 5218–5223, April 2004.

[39] C. Laugier. Planning fine motion strategies by reasoning in the contact space. In Robotics and Automation,
1989. Proceedings., 1989 IEEE International Conference on, pages 653–659 vol.2, May 1989.

[40] S. Lee. Subassembly identification and evaluation for assembly planning. IEEE Transactions on Systems,
Man, and Cybernetics, 24(3):493–503, 1994.

[41] T. Lefebvre, J. Xiao, H. Bruyninckx, and G. De Gersem. Active compliant motion: A survey. Advanced
Robotics, 19(5):479–500, 2005.

[42] J. Leitner, S. Harding, M. Frank, A. Forster, and J. Schmidhuber. Learning spatial object localization from
vision on a humanoid robot. International Journal of Advanced Robotic Systems, 9, 2012.

[43] M. Linderoth. On Robotic Work-Space Sensing and Control. PhD thesis, Lund University, 2013.

[44] M. Linderoth, A. Stolt, A. Robertsson, and R. Johansson. Robotic force estimation using motor torques and
modeling of low velocity friction disturbances. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, Tokyo, Japan, 2013.

[45] T. Lozano-Pérez. Spatial planning: A configuration space approach. IEEE Transactions on Computers,
C-32:108–120, 1983.

[46] M. T. Mason. Compliance and force control for computer controlled manipulators. IEEE Transactions on
Systems, Man and Cybernetics, 11(6):418–432, 1981.

[47] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, Cambridge, MA, August 2001.

[48] H. G. Mayer, I. Nagy, A. Knoll, E. U. Braun, R. Lange, and R. Bauernschmitt. Adaptive control for human-
robot skilltransfer: Trajectory planning based on fluid dynamics. In Robotics and Automation (ICRA), 2007
IEEE International Conference on, pages 1800–1807, 2007.

[49] B. J. McCarragher, G. Hovland, P. Sikka, P. Aigner, and D. Austin. Hybrid dynamic modeling and control
of constrained manipulation systems. Robotics Automation Magazine, IEEE, 4(2):27–44, Jun 1997.

[50] H. Mosemann and F. M. Wahl. Automatic decomposition of planned assembly sequences into skill primi-
tives. IEEE T. Robotics and Automation, 17(5):709–718, 2001.

[51] T. Nagai and S. Aramaki. The representation method of robotic assembly task with click action. In Power
Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium
on, pages 534–538, June 2008.

[52] K. Ohishi, M. Miyazaki, M. Fujita, and Y. Ogino. H infinity observer based force control without force
sensor. In International Conference on Industrial Electronics, Control and Instrumentation, pages 1049–
1054, 1991.

115

[53] H. Olsson, K. J. Astrom, C. Canuda de Wit, M. Gäfert, and P. Lischinsky. Friction models and friction
compensation. European Journal of Control, 4(3):176–195, 1998.

[54] F. Pan and J. M. Schimmels. Efficient contact state graph generation for assembly applications. In Robotics
and Automation, 2003. Proceedings. ICRA ’03. IEEE International Conference on, pages 2592–2598. IEEE,
2003.

[55] J. Peters, K. Mülling, J. Kober, D. Nguyen-Tuong, and O. Krömer. Robot skill learning. In L. D. Raedt,
C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz, and P. J. F. Lucas, editors, ECAI, volume 242 of
Frontiers in Artificial Intelligence and Applications, pages 40–45. IOS Press, 2012.

[56] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. 2012.

[57] T. Reisinger. Robotics & manufacturing group presentation. ABB internal presentation, 2014.

[58] A. Rodriguez, D. Bourne, M. T. Mason, G. F. Rossano, and J. Wang. Failure detection in assembly: Force
signature analysis. In Automation Science and Engineering (CASE), 2010 IEEE Conference on, pages 210–
215. IEEE, 2010.

[59] J. Salisbury. Active stiffness control of a manipulator in cartesian coordinates. In Decision and Control
including the Symposium on Adaptive Processes, 1980 19th IEEE Conference on, volume 19, pages 95–100,
Dec 1980.

[60] C. Samson, B. Espiau, and M. L. Borgne. Robot Control: The Task Function Approach. Oxford University
Press, 1991.

[61] T. Schulteis. Automatic Identification of Remote Environments and Calibration of Virtual Models. Storming
Media, 1997.

[62] B. Siciliano and O. Khatib, editors. Handbook of Robotics. Springer, 2008.

[63] R. Smits. Robot Skills: Design of a Constraint-Based Methodology and Software Support. PhD thesis,
Katholieke Universiteit Leuven, 2010.

[64] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and J. D. Schutter. itasc: A tool for multi-sensor integration in
robot manipulation. In H. K. H. Hahn and S. Lee, editors, Multisensor Fusion and Integration for Intelligent
Systems, volume 35 of Lecture Notes in Electrical Engineering, pages 235–254. Springer, 2009.

[65] M. Stenmark and A. Stolt. A system for high-level task specification using complex sensor-based skills,
2013. Conference Abstract.

[66] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson. Force controlled robotic assembly without a force
sensor. In IEEE International Conference on Robotics and Automation, pages 1538–1543, Minnesota, USA,
2012.

[67] L. D. Stone, T. L. Corwin, and C. A. Barlow. Bayesian Multiple Target Tracking. Artech House, Inc.,
Norwood, MA, USA, 1st edition, 1999.

[68] R. Sturges and S. Laowattana. Fine motion planning through constraint network analysis. In Assembly and
Task Planning, 1995. Proceedings., IEEE International Symposium on, pages 160–170, Aug 1995.

[69] R. C. W. Sung, R. Chun, and W. Sung. Automatic assembly feature recognition and disassembly sequence
generation. Technical report, 2001.

[70] U. Thomas, M. Barrenscheen, and F. Wahl. Efficient assembly sequence planning using stereographical pro-
jections of c-space obstacles. In Assembly and Task Planning, 2003. Proceedings of the IEEE International
Symposium on, pages 96–102, July 2003.

116

[71] U. Thomas, B. Finkemeyer, T. Kröger, and F. M. Wahl. Error-tolerant execution of complex robot tasks
based on skill primitives. In Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, pages 3069–3075, 2003.

[72] U. Thomas, G. Hirzinger, B. Rumpe, and C. Schulze. A new skill based robot programming language using
uml/p statecharts. In IEEE International Conference on Robotics and Automation, 2013.

[73] U. Thomas and F. Wahl. A system for automatic planning, evaluation and execution of assembly sequences
for industrial robots. In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International
Conference on, volume 3, pages 1458–1464, 2001.

[74] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents).
The MIT Press, 2005.

[75] L. Villani, C. Canudas de Wit, and B. Brogliato. An exponentially stable adaptive control for force and
position tracking of robot manipulators. Automatic Control, IEEE Transactions on, 44(4):798–802, Apr
1999.

[76] A. Wahrburg. Contact force estimation for robotic assembly using motor torques - summary slide. ABB
internal presentation, 2014.

[77] A. Wahrburg. Skill pictograms and trajectories. ABB internal presentation, 2014.

[78] A. Wahrburg. Snap-fit skill. ABB internal presentation, 2014.

[79] A. Wahrburg, S. Zeiss, B. Matthias, and H. Ding. Contact force estimation for robotic assembly using motor
torques. In IEEE International Conference on Automation Science and Engineering, 2014.

[80] D. Whitney. Force feedback control of manipulator fine motions. Journal of Dynamic Systems, Measurement,
and Control, 99:91–97, 1977.

[81] D. E. Whitney. Quasi-static assembly of compliantly supported rigid parts. Journal of Dynamic Systems,
Measurement, and Control, 104(1):65–77, Mar. 1982.

[82] J. Wolter. On the automatic generation of assembly plans. In Robotics and Automation, 1989. Proceedings.,
1989 IEEE International Conference on, pages 62–68 vol.1, May 1989.

[83] Y. Xia, Y. Yin, and Z. Chen. Dynamic analysis for peg-in-hole assembly with contact deformation. The
International Journal of Advanced Manufacturing Technology, 30(1-2):118–128, 2006.

[84] J. Xiao. Automatic determination of topological contacts in the presence of sensing uncertainties. In Robotics
and Automation, 1993. Proceedings., 1993 IEEE International Conference on, pages 65–70. IEEE Computer
Society Press, 1993.

[85] J. Xiao and R. A. Volz. On replanning for assembly tasks using robots in the presence of uncertainties.
In Proc. of the 1989 IEEE International Conference on Robotics and Automation (Vol. 2), pages 638–645,
Scottsdale, AZ, 1989.

[86] Z.-P. Yin, H. Ding, H.-X. Li, and Y.-L. Xiong. A connector-based hierarchical approach to assembly se-
quence planning for mechanical assemblies. Computer-Aided Design, 35(1):37–56, 2003.

[87] T. Yoshikawa, T. Sugie, and M. Tanaka. Dynamic hybrid position/force control of robot manipulators-
controller design and experiment. Robotics and Automation, IEEE Journal of, 4(6):699–705, Dec 1988.

117

	List of Figures
	List of Tables
	List of Symbols and Abbreviations
	Introduction
	Motivation
	Problem Statement
	Outline

	State of the Art
	Robotic Assembly
	Specification and Requirements of Robotic Assembly
	Automatic Assembly Sequence Planning

	Compliant Behavior
	Active and Passive Compliant Motion
	Specification of Compliant Motion Tasks
	Task Frame Formalism
	Constraint-Based Task Specification

	Advanced Task-Level Robot Control Approaches
	Operational Space Formulation of the Robotic Dynamic Model
	Direct and Indirect Force Control
	Vision-Based Control

	Sensing Devices and Approaches

	Assembly Skill
	General Idea and Requirements
	Skill Representation Approaches
	Comparison of Skill Representation Approaches

	Contribution

	Assembly Skill Representation
	Assembly Skill System
	Assembly Definition
	Concept Structure and Information Layers
	Assembly Tree Specification
	Assembly Tree Structure
	Assembly Tree Elements
	Assembly Tree Traversal

	Skill Selection and Parametrization
	Example Assembly Application

	Skill Representation
	Properties of a Skill Primitive
	Trajectory Representation
	The Pose-Wrench Space Concept
	Elements of a Trajectory
	Example Trajectory
	Motion State Evaluation
	Trajectory Template and Parametrization

	Motion Net Representation
	Elements of a Motion Net
	Structure and Execution Behavior
	Motion Net Template and Parametrization

	Skill Categorization
	Insert Skill
	Mathematical Model of an Insertion Task
	12D Pose-Wrench Trajectory of the Insert Skill
	Motion Net Finite State Machine of the Insert Skill
	Insert Data Sheet

	Snapfit Skill
	Mathematical Model of a Single Latch Snap-Fit Operation
	12D Pose-Wrench Trajectory of the Snapfit Skill
	Motion Net Finite State Machine of the Snapfit Skill
	Snapfit Data Sheet

	Other Skills

	Application Results
	Experimental Setup
	ABB Dual-Arm Concept Robot
	ABB IRC5 Robot Controller
	Setup of the Example Assembly Application

	Contact Force Estimation
	Schematic Overview and Previous Work
	Problem Statement
	Contact Force Estimation Scheme
	Basic Idea
	Friction Identification
	Calibration of the Weighting Matrices

	Results

	Implementation
	Overall Program Structure
	Assembly Tree Reading
	Assembly Tree Representation
	Assembly Tree Traversal

	Skill Setup
	Template Skill Representation
	Parametrized Skill Representation
	Skill Selection
	Skill Parametrization

	Motion Execution
	RAPID Robot Control Code
	Communication Between Robot and PC
	Contact Force Estimation and Robot Representation
	Motion Evaluation and Robot Command Execution

	Results
	Performance of an Example Assembly Application
	Reference Frames and Robot Setup for the Assembly
	Used Skills in the Assembly Sequence
	Performance of the Insert Skill
	Performance of the Snapfit Skill

	Comparison of Manual Skill Parametrization and Robot Teaching

	Summary
	Conclusion
	Discussion
	Outlook
	Appendix Derivation of the Contact Force Estimation
	Appendix Remarks on Contact Force Estimation
	Appendix Position-Based Skills Used in the Example Assembly Application

