
3D Object Reconstruction
from Partial Views
3D Objekt-Rekonstruktion aus Teilansichten
Master-Thesis von Jan Reubold aus Frankfurt a. M.
Februar 2014

Computerscience
Intelligent Autonomous Systems



3D Object Reconstruction from Partial Views
3D Objekt-Rekonstruktion aus Teilansichten

Vorgelegte Master-Thesis von Jan Reubold aus Frankfurt a. M.

1. Gutachten: Jan Peters
2. Gutachten: Herke v. Hoof

Tag der Einreichung:



Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 17. Februar 2014

(J. Reubold)



Abstract

The problem to reconstruct the shape of an object given a single view of the object is an
under-constraint problem. Current approaches try to solve the problem by exploiting primi-
tive geometric properties of the objects, rely on user interaction or have strong assumptions on
the application field. More advanced approaches in this field make use of machine learning
techniques to learn the rules for the reconstruction from the data instead of using predefined
ones. One such approach [8] achieves state-of-the-art results by using a Gaussian Process Latent
Variable Model (GP-LVM) for learning the rules, but also only works on a single category.

In this thesis we build a flexible algorithm which works on data of multiple categories. We
make use of a variant of the GP-LVM, called subspace GP-LVM, to extract the shape characteristics
of the data. To relax the assumptions on the input data we group objects of similar shapes and
learn the shape characteristics of each of these groups. So we have a multiclass reconstruction
algorithm and can still make use of the flexible subspace GP-LVM.

The algorithm works with two observations, the frontal- and back view of the object and does
not rely on user interaction. For the reconstruction it decides automatically, depending on the
input data by using a classification algorithm which model to use.

We show that the algorithm achieves reasonable results on a dataset of 259 objects from 10
categories and provide discussions on the crucial design solutions with extensive evaluations.

Das Problem, mit Hilfe einer einzelnen Teilansicht, die Form eines Objektes zu rekonstruieren,
ist ein unterdeterminiertes Problem. Aktuelle Arbeiten auf dem Gebiet versuchen dieses Prob-
lem zu lösen, indem Sie z.B. primitive geometrische Eigenschaften der Objekte ausnutzen oder
mit Hilfe von Benutzereingaben oder durch starke Beschränkungen des Anwendungsgebietes
das Problem vereinfachen. Modernere Arbeiten auf dem Gebiet lernen, mit Hilfe machineller
Lerntechniken, die Regeln für das Rekonstruieren der Objekte direkt von den Daten, anstatt auf
vorher festgelegte Regeln zurückzugreifen. Ein solcher Ansatz [8] erzielte bisher nicht erre-
ichte Resultate mit Hilfe eines sogenannten GP-LVM (Gaussian Process Latent Variable Model),
welches benutzt wurde, um die Regeln für die Rekonstruktion zu lernen. Dieser Algorithmus
kann jedoch auch nur für eine einzelne Kategorie von Objekten gelernt werden.

In dieser Thesis werden wir einen flexibelen Algorithmus entwickeln, welcher auch Daten mit
Objekten aus unterschiedlichen Kategorien verarbeiten kann. Um die Regeln aus den Daten zu
lernen, benutzen wir eine Variante des GP-LVM, genannt subspace GP-LVM. Um die Beschränkun-
gen des Anwendungsgebietes zu entspannen, gruppieren wir Objekte mit ähnlicher Form und
lernen die Regeln zur Rekonstruktion für jede dieser Gruppen seperat. Damit erreichen wir,
dass wir einen Algorithmus entwickeln können, der mit verschiedenen Kategorien gleichzeitig
zurechtkommt und können trotzdem auf das flexible subspace GP-LVM zurückgreifen.

Der Algorithmus arbeitet auf Basis von zwei Observationen, der Front- und der Rückseite des
Objektes und kommt ohne jegliche Benutzereingaben zurecht. Bei der Rekonstruktion klassi-
fiziert der Algorithmus automatisch das Eingabeojekt und weist es einer Gruppe zu. Er wählt
das zu der Gruppe dazugehörige Model (subspace GP-LVM) für die eigentliche Rekonstruktion
aus.

Wir zeigen an einem Datensatz mit 259 Objekten aus 10 Kategorien, dass der Algorithmus
hochwertige Ergebnisse liefert. Desweiteren stellen wir Diskussionen über die wichtigsten De-
signentscheidungen, sowie diesbezügliche ausführliche Evaluationen zur Verfügung.
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Symbols and Notation

Symbol: Meaning:

x,y scalars
dxe value of x rounded up
bxc value of x rounded down
x,y vectors (bold lower case letters)
X,Y matrices (bold capital letters)
x i the i-th element of the vector x
Xij the element in the i-th row and j-th column of matrix X
xi the i-th column vector of the matrix X
xT the transpose of vector x
GP Gaussian process
f Y Gaussian process to the observation space Y
K covariance/kernel matrix
k kernel function
φ(x) mapping function φ maps the vector x into another space
I the identity matrix
N(µ,Σ) Gaussian (normal) distribution with mean vector µ and covariance matrix Σ
tr(X) trace of square matrix X
Φ hyperparameters of the kernel
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1 Introduction

Figure 1: Different representations of an elephant, ranging
from a real elephant to a collage or a tattoo of one.1

1966 Marvin Minsky, a renowned
artificial intelligent scientist at
the MIT, gave his undergradu-
ate student Gerald Jay Suss-
man the task to “spend the
summer linking a camera to
a computer and getting the
computer to describe what it
saw” [6]. Nearly 50 years
later, we know this problem to
be slightly more difficult.

But how could Marvin Min-
sky underestimate the field of
computer vision so heavily?
Think of the ease we humans
perceive the structure of the
world around us. When look-
ing at an image you can identify each person in the picture easily, even if most of the person is
somehow occluded. Given a set of images (like in Fig. 1) you can effortlessly identify the object
contained in each image although the given representations range from a painting to a photo, a
cartoon, or even a collage.

It looks like an easy to solve task for a computer. But why is it not? Why is a task like
identifying all images containing some representation of an specific object currently not feasible
for a computer?

A big problem with computer vision approaches is that they are inverse problems, where you
try to recover some unknowns with too little information to fully specify a solution. You have
to make use of models (e.g. geometrical, physical, statistical, or learning theoretical) to get a
more specific solution.

Nevertheless, due to our developments in technology and the corresponding growth of digital
content (e.g. photos on flickr, videos on youtube), the need for computer vision algorithms has
grown. And so more and more algorithms in the field of computer vision are developed.

What is already possible today? Are there computer vision approaches applied in real world
applications?

1 images taken from:
http://www.filmweb.no/bilder/migration_catalog/article605252.ece/representations/i635w/

Babar

http://www.elephantparade.com/wp-content/uploads/2013/07/punkt-stretch-elefant_berg_caceis_

lux.jpg

http://www.hf.uio.no/ikos/english/research/projects/animals/photos/SJOLAN~1.JPG

http://4.bp.blogspot.com/-ts5ZtNSUUus/Ugc6i0ibitI/AAAAAAAAS8g/jYAzQuf-MaU/s1600/

bm-image-750898.png

http://fayedodgeszombies.com/files/2010/11/Elephant-Collage.jpg

http://www.mrsbrownart.com/artwork/elmer_800.jpg
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1.1 Motivation

Today, computer vision algorithms are used in a wide range of real world applications, e.g., our
postal offices use optical character recognition (OCR) algorithms for reading handwritten postal
codes [16]. Or there are companies using machine inspection algorithms for detecting defects
in their products [26]. Some of today’s cars are equipped with obstacle detection algorithms
for detecting unexpected obstacles [24] such as pedestrians on the street (see Fig. 2). Today
computer vision algorithms are also widely used in medical imaging applications [12].

Figure 2: Obstacle detection sys-
tem in a car for de-
tecting pedestrians and
other moving obstacles
to help avoiding colli-
sions.2

In robot grasping tasks computer vision algorithms have
already been applied [33] to gather information (e.g. dis-
tance, position, size, orientation) about the object. We
want to extend its use in this field and additionaly want
to recover the shape of the back side of an object to allow
a more secure grasping of objects of an unkown shape. But
what are the challenges of such an approach?

Single view 3D shape reconstruction of objects is still one
of the challenging problems in today’s computer vision re-
search. The ability to reconstruct the shape of an object
given only one partial view of the scene strongly depends
on accumulated knowledge about objects and their shapes.
Because it is a so highly under-constrained problem, many
of todays single view 3D reconstruction algorithms rely on
hard constrains and strong assumptions about the input.
[2, 9, 15]

1.2 Thesis Goal

Figure 3: Data acquiring setup. Two Microsoft Kinects posi-
tioned opposite of each other for taking the frontal-
and back view of the object in the middle simultane-
ously.

In this thesis we will develop a
multiclass single view 3D ob-
ject shape reconstruction al-
gorithm to learn the shape of
the back side of a given ob-
ject. The rules of how to re-
construct the back side of a
given object should be learned
from data. Further the algo-
rithm should provide reason-
able predictions of the shape of instances from unlearned classes.

The algorithm takes a single depth map, which represents the frontal view of the object as an
input and returns a depth map as the result of the reconstruction process representing the back
view of the object.

The dataset is acquired by two kinects (see Fig. 3), placed opposite of each other with the
object in their middle, capturing the frontal- and back view of the object. If a more complete
reconstruction is desired, more observation spaces/kinects can be added to the algorithm.

2 image taken from: http://2.bp.blogspot.com/-EeynYldZkNY/UfgIYSudw6I/AAAAAAAAAdE/7tlPg24Y01E/
s1600/volvo2.jpg
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1.3 Approach

Figure 4: Learning Stage: A spectral clustering algorithm pro-
cesses the image pairs and splits them into groups
with respect to their shapes. Then a model is learned
on each group, which represents the most significant
shape characteristics of the objects in the correspond-
ing group.

Our algorithm can be devided
into two parts, the learning-
and the reconstruction stage.
In the learning stage (see Fig.
4) we cluster our dataset of
paired depth maps into groups
with respect to their shapes.

For each group of the clus-
tered dataset, we then learn
a model, which represents our
prior knowledge of the shape
of the objects in the group. We
do not require the object to be
symmetric so we use an algo-
rithm for learning the model,
which tries to find the signif-
icant shape characteristics of
the group, instead of trying to
just exploit the symetric prop-
erties of the object.

In the reconstruction stage (see Fig. 5) we take as input a single depth map of
the object. If the object is an instance of an object category for which a model
is already learned, the classification algorithm finds the cluster it belongs to. Other-
wise, if the category is not already learned, our algorithm tries to make a prediction
by infering the shape of the object by using the model with the most similar shape.

Figure 5: Reconstruction Stage: For each group the probabil-
ity that the input image belongs to this group is com-
puted. The group with the highest probability is se-
lected and the subspace GP-LVM of this group is ap-
plied to predict the corresponding back view of the
object.

With the depth map of the ob-
ject assigned, we can take the
corresponding model and syn-
thesize the data for the back
view of the object.

For the models representing
the prior knowledge we make
use of so called Gaussian Pro-
cess Latent Variable Models
(GP-LVMs), or more precisely
an extension of these GP-LVMs
called subspace Gaussian Pro-
cess Latent Variable Models
(subspace GP-LVMs). GP-LVMs
utilize gaussian process re-
gression to automatically ex-
tract the unknown low dimen-
sional information of a given
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high dimensional observation. Additionaly, the variant we make use of, subspace GP-LVM, learns
the shared low dimensional information of multiple corresponding sets of observations.

1.4 Related Work

The approach to reconstruct the shape of an object given only a single image as input, is an
under-constrained problem. The lack of cues, e.g. vanishing lines, in comparision to reconstruc-
tion algorithms working with multiple views of an object, is for example one reason that makes
it more difficult.

Often, work in this field relies on user interaction [17] or hard constraints on the objects
or application fields [2]. Many of these approaches beside having strong assumptions on the
input data also only reconstruct the shape of the part of the object visible on the input image
[2, 9, 15].

1.4.1 Restrictions and Image Cues

A group of algorithms restrict the application field to just planar outdoor architecture scenes
where e.g. [9] segment the image into ground, sky and verticals to then build a coarse pop-up
reconstruction depending on the segmentations.

Figure 6: The modeling pipeline. Jiang et al. first calibrate the camera according to the users
specified frustum vertices and reconstruct a set of 3D points. The architecture com-
ponents (i.e. walls and roofs) are then interactively decomposed and modeled. Shape
details can be added if necessary. Lastly, the final model is textured with their texture
enhancement technique. Content taken from [17].

Other works try to solve the problem by exploiting image cues still present in single view
reconstruction problems. Some make us of primitive geometrical characteristics of the objects
[17, 20] (see Fig. 6), or they focus on curved objects to exploit other image cues. For instance in
[37], Zang et al. introduce several user constraints (e.g. normal map, etc) to finally formulate
the reconstruction problem as a linearly constrained quadratic optimization problem, which has
a closed form solution. Prasad et al. [30] use wireframes to reconstruct the shapes of curved
objects and also rely on user interaction to reduce the complexity of 3D object topology.

Han et al. [14] restrict the application field to polyhedral objects, grass and trees, where they
then apply Bayesian reconstruction.

Ben Amor et al. [20] use the symmetric properties of the objects to recover the complete
shape. In their work they use a two-step algorithm, where they first find the symmetry candi-
dates with the highest votes via a voting system and then determine the corresponding linear-
or rotational extrusion.

Black et al. [13, 35] restrict the application field to human body shapes, which allows them
to use application field specific solutions (e.g. parametric morphable models). In [13] they also
incorporate shading cues for the single view reconstruction.
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1.4.2 Machine Learning Approaches

In [36] (see Fig. 7) Sun et al. proposed a more advanced semi-automatic approach for single
view reconstruction, which also recovers the shape of the object part which is not visible on
the input image. They split the process into two parts. First they used Depth-Encoded Hough
Voting(DEHV), a voting scheme that incorporates depth information into the process where they
learn distributions of image features for an object category. With the so learned probabilistic
models of object categories they can not only localize and recognize the object in an image, but
they also partially recover the shape(viewpoint limited) of it. In the second step to complete the
shape recovery process, they use 3D shape exemplars from a database of 3D CAD models.

Figure 7: Illustration of the key steps in Sun et al’s [36]
method. Given a single (previously) unseen
test image (panel a), their DEHV (Depth-
Encoded Hough Voting-based) scheme is
used to detect objects (panel b). The
ground truth bounding box is shown in red.
Their detection is shown in green. The cen-
ters of the image patches which cast votes
for the object location are shown in red
crosses. During detection, their method si-
multaneously infers the depth map of the
detected object (panel c). This allows the
estimation of the partial 3D shape of the
object from a single image. Content taken
from [36].

Although this work showed some
promising results, it is not suitable for
our goals. For one thing, our algorithm
should work autonomously, but the al-
gorithms presented by Sun et al. relies
on user interaction. But more crucial,
the shape recovery process is not gener-
ative. Sun et al. used previously col-
lected 3D CAD models to recover the
complete shape by finding the best fit
for the object reconstruction.

Approaches like Sun et al’s learn from
data rather than exploiting image cues.
They are more suitable when the algo-
rithm should be used not only on a spe-
cific category, but should work on arbi-
trary categories. A downside of these
approaches is that they often are sig-
nificantly more expensive with regard
to the computation time because of the
required learning process. Due to the
additional flexibility you get with such
an approach we focused our research on
these types of algorithms.

Methods which try to infer the shape of the object by just exploiting image cues, can be seen
as a human without a memory or intelligence. The human receives rules from someone, which
he has to follow. These rules depend on relations of image cues and the shape of objects and
help the human to infer the objects shapes. But he never learns from the data and never makes
his own rules. In an alternative scenario, he could for example divide the images into groups,
where the members of a group have similar shapes. Then, he could learn for himself what the
significant shape characteristics of these groups are and so more accurately reconstruct new
objects with similar shapes.

That is exactly what some of the methods which learn from data and make use of machine
learning techniques do. These methods learn priors on the object shapes from data, which can
be seen as the attempt to copy the learning process of humans.
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An approach using machine learning techniques was proposed by Rother et al. [32]. They
learn shape priors on crude voxel representations, which are then applied to segmentation,
recognition and shape reconstruction. Their approach is limited to simple and rigid objects like
cups and plates.

Figure 8: Shon et al’s approach: Synthesis of novel views using a shared latent variable model:
After training on 24 paired images of a mug with a cat figurine (out of 72 total paired
images), Shone et al. ask the model to infer the remaining 48 poses of the cat, given
48 novel views of the mug. The system uses an inverse Gaussian process model to infer
a 2D latent representation for each of the 48 before unseen mugs, then synthesizes
a corresponding view of the cat figurine. At the left, the before unseen mug images
(’test’), the synthesized cat images (’inferred’), and the actual views of the cat figurine
from the database (’actual’) are plotted. In the upper right the models uncertainty
in the latent space is plotted. The 24 latent coordinates from the training data are
plotted as arrows, while the 48 novel latent points are plotted as crosses on a dashed
line. At lower right the certainty for each latent point prediction is plotted. Note the
low certainty for the blurry inferred images labeled 8, 14, and 26. Content taken from
[34].

One approach for more general use achieving state-of-the-art results was proposed by Chen
et al. [8]. They concentrate on learning the prior knowledge of the shape of a specific cate-
gory from datasets with machine learning techniques. In their paper Chen et al. applied their
framework to a setup, where they took 2D silhouettes of human bodies as input and then recon-
structed the complete shape of the body. Unlike many other approaches we already mentioned
in this section, they do not rely on heuristic regularities or predefined parametrical models which
are then only suitable for particular scenes. Instead they assume that the latent factors of the
object shapes are unknown in advance and are then obtained automatically during the learning
process. These latent factors are learned with a GP-LVM, which is used because it automatically
extracts the unknown low dimensional embedded information of the high dimensional object
observations. The approach does not require any user interaction and can be generalized to
reconstruct the shape of various categories of objects.

We took this approach of solving the single view reconstruction problem, especially the uti-
lization of the GP-LVM algorithm, as the basis of our research and found an extension of the
GP-LVM proposed by Shon et al. [34] which is more suitable for our task. They developed an al-
gorithm (see Fig. 8) that learns the shared embedded low dimensional information of multiple
(heterogenous) observation spaces. It can then synthesize new data from learned correspon-
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dences. PCA is first applied separately to each of the sets of observations and then the average
of these solutions is used to initialize the GP-LVM. A second set of GPs are learned, which map
back from the observation spaces to the latent space. That means Shon et al. assume that the
generative mappings have a smooth inverse.

The algorithm used in this thesis builds up on the same idea as Shon et al’s approach. Ek
proposed two extensions to the GP-LVM [11], called shared GP-LVM and subspace GP-LVM,
which also build a shared latent space. A downside of the shared model of Shon et. al is that
they assume that the observations work in spaces with equal dimensions or modes of variabil-
ity. With the development of the shared GP-LVM Ek relaxed this assumption by introducing a
back-constraint to the shared model. This model can be applied in situations where you are
interested in inferring the item of one observation space given the corresponding item of the
other observation space, but not the other way around.

In this thesis we will use subspace GP-LVM, where the generalization is established by intro-
ducing a factorized latent space, consisting of a shared- and private subspace. Other than with
shared GP-LVMs, where the model encourage the latent space to fully explain the correlated
variance and to handle the non-correlated variance as noise, in subspace GP-LVMs the non-
correlated variance is modeled separately by additional private latent spaces. Instead of just by
our Gaussian noise model the non-correlated variance is here also explained by a GP.

Therefore, the subspace GP-LVM is not only flexible as shown in [11], but is also applicable to
almost any set of corresponding observations.

1.5 Overview

After the introduction and an outline of existing related work in the field of single view recon-
struction, the following chapters will explain the algorithms we make use of, provide evaluations
of our work and give a summary and a conclusion at the end.

In Chapter 2 the algorithm for learning the model is explained. Therefore, we first explain
what Principle Component Analysis (PCA) is and then review step-by-step the benefits of exten-
sions to PCA, its drawbacks and the algorithms themself in detail. In that way we will take a
look at probabilistic PCA and its dual, arriving at the GP-LVM.

In Chapter 3 we explain our algorithm and the rest of the algorithms we make use of in
detail. The chapter will be devided into two parts, were we describe the learning- and the
reconstruction stage.

In Chapter 4 we provide extensive evaluations on the decision which clustering algorithm to
use and evaluations on the performance of our algorithm.

In Chapter 5 the properties of the algorithm are summarized and ideas for futher improve-
ments are proposed.
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2 Model Learning Algorithms

The core part of our approach is the model representing the prior knowledge of the object
shapes. As explained in the related work section, we decided to make use of a machine learning
algorithm for learning the model. The benefit of a machine learning algorithm is that it learns
from data. For example, machine learning algorithms are often applied when the exact rules of
how the algorithm should work are unknown. In some cases you can create input/output pairs,
but you do not know the exact relationships between input and output. They are also used in
data mining programs, where they can find connections and meanings in huge datasets.

For our algorithm we make use of the subspace Gaussian Process Latent Variable Model (sub-
space GP-LVM) to extract the shared low dimensional information of the two observations.

Figure 9: From PCA to GP-LVM

This chapter will explain the core part of the applied machine learning algorithm, we make
use of for the model learning, in detail (see Tab. 1). Therefore, we start by explaining Principal
Component Analysis (PCA) [19] and then take a look at PCA from two different perspectives al-
lowing for a probabilistical view on PCA. The first of the two interpretations, called probabilistic
PCA (pPCA) [3], integrates the latent variables out of the likelihood function to optimize over
the parameters, whereas the second interpretation, called dual probabilistic PCA (Dual pPCA),
optimises over the latent variables instead and integrates over the parameters. We will see that
Dual pPCA additionally allows us to make use of nonlinear mappings. The probabilistic version
of PCA using nonlinear mappings is called Gaussian Process Latent Variable Model (GP-LVM)
(see Fig. 9). At the end of the Chapter we will learn about two extensions to GP-LVM, where
one of them is the subspace GP-LVM.

Y→ X X→ Y Nonlinear Probabilistic Convex

PCA Y Y N N Y
pPCA Y Y N Y Y
Dual pPCA Y Y N Y Y
GP-LVM N Y Y Y N

Table 1: Overview of the described algorithms. A ’Y’ indicates the algorithm exhibits that prop-
erty, a ’N’ indicates the contrary. The characteristics of the algorithm are: Y→ X: does
the method lead to a mapping from data to embedded space? X→ Y: does the method
lead to a mapping from the embedded to the data-space? Nonlinear: does the method
allow for nonlinear embeddings? Probabilistic: is the method probabilistic? Convex: al-
gorithms that are considered convex have a unique solution, for the others local optima
can occur. Content taken from [22].
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2.1 Principal Component Analysis (PCA)

PCA can be applied when we have obtained measures of a high number of variables and we want
to create a smaller number of artificial variables (principal components). The artificial variables
should capture most of the information (variances) contained in the original variables. So PCA
is a dimensionality reduction algorithm (see Fig. 10), we can apply when we have a high
dimensional dataspace and the variables are correlated with each other.

We assume that we have a dataset Y= [y1, . . . ,yN] ∈ RM×N and want to find the corresponding
latent points X = [x1, . . . ,xN] ∈ RD×N . Each of the N column vectors yi, i, j, k ∈ {1 . . . N}
represents one measure of all variables. yi is M -dimensional and can also be expressed as:

yi =
M
∑

j=1

x j,iwj ,where wj
T wk = δ j,k ,with δ j,k

¨

1 if j = k
0 otherwise .

Figure 10: PCA from 2D to 1D: seeks the principal axis where
the variance of the data is maximized.3

We now want to find a
mapping into a D-dimensional
space to map all yi → xi with
minimal information loss and
D� M :

yi =
D
∑

j=1

x j,iwj

︸ ︷︷ ︸

+
M
∑

k=D+1

xk,iwk

︸ ︷︷ ︸

,

Approx. eyi Error

where x j,i can be interpreted
as x j,i = wT

j yi and the
squarred error is given by:

E(W) =
N
∑

i=1

||yi −eyi||2.

To show that when the empirical mean of the data is zero, minimizing the squarred error is
equivalent to maximizing the variance of the projection, we rewrite the error assuming a single
basis vector:

E(w) =
N
∑

i=1

||yi −eyi||2

=
N
∑

i=1

||yi − (wTyi)w||2

=
N
∑

i=1

||yi||2 − 2(wTyi)
2 + (wTyi)

2 ∗wTw

=
N
∑

i=1

||yi||2 − (wTyi)
2 =

N
∑

i=1

||yi||2 − (x i)
2.

3 image acquired (2012) from: https://encrypted-tbn0.gstatic.com/images?q=tbn:

ANd9GcRjoxuitHxwngqL68nOMtSfjDGiYz_lXPEnN
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So first the data has to be centered by setting the empirical mean to zero.

bY= Y− [y, . . . ,y] , y=
1
N

N
∑

i=1

yi.

We have to maximize the variance of the projection:

σ2 =
1
N

N
∑

i=1

(xi − x)2 =wT Cw ,with x=
1
N

N
∑

i=1

xi =wT y.

When maximizing σ2 (Langrangian, with the constraint ||w|| = 1), we get Cw = λw. So we
have to compute the eigenvectors and eigenvalues of the covariance matrix C.

But because the covariance matrix is quickly getting too large to be handled efficiently, we
cannot do this on the direct way. For example for a 256× 256 image, the covariance matrix has
232 entries and has the size of 235 Bytes (32GB). That means, the dimensions we work in are
high, most of the time higher than the amount of examples we have. Also we do not need all
the eigenvectors and -values of the covariance matrix, the largest ones would be sufficient. Let
us look at the covariance matrix of the data and express it differently:

C=
1
N

N
∑

i=1

(yi − y)(yi − y)T =
1
N
bYbYT.

When we now apply singular value decomposition (SVD) to the centered data matrix bY,

1
N
bYbYT =

1
N

USVT (USVT )T = U(
1
N

S2)UT = UΛUT ,

the left-singular vectors are the eigenvectors of the covariance matrix and with the singular
values we can compute the eigenvalues of the covariance matrix:

λi =
1
N

s2
i .

Now we can compute the largest eigenvectors and eigenvalues of the covariance matrix without
the need to ever build and store the covariance matrix itself.

xi =WT (yi − y) ,with W= [w1, . . . ,wD],

eyi = y+Wxi.

So with this method PCA is efficiently computable. But what are the drawbacks of this method?
For one PCA is a simple linear transformation and does not incorporate an underlying prob-

abilistic model for the data, which is necessary if you want to apply Bayesian methods or want
to deal with missing data values. Additionaly, due to the fact that it is linear, it is not as flexible
as nonlinear algorithms. We will take a closer look at this later. Let us first inspect a variant of
PCA, called probabilistic PCA, which solves the first mentioned drawback of PCA.
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2.2 Probabilistic PCA

Probabilistic PCA (pPCA) is a latent variable model (see Fig. 11). It is an interpretation of PCA,
which incorporates an underlying probabilistic model. It takes a probabilistic, generative view
of the data. The maximum likelihood solution for a pPCA model can be found by applying SVD
to the data’s covariance matrix.

In pPCA we express the data matrix bY and the matrix of the latent points X differently than in
PCA:

bY= [by1, . . . ,byN]
T ∈ RN×M X= [x1, . . . ,xN]

T ∈ RN×D.

Figure 11: Graphical representation
of probabilistic PCA and
its Dual. In pPCA the la-
tent variables X are inte-
grated out and the like-
lihood function is opti-
mized over W, where as
in Dual pPCA it is the
other way around, inte-
grated over W and opti-
mizing X.

pPCA assumes that the underlying latent variables xi
have Gaussian distributions and are i.i.d.:

p(X) =
N
∏

i=1

N(xi|0, I),

and that a linear relation exists between latent- and ob-
served variables:

byi =Wxi + e ,with W ∈ RM×D,

where W specifies the linear relationship between data-
and latent space and e is noise sampled from a spherical
Gaussian distribution, e=N(e|0,σ2I).

The likelihood of a data point is:

p(byi|xi,W) =N(byi|Wxi,σ
2I).

It is not possible to optimize the likelihood by integrating
out both, the hidden variable xi and the parameters W
together. So we integrate out the hidden variable xi:

p(byi|W) =
∫

p(byi|xi,W)p(xi)dxi

Because of the independence of the data points, we can express the marginal likelihood of the
complete dataset as:

p(bY|W) =
N
∏

i=1

N(byi|0,C) ,with C=WWT +σ2I. (1)

The corresponding log-likelihood is then given by:

L= −
N
2
(M ln(2π) + ln |C|+ tr(C−1S)) ,with S=

1
N
bYT
bY.

It can be shown [3] that the log-likelihood is maximized when:

WML = UD(ΛD −σ2I)1/2R, (2)
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where the columns of the M × D matrix UD consist of the principal eigenvectors of S with the
corresponding eigenvalues λ1, . . . ,λD in the D×D matrix ΛD. R is an arbitrary D×D dimensional
orthogonal rotation matrix. Additionaly, when W =WML, the maximum-likelihood estimator of
σ2 is given by:

σ2
M L =

1
M − D

M
∑

j=D+1

λ j. (3)

After applying SVD to the covariance matrix S, as we have already done in PCA for C, we can
compute σ2

M L with Eq. (3) and then WML with Eq. (2).
The log-likelihood is optimized when W spans the principal sub-space of the data bY (see Eq.

(2)). This is the same like in the classical PCA, where the optimal parameters can be found by
applying SVD to the data bY.

2.3 Dual Probabilistic PCA

pPCA is a PCA variant which incorporates an underlying probabilistic model. Now we will see
how we can unlock the model to work with nonlinear embeddings.

We look again at the pPCA, but set a prior on the parameters W rather than on X,

p(W) =
M
∏

i=1

N(wi|0, I) ,with wi =Wi,: ∈ R1×D.

In Bayesian frameworks parameters are seen as random variables, over which we can define a
prior.

That means in the Dual of probabilistic PCA (Dual pPCA) we can marginalise over W instead
of X:

p(bY|X) =
M
∏

i=1

N(by:,i|0,K) ,with K= XXT +σ2I. (4)

Note that by:,i is not one observation of all dimensions/variables, but all observations of one
single dimension/variable.

The log-likelihood of Eq. (4) is:

L= −
MN

2
ln(2π)−

M
2

ln(|K|)− tr(K−1
bYbYT), (5)

where its gradients with respect to X can be found as:

∂L

∂ X
= K−1

bYbYTK−1X−MK−1X.

Setting the equation to zero, dividing by M and pre-multiplying by K gives:

SK−1X= X ,with S= M−1
bYbYT.

It can be shown [22] that the objective function in Eq. (5) can be optimized, when:

X= ULVT , (6)
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where U ∈ RN×D are the eigenvectors of S with the corresponding eigenvalues λ1, . . . ,λD. The
entries on the diagonal of the diagonal matrix L ∈ RD×D are li = (λi −σ2)1/2 and V ∈ RD×D is
an arbitrary rotation matrix.

pPCA and Dual pPCA are interpretations of PCA. With pPCA we benefit of an underlying
probabilistical model, which e.g. permits the application of Bayesian methods and allows us
to deal with missing data values. Dual pPCA is a reformulation of pPCA which further allows
us to replace the inner product bYbYT with a kernel and thereby unlocks the use of nonlinear
embeddings.

But what exactly are the benefits of using nonlinear kernels and therefore mappings?

2.4 Benefits of Nonlinear Kernel Functions

In general a dataset of N data points cannot be linearly separated in a space of dimension D,
where D < N . Data points not linearly separable in the data space could possibly, if mapped into
another space, we will call feature space, be linearly separated (see Fig. 12). If the dimension-
ality of the feature space is F ≥ N , the data points would almost always be linearly separable.
Therefore, let us define a mapping function φ(x), which maps x into another space.

So, if we would project the data into an infinite dimensional feature space, all datasets could
almost always be linearly separated. But how can we do computations in such a space? Would
it not be too costly?

There exists a trick called kernel-trick [11] that can be applied, when input vectors to a
function only occur as an inner product with each other. So let us define a function, we call
kernel function, that maps vectors into another space and there computes the inner product of
the mapped vectors:

k(xi,xj) = φ(xi)
Tφ(xj).

In Dual pPCA we had the case that the input vectors only occured as inner products with each
other:

k(xi,xj) = xi
T xj +σ

2δi j.

When we now apply the mapping function φ(x) to the input vectors, the inner product of the
projected input vectors could be computed by deriving a kernel function, without the necessity
to ever map them into the feature space.

Figure 12: Benefits of a nonlinear kernel: Data that is not linear separable in the cartesian space,
is, if mapped to the polar space, linearly separable.4

4 image taken from: Peter Gehler - Lecture on Machine Learning
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To give an example, consider the polynomial kernel of degree 2:

k(x,y) = (xT y)2, where x= (x1,x2),y= (y1,y2) ∈ R2,

for better readability xi = x and xj = y. With the corresponding kernel function:

k(x,y) = (x1y1 + x2y2)
2 = x2

1y2
1 + 2x1x2y1y2 + x2

2y2
2.

The feature map φ for k(x,y) = φ(x)Tφ(y) can be expressed as:

φ(x) = (x2
1,
p

2x1x2,x2
2),

mapping x and y from a 2D- into a 3D space, with the inner product of the mapped input
vectors:

φ(x)Tφ(y) = x2
1y2

1 + 2x1x2y1y2 + x2
2y2

2.

As you can see the kernel function yields the same result as the inner product computed between
the projected input vectors.

Our algorithm makes use of the popular RBF-kernel [7] (see Fig. 13), which maps the input
vectors into an infinite dimensional space:

k(x,y) = αexp(−
γ

2
(x− y)T (x− y))

Figure 13: A RBF with kernel width of 0.1. 5

To verify that the RBF-kernel maps into an infi-
nite dimensional space, we take a look at a sim-
plified kernel for points in R2:

k(x,y) = exp(−(x− y)2)

= exp(−(x1 − y2)
2 − (x2 − y2)

2)

= exp(−x2
1 + 2x1y1 − y2

1 − x2
2 + 2x2y2 − y2

2)

= exp(−|x|2)exp(−|y|2)exp(2xT y),

using a taylor series it can be written as:

k(x,y) = exp(−|x|2)exp(−|y|2)
∞
∑

n=0

exp(2xT y)n

n!

When using the RBF-kernel, any combination of x and y results in a non-zero inner product.
Therefore, the feature space F needs to be infinite dimensional.

Let us see how we can use the powerful nonlinear RBF-kernel in combination with our latent
variable model.
5 image taken from: Ek, Torr and Lawrence - Talk on Shared Gaussian Latent Variable Models (2007)
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2.5 Gaussian Process Latent Variable Model (GP-LVM)

When looking at the likelihood function of the Dual pPCA, in Eq. (4), it can be interpreted as M
independent Gaussian processes mapping from the latent- into the data space sharing the same
linear kernel K.

To obtain the nonlinear latent variable model GP-LVM (see Fig. 14), the covariance-/kernel
matrix K has to be substituted by a covariance function that allows for nonlinear functions, such
as the RBF-kernel.

Gaussian Process:
Gaussian processes (GPs) are probabilistic models which specify distributions over
function spaces. You can think of a GP as the extension of a multivariate Gaussian
distribution to infinite dimensionality. GPs generate data on a domain so that any
finite subset of the range follows a multivariate Gaussian distribution, allowing to
view distribution over the function space by only focussing on instantiated points.

GPs are completly determined by their mean- and covariance function, where the
mean is often set to zero and the GP and its properties (e.g. smoothness, stationarity,
local independence) are determined by its covariance function k.

To optimize the GP-LVM with respect to the latent variables X, we first have to compute the
gradients of Eq. (5) with respect to the kernel K:

∂L

∂ K
= K−1

bYbYTK−1 −MK−1, (7)

Figure 14: Graphical representation
of a GP-LVM, with the
Gaussian process as a la-
tent variable model.

which is independent of the choice of kernel matrix. After
that, Eq. (7) has to be combined with ∂ K

∂ xi,j
via chain rule.

As for nonlinear kernels typically no closed form solu-
tion exists and we have to deal with an objective func-
tion with likely many local optima, solving an eigenvalue
problem is no longer sufficient and therefore optimizing
the objective function is more difficult. We have to use a
gradient based method because the log-likelihood func-
tion is a highly nonlinear function of the embeddings
and the parameters and no closed form solution exists.
Therefore, we apply a Scaled Conjugated Gradient ap-
proach (SCG) [28] to the gradients in combination with
Eq. (5) for the optimization. To optimize the kernel
parameters, gradients with respect to these parameters
have to be computed and then used to jointly optimize
the latent variables and the parameters of the kernel.

After training a GP-LVM, how can we determine the
latent point x∗ and the likelihood of a new previously
unseen data point y∗?
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The joint distribution of the training data points and the unseen data point is:

�

bY
y∗

�

∼
�

0,

�

KI,I kI,∗
kT

I,∗ k(x∗,x∗)

��

,

where KI,I is the kernel matrix developed from the latent points of the training data. kI,∗ is a
column vector containing the elements of the kernel matrix computed between the latent points
of the training data and the latent representation x∗ of the new data point y∗.

Again, it is not as easy as with PCA and its interpretations. To compute the likelihood of a
new data point y∗, we first have to find a MAP solution for the corresponding latent point x∗.
When the variance over each output dimesion is constant, we can approximate the likelihood.
The likelihood is given by:

p(y∗|X,x∗) =N(y∗|µ,σ2),

where

µ= YT K−1
I,I kI,∗.

The variance is given by:

σ2 = k(x∗,x∗)− kT
I,∗K

−1
I,I kI,∗.

With the likelihood function given we can now find the MAP solution for x∗ using gradient
techniques. To approximate the likelihood of y∗ we have to project x∗ back into the data space
and compute the probability of y∗ under the resulting distribution.

A problem again comes with X possibly being multi-modal with respect to x∗. Because of this,
it is not guranteed that the solution is unique. In some cases sampling methods are needed to
evaluate the likelihood [22].

This is the theory behind a GP-LVM, but as the optimization problem is nonlinear and high
dimensional (N D interdependent parameters/latent variables before also taking the kernel pa-
rameters into account), Lawrence [22] provides an approximation, which relies on forced spar-
sification of the model. The sparsification is done by selecting a subset A, called active set, of
the original set. The algorithm used for selecting the subset, called informative vector machine
(IVM), was also developed by Lawrence et al. [23]. Given the sparsification, the optimization
of the points is faster than the optimization of the full dataset. The likelihood of the active set
can be computed as:

p(YA) =
1

(2π)D/2|KA,A|1/2
exp

�

−
1
2

tr(K−1
A,AYAYT

A)
�

. (8)

To take the inactive points J into account again, we have to optimize them too, but luckily
given the fixed active set, the points are not interdependent anymore, so we can optimize them
indepedently:

p(yj|xj) =N(yj|µ j,σ
2
j I), (9)

where the mean µ j is:

µ j = YTK−1
A,AkA,j,
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Algorithm 1 A practical algorithm for GP-LVMs
Require: A size for the active set, dA. A number of iterations T .

Initialise X through PCA.
for T iterations do

Select a new active set A using the IVM algorithm.
Optimise Eq. (8) with respect to the parameters of K (and optionally the latent
positions XA) using scaled conjugated gradients.
Select a new active set A.
for each point j of the points not in the active set, do

Optimise Eq. (9) with respect to xj using scaled conjugated gradients.
end for

end for

Content taken from [22].

and the variance is given by:

σ2
j = k(xj,xj)− kT

A,jK
−1
A,AkA,j,

The full algorithm is summarized in Alg. (1) with more details provided by Lawrence in [22].
A GP-LVM is a powerful model, but for the thesis we need a model allowing for working with

multiple corresponding observations.
We require a model, which is not only able to learn a low dimensional representation of

the higher dimensional observation spaces. It should additionaly learn a mapping from one
observation space to the corresponding observation space(s) and vice versa, so that when given
a new observation we can synthesise the corresponding observation(s).

Ek et al. [11] developed two variants of the GP-LVM, called shared- and subspace GP-LVM.
Both work with multiple corresponding observations, where the observation spaces are gener-
ated from the same latent variable X.

Figure 15: Graphical representation of a
shared GP-LVM, representing
the back-mapping constraining
the latent space by the dashed
line. Content taken from [11].6

A downside of shared models in general is that
they assume that the observations work in spaces
with equal dimensions or modes of variability [11].
With the development of shared GP-LVMs (see Fig.
15), Ek relaxed this assumption by introducing a
back-constraint to the shared model. This model is
applicable in a situation where you are interested
in inference in only one direction.

Here we will focus on subspace GP-LVM, in which
the assumption is relaxed further. Instead of the
model in shared GP-LVMs, which encourages the
latent space to fully explain the correlated variance
and to handle the non-correlated variance as noise,
in subspace GP-LVMs the non-correlated variance is
modeled separately by additional latent spaces. So
the non-correlated variance is here also explained

6 Image taken from: Carl Henrik Ek - Talk on Shared Gaussian Process Latent Variable Models (2007)
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by a GP instead of just by our Gaussian noise model. This model is explained in more detail in
the following chapter.

Figure 16: The gray row on the top shows two example images from the training data. The
rows of the yellow area show results from infering the pose using a subspace GP-
LVM, whereas the rows of the green area show results when using a shared GP-LVM.
In these areas the first column shows the likelihood sampled over the pose specific
latent space constrained by the image features, the remaining columns shows the
modes associated with the locations of the white dots over the pose specific latent
space.
Subspace GP-LVM (yellow): In the 1st row where the results of the reconstruction of
the first test image are shown, the position of the leg and the heading angle cannot
be determined in a robust way from the image features. This is reflected by two
elongated modes over the latent space representing the two possible headings. The
poses along each mode represent different leg configurations. The top row of the
1st column shows the poses generated by sampling along the right mode and the
bottom row along the left mode. In the 2nd row, where the results of the second test
image are shown, the position of the leg and the heading angle is still ambiguous to
the feature, however here the ambiguity is between a discrete set of poses indicated
by four clear modes in the likelihood over the pose specific latent space.
Shared GP-LVM (green): Here both rows show the results of doing inference using the
shared GP-LVM. Even though the most likely modes found are in good correspondece
to the ambiguities in the images the latent space is cluttered by local minima, where
the optimization can get stuck in. Content taken from [11].
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3 Methods

Figure 17: Outline of our algorithm with the training
stage viewed in the upper box and the re-
construction stage viewed in the box be-
low. In the training stage the depth map
is processed (centered, etc) and projected
onto a low dimensional space via PCA.
The resulting representation is used for
the spectral clustering algorithm. The ob-
tained clusters are then used to train the
different models. In the reconstruction
stage the depth map is equally processed
and then assigned to the group with the
most similar objects. The corresponding
model is then used to infer the observa-
tion of the back view of the object.

Here we will present our algorithm in de-
tail (see Fig. 17). The algorithm consists
of a learning- and a reconstruction stage.
After giving an outline of the full algo-
rithm we will focus on the two stages
and explain each in depth.

For building the dataset for the learn-
ing stage where each item consists of two
corresponding observations, we take two
depth maps from two Microsoft Kinect
cameras (see Fig. 3). The Kinects
were positioned opposite of each other
on a planar surface. Then the object is
placed on the planar surface positioned
in the middle of the two Kinects. When
correctly positioned the depth maps are
recorded by the Kinects.

The images for testing are also ob-
tained in that way. Where later one
depth map is used as the input image
and the corresponding depth map as the
ground truth for the reconstruction eval-
uation.

To train the subspace GP-LVM, the al-
gorithm we use to model the shared low
dimensional embedded information of
the two observations, we take the aver-
age of the two depth maps contained in
each image-pair.

For the next step we evaluated several
clustering algorithms (K-Means, Hierar-
chical Clustering, Spectral Clustering) in
combination with different data repre-
sentations (raw data, data projected via
PCA, features extracted from data with
Kernel Descriptors) to find the combi-
nation which works best with our algo-
rithm (evaluations can be found in the
next chapter).

The result of the evaluations is that a
combination of a spectral clustering al-
gorithm applied to the projected data via
PCA works best. So, to obtain a low
dimensional representation of the aver-
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aged image pairs, they have to be projected onto a lower dimensional space via PCA by using
the eigenvectors corresponding to the highest eigenvalues. These representations are then used
to cluster the dataset into groups of objects of similar shapes, using a spectral clustering algo-
rithm.

For each of these groups we learn a subspace GP-LVM to extract the unknown low dimensional
embedded information of the high dimensional observations of the group. Furthermore, for each
group we fit a Gaussian to all the depth maps contained in the group. These Gaussians are later
used in the reconstruction stage for the classification.

In the reconstruction stage we have the Gaussians fitted to the groups and the learned models
available. We get a depth map of a previously unseen object as input. After the input data point
is processed, the probability that the input image belongs to the group is evaluated for each
group. We take the model of the group with the highest probability and let the model infer the
back view of the object. Examples of the flexibility of this algorithm are presented in the next
chapter.

3.1 Learning Stage

Here we will focus on the single parts of this stage. In the Experiments Chapter we give details
of our evaluation process to find the best clustering algorithm (K-Means, Hierarchical Cluster-
ing, Spectral Clustering) in combination with the image representation (raw data, PCA, Kernel
Descriptors).

3.1.1 Depth Map Processing

The raw depth maps R ∈ R480×640 taken from the Microsoft Kinects have a resolution of 640×
480, which we subsample to a resolution of 400 × 300. Because of the setup, the depth map
values we are interested in, the values which contain the information about the object, range
from 0.5 to 0.9, so all values above and below are set to 0:

Ri,j =

¨

Ri,j if 0.5< Ri,j < 0.9

0 otherwise.

We get depth maps, which only contain information about the object. For the learning process,
these depth maps are then centered and vectorized, resulting in the vectorized depth maps of
the observation space of the front view mF

i ∈ R
120000×1 and the vectorized depth maps of the

corresponding observation space of the back view mB
i ∈ R

120000×1, where i, j ∈ [1, N].
For centering we search for the positions cb ∈ (x , y)T of non-zero values (object information)

in the depth map R. With the non-zero value matrix C ∈ [c1, . . . ,cQ], where Q equals the number
of non-zero values. The positions of the outermost non-zero values nearest to the borders of X
can be found with:

posX
min =min(C1,:)

posX
max =max(C1,:)

posY
min =min(C2,:)

posY
max =max(C2,:).
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The size of the rectangle containing the object is computed by:

lX = posX
max − posX

min

lY = posY
max − posY

min.

To center the object, the rectangle containing the object information is copied into the middle
of an empty 400× 300 matrix:

eR((300− lX )/2, (400− lY )/2) = R(posX
min : posX

max , posY
min : posY

max)

After the objects in the depth maps are centered we vectorize the depth maps to obtain the
dataset of the observation space of the frontal view MF = [mF

1, . . . ,mF
N]

T and of the back view
MB = [mB

1, . . . ,mB
N]

T .
For the learning process the average of the two depth maps contained in each image-pair is

computed:

Òmi =
1
2
(mF

i +mB
i ).

This is done to obtain a single representation of each image-pair for the clustering process.
The single representation contains the information of both depth maps and also maintains the
position of the information. Before giving the matrix ÒM into the clustering algorithm we first
extract the low dimensional representation of it:

eM= ÒM ∗W:,1:50,

where W are principal components obtained by applying PCA to the averaged depth maps ÒM.

3.1.2 Clustering Algorithm

We make use of a spectral clustering algorithm according to Ng et al. [29]. The advantage of
such a clustering algorithm in comparison to traditional clustering algorithms based on gener-
ative models, e.g. K-means, is that it has no strong assumptions on the data, as for instance,
that the data points in a cluster have to follow a multivariate Gaussian. Additionally, with some
generative clustering methods you can get bad clustering results, because you get stuck in a
local optimum when optimizing the log likelihood. In spectral clustering the similarity matrix
between the data points is computed and the algorithm works on the eigenvectors of this matrix.

First the similarity graph G = (V,E) is created, where vi ∈ G are the input vectors emi. To
determine the edges E of the graph G, we have to define a similarity function si, j between the
vertices vi. For the thesis we use the so called ρ-nearest neighbor similarity function, where
the goal is to connect each vertex with its ρ nearest neighbors. The edges are not directed and
are created between vertices when vi is one of the nearest neighbors of vj or if vj is one of the
nearest neighbors of vi. Nρ(i) defines the ρ nearest neighbors of vi and the adjacency matrix A
of G is:

ai j =

¨

si j +α if vi ∈ Ne( j)∨ vj ∈ Nρ(i)
0 otherwise,
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where α is a small constant that helps avoiding degenerated instances with no connections at
all.

Next the Laplacian of the graph is computed as:

L= D−A,

where D is a diagonal matrix with:

dii =
N
∑

j=1

Aij.

The normalized Laplacian of the graph is given by:

bL= D−1/2LD−1/2.

The number of clusters is automatically defined with the help of the ascending sorted eigen-
values λi of the normalized Laplacian, where we determine the number of clusters k with the
eigengap heuristic:

k = argmaxi(λi+1 −λi).

Next up we select the k eigenvectors of the normalized Laplacian corresponding to the k largest
eigenvalues and put them into the matrix U= [u1, . . . ,uk] ∈ RN×k. With U defined we build the
matrix T ∈ RN×k by normalizing the rows of U:

t i j = ui j/(
k
∑

g=1

u2
i g)

1/2.

The input vectors emi correspond to the i-th row of T. To get the k final clusters G1, . . . ,Gk, we
apply K-means to the matrix T. The indices of the groups are contained in the clusters A1, . . . ,Ak,
with Ai = { j|yj ∈ Gi}.

3.1.3 Gaussian Fitting

For each group we now fit a Gaussian to the data points which is later used for classification
in the reconstruction stage. We first reshape the processed vectorized depth maps mF

i and mB
i

resulting in the matrices MF
i and MB

i to then subsample them by a factor of 0.09 and vectorize
the resulting matrices again. For fitting the Gaussians we first compute the centers of each group
with:

µi =
1
Hi

Hi
∑

j=1

mF
i +mB

i ,

where Hi is the number of data points in group Ai. The covariance matrix of the Gaussian we
get with:

σ2
i =

 

1
Hi

Hi
∑

j=1

(mj −µi)(mj −µi)
T

!

+αI,

where α is a small constant added to the diagonal of the covariance matrix to ensure that the
covariance matrix is invertible. For each cluster Ai we save the mean µi, the covariance matrix
σ2

i , the determinante of the covariance matrix and its inverse together with the number of files
contained in the cluster Hi.
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3.1.4 Model Learning

To train the subspace GP-LVM on each cluster, we make use of the processed depth maps MF and
MB again. This time we subsample them by a factor of 0.25 and vectorize the resulting matrices
again.

For the subspace GP-LVM we make use of the scaled conjugated gradient method [28] for
optimization. How to define the size of the dimensions for the latent subspaces is explained in
the Experiments Chapter, it depends on the input data and how flexible the subspace GP-LVM
has to be.

We put the submatrices MF
{Ai},: and MB

{Ai},: of the two matrices MF and MB containing the
subsampled vectorized depth maps of both observation spaces into the subspace GP-LVM. After
the model is learned, we save it for later use.

To explain how the subspace GP-LVM works (see Fig. 18) and is optimized, we will, for better
readability, substitute our two datasets of the two observation spaces, the dataset of the front
view MF and the one of the back view MB with Y = [y1, . . . ,yN]T and Z = [z1, . . . ,zN]T , where

yi ∈ R
DY

high and zi ∈ R
DZ

high. We assume that these observations had been generated from low
dimensional spaces by:

yi = f Y (uY
i ) + eY zi = f Z(uZ

i ) + eZ,

where eY ∼ N(0,σ2
Y I) and eZ ∼ N(0,σ2

ZI) are the additive Gaussian noises and uY
i ∈ R

DY
low and

uZ
i ∈ R

DZ
low are the low dimensional representations of the data points in the latent space with

DY
low < DY

high and DZ
low < DZ

high.
The two latent sub-spaces are defined as:

UY = [XS;XY] and UZ = [XS;XZ],

and we assume that XS ⊂ UY, XS ⊂ UZ and XS 6= 0. Therefore, the two latent spaces UY and UZ

can be parametrized in such a way that they have a common non-empty shared subspace XS,
with:

xS
i = gY (yi) = gZ(zi).

Hence we call XS shared subspace, XY and XZ private subspaces, where we further assume that
the relationship between the observed data and the corresponding private space representation
is a smooth mapping, with:

xY
i = hY (yi)

xZ
i = hZ(zi).

X = [XS;XY;XZ] then is the combined latent representation obtained by concatenating the
shared subspace with the private subspaces, representing the shared- and non-shared variance
in a factorized form. Given this latent structure the shared- and the non-shared variance can be
modeled separately.

To construct a subspace GP-LVM and respecting the factorized latent structure, two seperate
Gaussian processes (GPs) f Y and f Z are learned. The input space of f Y is UY, learning a
mapping to generate the observations Y. The input space of f Z is UZ and generating Z. Because
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the shared- and non-shared variance are modeled separately, the mappings f Y and f Z can only
be used on the subspaces associated with the corresponding observations.

The model is optimized by applying a gradient based method (in our case SCG) to the objec-
tive function:

{X,ΦY ,ΦZ}= argmaxX,ΦY ,ΦZ
p(Y,Z|X,ΦY ,ΦZ)

= argmaxXS,XY,XZ,ΦY ,ΦZ
p(Y|XS,XY,ΦY )p(Z|XS,XZ,ΦZ),

As shown in [11], because of the use of a gradient based method, for a good solution the
initialization of the model is crucial. In general a GP-LVM should only be applied when there
exists an analogous spectral algorithm for the initialization of the latent space. A GP-LVM can
be seen as a generative algorithm improving the solution given by a spectral algorithm.

In our case we need a spectral dimensionality reduction algorithm that finds the factorized la-
tent spaces, which separately represent the shared- and private information of the corresponding
observation spaces.

In contrast to shared GP-LVMs where the model can be initialized through PCA, with subspace
GP-LVMs the initialization with PCA is not sufficient. Therefore, Ek developed [11] an exten-
sion to the feature selection algorithm Canonical Correlation Analysis [1] (CCA) called Non
Consolidating Component Analysis (NCCA), a spectral dimensionality reduction algorithm for
finding factorized latent spaces, where shared variance and private variances are represented
separately.

Ek proposes that the shared latent subspace XS is initialised using CCA for finding directions
in the two observation spaces, which are maximally correlated. Before CCA is used, PCA is
applied to each dataset separately to avoid low variance solutions [21]. For each observation
space, CCA finds a set of basis vectors, in our case BY and BZ, so that the correlation ρ between
the projections is maximized:

ρ =
tr(BT

YYTZBZ)

(tr(BT
ZZTZBZ)tr(BT

YYTYBY))1/2
,

subject to unit variance along each direction, BT
YYTYBY = I and BT

ZZTZBZ = I.
With the basis vectors BY and BZ explaining the shared variance, Ek makes use of the NCCA

algorithm to acquire the basis vectors explaining the private non-shared variance PY and PZ of
both observation spaces Y and Z. The basis Ek is looking for should be directions of maximum
variance and orthogonal to the shared bases. Each observation space is processed separately
searching for the first direction with:

bp= argmaxppTCp,

constrained by:

pTp= 1

pT
i B= 0, (10)

where B are the bases vectors of the shared variance and C the covariance matrix of the feature
space.
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Figure 18: Graphical representation of a subspace GP-LVM, where the two observation spaces
Y and Z are generated from the latent variable X factorized into subspaces XY, XZ

representing the private information and XS modeling the shared information. ΦY
and ΦZ are the hyper-parameters of the Gaussian processes modeling the generative
mappings fY and fZ . Content taken from [11] 7

By formulating the Langrangian of the problem the first orthogonal direction can be found. To
find further consecutive directions the found directions have to be appended to the orthogonality
constraint in Eq. (10). To find the m-th direction, the orthogonality constraint looks like:

pT
m[B;p1, . . . ,pm−1] = 0.

With the bases B, PY and PZ we can initialise the subspace GP-LVM and start improving the latent
variables.

For the thesis we need a bidirectional mapping, but work with observation spaces of same
dimensionality and same modes of variability. Therefore, the subspace GP-LVM is more flexible
than we need it, e.g. it allows for observation spaces with different dimensions.

Still, we decided to make use of subspace GP-LVMs, because it not only gives us what we need
but also allows for further development.

3.2 Reconstruction Stage

Figure 19: Inferring the shape of the back view of the object: 1)
find the MAP solution for the latent representation
of the data point in Y (dotted line) 2) synthesize the
corresponding position of the point in Z (GP fZ).

In the reconstruction stage we
are given the parameters of
the Gaussians fitted to the
clusters and the learned mod-
els. When receiving a previ-
ously unseen depth map R∗ ∈
R480×640 as input, we first pro-
cess R∗ according to the pro-
cedure explained in 3.1.1 and
so obtain the processed vec-
torized input data point m∗ ∈ R10800×1.

7 image taken from: Ek, Torr and Lawrence - Talk on Shared Gaussian Latent Variable Models (2007)
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After that, we compute the log-posterior of m∗ with regard to each Gaussian, where the prior
is given by the percentage of the data contained in the corresponding cluster.

In that way the posterior probability of the input image belonging to a cluster is computed for
each cluster. We take the model corresponding to the group with the highest probability for the
reconstruction process. In the reconstruction process we first have to map the input data point
m∗ into the latent space and then sythesize the data point in the corresponding observation
space. Because there exists no direct mapping from the observation space to the latent space,
to map the data point m∗ of the observation space Y into the latent space we have to find the
MAP solution of m∗ in the latent space uY

∗ with regard to the likelihood, given by:

p(y∗|XY,XS,ΦY ,uY
∗) =N(y∗|µ,σ2),

where

µ= YT K−1
I,I kI,∗.

The variance is given by:

σ2 = k(uY
∗ ,u

Y
∗)− kT

I,∗K
−1
I,I kI,∗.

We use the MAP solution of the point in the latent space uY
∗ in combination with the GP

f Z to project uY
∗ into the data space Z and compute the probability of z∗ under the resulting

distribution. The inferred shape of the object’s back view is given by the optimized z∗.

Additionally, we first included a mixture-of-experts approach. The purpose of this approach
was to increase the quality of reconstructions of unseen objects of categories not learned in the
training stage.

The idea was that, if an input objects highest posterior probability for belonging to a group
is under a threshold of 50%, the algorithm selects the models with the highest probabilities
for the reconstruction. In this case the models with the highest probabilities are defined as the
model with the highest probability plus all models not lower than 5% of this models posterior
probability. For each of the selected models, the input object is reconstructed separately. In the
end the reconstructions are combined. This combining was the reason we rejected to make use
of this approach for our algorithm. In our approach we used a primitive combination method
by taking the weighted average of each pixel, where we used the posterior probabilities as the
weights. But as we are working on depth maps where the values in each point stand for the
distance of the pixel, this combination method resulted in poor reconstructions.

We think, putting further work into developing a more suitable combination method could
boost the quality of reconstructions on objects of untrained categories. In the last chapter we
discuss this further.
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4 Experiments

In this chapter we will present empirical evaluations on the clustering algorithms and our recon-
struction algorithm. For the clustering algorithm we compare results of K-means, hierarchical
clustering and spectral clustering evaluated in three different setups. The reconstruction algo-
rithm is first evaluated on a single category to survey the influence of the dimensionality of the
latent space and then evaluated on the complete dataset.

The dataset used for the evaluations consists of D = 259 image pairs of objects like cups,
bowls, teapots, boxes and cans (see Fig. 20).

Figure 20: Sample objects of the dataset. Black values represent depth map values of ≤ 0.6m
whereas white values represent distances of ≥ 0.9m.

4.1 Clustering

Here we present the results of the different clustering algorithms evaluated on each of the dif-
ferent input representations. Clustering is a crucial part for the reconstruction process, because
based on its results the particular objects for each model are determined.

Figure 21: An example of a cluster we rate as ‘good‘, with objects of similar shape but still not
overfitted.

Our goal in clustering is not to put only all the objects of one category in a group, but to
group objects with similar shapes independent of the category. In this thesis we evaluate the
clustering results empirically with the focus on the performance for a general use. The criteria
for a candidate for our algorithm are, that the algorithm should cluster objects of similar shape
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together. When such clusters exist and no objects of the same shape are missing we grade this a
‘good‘ cluster. When it groups only a small fraction, under 10%, of the objects of similar shape
into one cluster we grade it a ‘poor‘ cluster and if it groups clusters of too distinct shape together
this is also a ‘poor‘ cluster. We will evaluate the algorithms regarding the ratio of ‘good‘ and ‘poor‘
clusters, the percentage of data points contained in the ‘good‘ clusters, the minimal-, maximal-
and average size of the ‘good‘ clusters, as well as the average size of the ‘poor‘ clusters. The
resulting ‘good‘ clusters should contain most of the data. Due to the properties of our dataset,
they should also come up with clusters of roughly the same size. Results with the average size of
‘poor‘ clusters considerably larger than the average size of ‘good‘ clusters hints that it grouped
distinct shapes into the same cluster, because it could not differentiate between them. With the
combination of all these observations we are able to compare the algorithms and find the best
clustering algorithm for our work.

Figure 22: An example of a as ‘poor‘ rated cluster, with objects of too distinct shapes (e.g. box
and teapot).

We also provide a score with which we can compare the performances of each result, given
by the score-function:

τ= 0.3+ 0.35pG + 0.35pd − 0.15
max(Gmax − 2Gmin, 0)

Gmax
− 0.15

max(|Gav g − Pav g | − 0.2Gall , 0)

max(Gav g , Pav g)

−δ(max(|Gav g − d
p

De| − 0.15Gall , 0)),

with the penalty function δ for the ‘good‘ clusters, which punishes too small and too large
average clusters, as:

δ(x) =

¨

0.05 if x > 0

0 otherwise
,

where pG is the percentage of ‘good‘ clusters proportional to all clusters and pd is the percentage
of all data points contained in the ‘good‘ clusters. Gmin and Gmax are the minimal- and maximal
size of ‘good‘ clusters, whereas Gav g and Pav g are the average sizes of the ‘good‘- and the ‘poor‘
clusters and Gall is the size of the complete dataset.
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The score function was developed, because only punishing mixed clusters, where objects of
different clusters are grouped, is too simple a view. In some cases, where the objects have
similar shapes, these clusters are desired. The score function gives credit to the percentage of
‘good‘ clusters as well as to the percentage of objects contained in these clusters. The score
is penalized, if the difference between the size of the ‘good‘ group with the lowest number of
members and the size of the ‘good‘ group with the largest number of members exceeds 50% of
the size of the largest ‘good‘ group. If the average group size of the ‘good‘ and the ‘bad‘ clusters
differ with more then 2% of the size of the complete dataset, the score function is penalized
further. The function also punishs, if the average size of the ‘good‘ clusters differs more than
1.5% from the square root of the size of the complete dataset.

This function is designed and tuned for our dataset only and has to be adjusted for other
datasets.

For each of the different clustering algorithms, we will evaluate the results on a set of dif-
ferent input representations. The representations are the raw averaged image pairs themselves
(Setup I), the projected average image pairs after we apply PCA on them (Setup II) and kernel
descriptor features [5] extracted from the averaged image pairs (Setup III).

Kernel Descriptors [4, 5]:

For computer vision algorithms making use of image features, the design of these low-level
image features is crucial. For recognition tasks for example, orientation histograms like SIFT
[25] and HOG [10], or in the 3D-space Spin images [18] are popular choices.
In [4] Bo et al. developed a general framework to obtain low-level features from image
patches. The work is based on the insight that the inner product of orientation histograms
is a specific match kernel over image patches. Bo et al. provided a unified framework to
turn any type of pixel attribute, e.g. gradient and color, into patch-level features. In [5]
they further developed a set of five depth kernel descriptors for working with depth images.
These kernel features capture image cues like size, 3D shape and depth edges of the depth
images.
Kernel descriptors provided by Bo et al. outperform popular image features including e.g.
SIFT or, in the variant for the depth images, Spin images.
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4.1.1 K-Means

K-Means [27]:

K-Means is a clustering algorithm, using an iterative refinement technique to cluster n ob-
servations {x1, . . . ,xn} into k clusters, where each observation belongs to the cluster with
the nearest mean.

The algorithm is given the number of means k and an initial set of them, {m(1)1 , . . . ,m(1)k }.
The clustering process consists of two steps:
Assignment step: Assign each of the n observations xj, with j = 1, . . . , n, to the cluster Ci,
where i = 1, . . . , k, with the nearest mean:

C(t)i = {xj : ||xj −m(t)i || ≤ ||xj −m(t)i∗ ||,∀i∗= 1, . . . , k}.

Update step: Update the position of the mean of each cluster to be the centroid of the
observations in that cluster:

m(t+1)
i =

1

|S(t)i

∑

xj∈S(t)i

xj.

The algorithm alternates between these two steps until the assignments no longer change.

K-Means [27] has the disadvantage that we have to define the number of clusters k before-
hand. For that reason it is no candidate for our algorithm. We still evaluate its performance
with the data to get a wider comparison. We will determine the number of clusters depending
on the eigengap heuristic in the spectral clustering algorithm.

Clusters objects (itemsize )

? 1
? 2
3
? 4
? 5
6
? 7
8
? 9
? 10
11
12
13

Table 2: K-Means on the raw depth maps:
box / figurine / packet / shampoo-bottle / bottle / bowl
can / cup / tube / teapot
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Tab. 2 shows the resulting clusters when we apply K-means to the dataset of the averaged
image pairs ÒM. A ‘?‘ alongside the cluster number indicates ‘good‘ clusters, containing objects
of similar shapes. Cluster numbers without a ‘?‘ indicate clusters where too distinct objects are
grouped together (see Fig. 22). We will give examples for clusters without a ‘?‘, where we will
present the two most distinct objects in these clusters. So, the reader can relate to our decisions.

Seven clusters (A1,A2,A4,A5,A7,A9,A10) resulting of K-means on the raw data, contain ob-
jects of similar shape as was the goal. The clusters A1,A2,A5,A10 contain rectangle shaped
objects in different forms and orientation. They are overfitted and merging all of these clusters
would be preferable. The subspace GP-LVM is flexible enough to model these differences.

Figure 23: Each column stands for one ‘poor‘ cluster and shows the most distinct objects. The
clusters were obtained with K-means in Setup I.

We also get six clusters (A3,A6,A8,A11,A12,A13) where we have objects not similar but
grouped nontheless (see Fig. 23).

In the second setup the averaged image pairs are projected to a lower dimensional space
by using the first 50 principal components of PCA applied on the data. Each data point is
then a 50 dimensional vector. With this setup (see Tab. 3) we only have 6 ‘good‘ clusters
(A1,A4,A6,A7,A9,A12). Again, we also have four clusters (A1,A4,A9,A12) which would best
be grouped into a single one. The rest of them are compositions, which contain objects of too
distict shapes.

Compared to the clusters achieved with K-means on the raw averaged image pairs, 5 of them
are the same and the rest of them are also comparable. The clusters obtained with K-means on
the raw data yield a slightly better result, with 36.68% of all data points contained in reasonable
clusters, whereas in K-means on projected data only 27.03% of all data points ended up in
reasonable ones. The average size of ‘good‘ clusters in the first K-means setup is 13.57 objects
and 27.33 objects as average for ‘poor‘ clusters. In the second setup in average 11.67 objects are
contained in ‘good‘ clusters, whereas 27 objects are contained in average in the ‘poor‘ clusters.

When K-means is applied to features extracted with the kernel descriptors algorithm from the
data, we again split the data into 13 clusters (see Tab. 3). The setup clusters 37.45% of the data
points into ‘good‘ ones, with an average size of 13.86 objects. The ‘poor‘ clusters have 27 objects
per class in average. We again have 7 ‘good‘ and 6 ‘poor‘ clusters and comparable compositions
regarding both other setups.

Overall the clustering results of all setups using K-means yield poor performance regarding it
with respect to shape for the general use.
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Clusters K-means in Setup II K-means in Setup III

(? / ?) 1
(- / -) 2
(- / ?) 3
(? / ?) 4
(- / -) 5
(? / ?) 6
(? / -) 7
(- / -) 8
(? / -) 9
(- / ?) 10
(- / ?) 11
(? / ?) 12
(- / -) 13

Table 3: K-Means in Setup II and II with itemsize :
box / figurine / packet / shampoo-bottle / bottle / bowl
can / cup / tube / teapot

4.1.2 Hierarchical Clustering

Hierarchical Clustering [31]:

Instead of K-Means, which result in a flat clustering, Hierarchical Clustering outputs a struc-
tured hierarchy. The benefit of such a hierarchy is, that it holds more information than flat
results and further, the number of clusters is not required to be prespecified [31]. On the
other hand, a drawback of hierarchical clustering algorithms is, that they are, compared to
flat ones, less efficient. Where e.g. K-means has a linear complexity, most common hierar-
chical clustering algorithms have at least a quadratic complexity in the number of objects.

There exist two types of hierarchical clustering algorithms:
Agglomerative: This is a ‘bottom up‘ algorithm, where at the start each object is treated
as a singleton cluster. These are then successively merged until the algorithm results in a
single one containing all objects. Some sort of distance function is needed to find the best
matches in each step. With this approach clusters generated in an early stage of the process
are nested in clusters generated in later stages.
Divisive: A ‘top down‘ approach, which works in the opposite direction of an agglomerative
approach. At the start, there is one cluster containing all objects. Step-by-step it is split up
into smaller ones, until singleton clusters for all objects exist. This approach needs a method
for splitting a cluster.

In hierarchical clustering [31] the algorithm seeks to build a hierarchy of clusters. We use
an agglomerative approach, where each data point starts in its own cluster and is merged with
another when moving up the hierarchy. The algorithm which is used to compute the distance
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between the clusters, is the Unweighted Pair Group Method with Arithmetic Mean (UPGMA)8.
As distance metric we compute one minus the sample correlation between the data points. We
again set the number of clusters to the value obtained with the eigengap heuristic used in spec-
tral clustering. Because the results of the three different setups of hierarchical clustering differ
only slightly we will present and discuss only the best of these setups. Hierarchical clustering on
the features obtained with the kernel descriptor algorithm yields the best performance (see Tab.
4). We have four ‘good‘ compositions containing 31.27% of all data points, where we have an
average size of 20.25 objects. Three clusters consist only of one data point and additional three
consist of 3 data points. These clusters are rated as ‘poor‘ ones, because other objects of similar
shape are assigned to other clusters. When discounting these, we have three ‘poor‘ clusters with
an average size of 56 objects.

Clusters objects (itemsize )

1
2

3
? 4
5
6
? 7
8
? 9
? 10
11
12
13

Table 4: Hierarchical clustering on features extracted from the averaged image pairs with kernel
descriptors:
box / figurine / packet / shampoo-bottle / bottle / bowl
can / cup / tube / teapot

The performances of all three hierarchical clustering setups are not usable for our algorithm.
The compositions of all four ‘good‘ clusters are very similar in shape and distinct between them-
selves, which is good. They have better compositions than the ‘good‘ clusters obtained with
K-means. The ‘poor‘ ones contain either too few objects in one cluster or they contain too many
objects of distinct shapes.

8 for more information about UPGMA see http://www.icp.ucl.ac.be/~opperd/private/upgma.html
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Clusters Setup I Setup II

(?/?) 1
(-/?) 2
(?/?) 3
(?/?) 4
(-/?) 5
(?/-) 6
(?/?) 7
(?/?) 8
(?/-) 9

(?/?) 10
(-/?) 11
(?/?) 12
(?/?) 13

Table 5: Spectral Clustering on the raw- and projected averaged image pairs:
box / figurine / packet / shampoo-bottle / bottle / bowl
can / cup / tube / teapot

4.1.3 Spectral Clustering

Figure 24: The plot shows the score function value
depending on the parameter for the m-
nearest neighbor similarity function.

We use the spectral clustering algorithm ex-
plained in the previous chapter. We still
have to choose the parameter for the sim-
ilarity function, which determines the num-
ber of relevant nearest neighbors for the
clustering process. This has to be chosen
depending on the dataset. In our case we
determined the parameter empirically by
evaluating the score function of the spec-
tral clustering results with differing param-
eter values. The results can be seen in Fig.
24. We set the parameter to 12.

The benefits of spectral clustering com-
pared to K-means, mentioned in the previ-
ous chapter, is confirmed by the results in
our experiments. Although spectral cluster-
ing does not work that well combined with
the features of the kernel descriptor in Setup III, achieving the poorest results compared to the
other spectral clustering setups, it still achieves better results than the other algorithms. It re-
sults in 6 ‘good‘ and 5 ‘poor‘ clusters where the ‘good‘ ones contain 45.27% of the data without
being overfitted and are more balanced than with the other approaches.
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Spectral clustering running with either Setup I or -II (for both see Tab. 5) achieves the best
performances. With 11 ‘good‘ clusters out of 13 with Setup II, the algorithm gives the best
results in our experiments.

Figure 25: Example objects of the two
‘poor‘ clusters of spectral cluster-
ing with Setup II, where each col-
umn shows the most distinct ob-
ject shapes in both clusters.

Although, still two clusters give ‘poor‘ compo-
sitions (see Fig. 25), spectral clustering with
Setup II can be used for our algorithm. The re-
sults with Setup I yield only slightly worse per-
fomances, with 10 ‘good‘ clusters out of 13 and
covering 70.27% of the data.

Tab. 6 gives an overview of all performances
of the clustering algorithms. With K-means and
hierarchical clustering too many data points are
clustered into groups with too distinct shapes or
into clusters which are overfitted regarding the
shapes. When running subspace GP-LVM on these
clusters, either the resulting model would be un-
able to extract the commonly shared shape char-
acteristic of the group (when object shapes are
too distinct) or the flexibility of the model would
be wasted (when the composition with respect to

shape in the clusters is overfitted). Still the composition of the ‘good‘ groups in hierarchical
clustering showed some potential for finding similar, but not overfitted clusters. It should be
re-evaluated when working with very large datasets.

With spectral clustering, especially with setup II, we obtain well composed groups which are
not overfitted. The clusters are well balanced regarding the size and the model only has to
handle 2 clusters with poor group compositions. Based on the results of the evaluation we
decided to make use of the spectral clustering in setup II for our algorithm.

Clustering size τ
Algorithm ? % clusters ? % of data ? min ? max ? avg avg.‘bad‘ SCORE

KMR 53.85% 36.68% 7 44 13.57 27.33 0.4665
KMPCA 46.15% 27.03% 7 44 11.67 27 0.3465
KMKD 53.85% 37.45% 7 52 13.86 27 0.4647
HCKD 30.77% 31.27% 1 107 20.25 56 0.2876
SCR 76.92% 70.27% 12 24 18.20 25.67 0.8007
SCPCA 84.62% 82.24% 12 29 19.36 23 0.8581
SCKD 54.55% 45.17% 12 25 19.50 28.40 0.6224

Table 6: A comparison of the different clustering algorithms with: ‘KM‘ stands for K-means, ‘HC‘
for hierarchical clustering and ‘SC‘ for spectral clustering. The additional letters stand
for the feature set used, where ‘R‘ stands for raw data, ‘PCA‘ for the projected data via
PCA and ‘KD‘ stands for the features extracted with the kernel descriptors algorithm.
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4.2 Reconstruction

Figure 26: The plot shows the progression of the aver-
age error-rate (normalized squared differ-
ence) by increasing latent space size. The
red line is for the error of the model trained
on the boxes dataset, the blue for the error
of the model trained on the cups dataset.

Here we present the results of our re-
construction algorithm. We first evalu-
ate the influence and properties of the
size of the shared latent space regarding
the reconstruction results. Therefore,
GP-LVMs are learned on a single cate-
gory (boxes and cups separately) with
differing latent space dimensions, rang-
ing from 2D in double steps to 16D. The
box dataset consists of 28 objects (see
Fig 27), whereas the cups dataset con-
sists of 68 objects. When setting the la-
tent space to 2 dimensions the result-
ing depth maps of reconstructed cups
yield better results than the results for
the boxes. This seems to depend on
the variations of shapes in each dataset.
The box dataset has more distinct ob-
ject shapes than the cup dataset with an
average error-rate (normalized squared
difference) of 0.1679 for the the cups
and 0.2659 for the boxes.

In this setup the algorithm is underfitted (see Fig. 31), but already yields reasonable results
for the cups. When increasing the latent space to 4 dimensions the box reconstruction results
yield a slightly better performance with 0.2592 than with only 2 dimensions. Step by step when

Figure 27: The complete box dataset.

increasing the shared latent space the results of the infered reconstructions get better (see Fig.
26). With a two dimensional latent space the model for the cups is signficantly better than the
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result of the reconstruction of the box. When increasing the latent space dimensionality, the
quality of the results approach each other.

Figure 28: Examples of the results of the reconstruc-
tion process, displaying the input objects
in the yellow boxes, the inferred objects
in blue boxes and the ground truth in the
green boxes.

The classification algorithm, needed
for the evaluation on the full dataset,
works fine (see Fig. 29) with only
one out of 20 test images resulting in
a wrong classification. With a reached
successful classification in 95% of all
cases it is a fundamental part of the
good performances of the algorithm.

Due to the equally good performance
of the clustering algorithm additional
to the flexibility of the subspace GP-
LVM the evaluation results on the full
dataset yield an average error-rate of
0.1343. Only one of our testdata objects
results in a completly wrong reconstruc-
tion (see Fig. 30). This example shows
that the algorithm cannot handle noise
surrounding the object. Because of the
noise the reconstruction completly fails.

The subspace GP-LVMs are learned
on a 7 dimensional shared latent space
with 2 dimensions for each private la-
tent space. We only allow for 30 iter-
ations in the optimization process. We
set the iterations to such a low value,

compared to the iterations used by Ek, because the algorithm takes in average 5 minutes per
iteration of the optimization step on a 2.67GHz quad-core cpu with 8GB internal memory. For
30 iterations the algorithm needs 150 minutes. When training 13 models, the algorithm needs
in total approximately 32.5 hours.

Figure 29: An illustration of the classification. The probabilities that the input object is related
to each cluster is computed. Cluster 7 has a probability of 41.51%. It is displayed on
the right side of the figure.
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In conclusion, to classify the dataset we used, it is to say that it does not consist of too
complicated objects for the reconstruction. For example we did not include non-rigid objects. It
consists of 10 different object categories and is versatile. Evaluating the algorithm again with a
larger, more complicated and more versatile dataset should result in a more detailed estimation
of the flexibility of this algorithm.

Figure 30: The input data (object in the yellow box) should be completly cleaned of noise sur-
rounding the model shape (marked with the red circle). Otherwise the reconstruction
(object in the blue box) fails. The ground truth is displayed in the green box.

Figure 31: If the latent dimensionality is too low for the data, the model for the reconstruction
is underfitted, resulting in poor reconstruction results (see reconstruction in the blue
box).
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5 Conclusion

In this thesis we developed a multiclass single view 3D shape reconstruction algorithm, in a
setup with two corresponding observation spaces. The reconstruction algorithm mainly consists
of three core parts, 1) The flexible subspace GP-LVM for learning the common low dimensional
shape characteristics of the given objects, 2) the clustering algorithm to split the multiclass data
into groups, where each group contains objects that have similar shapes and 3) the classification
algorithm which, depending on the input data, selects the model for inferring the back side
shape of the object.

The algorithm first learns the shape characteristics of the objects from data, by dividing the
given dataset into groups of similar shapes and then learning a subspace GP-LVM on each group.
When the algorithm is given a depth map for reconstruction of a previous unseen object, a clas-
sification algorithm assigns the given object to a group depending on the shape. The associated
subspace GP-LVM is used to synthesize the corresponding representation of the other observation
space (back side view of the object).

The experiments on our dataset have shown that the algorithm achieves reasonable results
on the test data when provided with diversified data and a large enough latent space, which
depends on the composition of the input objects.

5.1 Dataset

Early evaluations on a incomplete dataset have also shown, that the objects given into the
subspace GP-LVM should have similar shapes, but should not be too equal. It means that if a
model is trained, e.g. on cups, the provided objects for the learning process should not only
consist of cups of the same size and form, but should contain cups of various sizes and forms,
so that the model is not overfitted in the end. Otherwise the algorithm could have problems to
generalize the object characteristics and end up with giving bad reconstruction results on cups
of a different size or form.

The dataset we used only contains a small number of objects and an experiment with a more
versatile dataset could result in further conclusions. What we did and what always should be
done, if possible, is centering the data, so that the model does not have to incorporate the
position of the object into the latent space variables. Without centering, the algorithm would
still work, but the model would lose some of its flexibility.

5.2 Clustering

In our approach the clustering algorithm determines the composition of each group, which is
used for learning a subspace GP-LVM. A clustering algorithm that does not result in overfitted
groups is crucial, because otherwise we again would end up with a model having problems
to generalize the object characteristics. On the other hand, the obtained clusters should not
contain objects of too distinct shapes, otherwise the model would reach its limit also resulting
in poor reconstruction results.

As shown in the previous Chapter the clustering algorithms k-means and hierarchical cluster-
ing are not suitable for our algorithm. The clusters obtained by k-means tend to be too overfitted
or result in clusters with objects of too distinct shapes to learn a model on them. Additionally,
for k-means you have to define the number of clusters the algorithm should produce, which
is also contradictory to our goal to make the algorithm unsupervised. So, when summing up

39



the properties of k-means, it shows that it is not usable as a core part for our algorithm. With
hierarchical clustering most clusters tend to be overfitted or larger than desired, containing ob-
jects of highly distinct shapes. As a consequence, the clusters are highly unbalanced, with some
containing almost one third of all objects, whereas others contain only a single object.

Spectral clustering works best for splitting the data into groups depending on their shapes.
The clusters obtained are not overfitted and well balanced. As shown in the experiments, our
algorithm works well when the models are learned with the clusters obtained via spectral clus-
tering.

5.3 Future Work

As shown, the algorithm presented is already highly flexible. It can be modified to work in a
different setup, e.g. with other and/or more observation spaces. The biggest disadvantage of
the current implementation is the computation time of the optimization of a model. Currently,
to learn a model with only 30 optimization steps, the algorithm takes roughly 150 minutes on a
computer with an Intel i7 920 cpu with four 2.67GHz cores and an internal memory of 8GB. An
implementation using the multiple cores of a computer could speed up this process significantly.

5.3.1 Unlearned Categories

The algorithm in its current state tries to infer the shape of a previous unseen object by using the
model corresponding to the cluster with the most similar objects. So if we are given an object
of a category which was never learned, the algorithm uses the model with the highest similarity
to infer the back side shape of the object.

In that case, to enhance the quality of the reconstruction, we tried to integrate a mixture-
of-experts approach into the reconstruction process (mentioned in the Methods-Chapter). The
model used a combination of clusters instead of only one to infer the shape of the object. The
models for the reconstruction were chosen depending on the posterior probabilities that the
input object belongs to them.

Each of the chosen models infered the shape for the reconstruction independently, before
combining the results depending on the probabilities.

The approach worked well, except for the combination method. When we combined the dif-
ferent results, we used a primitive weighted average of the pixels, where we used the posterior
probabilities as weights. This combination method is not suitable for the task and further work
has to be put in, to develop a more suitable approach.

A more convenient combination method could be, to use a grid of static size and fit it to the
object of the reconstruction results. The combined result could be obtained by computing the
weighted average (position and value) on each grid point.

5.3.2 Cluster Merging

The clusters, obtained with the evaluated algorithms, sometimes resulted in clusters where the
shape of the objects of different clusters were similar. In these cases our algorithm learns a
subspace GP-LVM on each of them. This can result in overfitted models and also increases the
computation time of the learning process significantly.
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Figure 32: An example of two clusters (blue and red) that could be merged to enhance the
performance of the reconstruction algorithm.

Depending on the applied algorithm and the dataset, a cluster merging algorithm could be
integrated to optimize them. This algorithm could help to prevent these overfitted clusters to
make use of the full flexibility of the subspace GP-LVM. It would also speed up the learning
process by reducing the number of models which have to be optimized.
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