
Learning Manipulation by Sequencing Motor
Primitives with a Two-Armed Robot

Rudolf Lioutikov, Oliver Kroemer, Guilherme Maeda and Jan Peters

Technische Universitaet Darmstadt, Intelligent Autonomous Systems
Hochschulstr. 10, 64289 Darmstadt, Germany

{lioutikov, kroemer, maeda, peters}@ias.tu-darmstadt.de

Abstract. Learning to perform complex tasks out of a sequence of sim-
ple small demonstrations is a key ability for more flexible robots. In this
paper, we present a system that allows for the acquisition of such task ex-
ecutions based on dynamical movement primitives (DMPs). DMPs are a
successful approach to encode and generalize robot movements. However,
current applications involving DMPs mainly explore movements that,
although challenging in terms of dexterity and dimensionality, usually
comprise a single continuous movement. This article describes the im-
plementation of a novel system that allows sequencing of simple demon-
strations, each one encoded by its own DMP, to achieve a bimanual
manipulation task that is too complex to be demonstrated with a single
teaching action. As the experimental results show, the resulting system
can successfully accomplish a sequenced task of grasping, placing and
cutting a vegetable using a setup of a bimanual robot.

1 Introduction

With further advances in the field of autonomous robotics the role of imitation
learning has become increasingly important. A state-of-the-art approach to skill
learning from demonstrations is the usage of dynamical movement primitives
(DMPs). While DMPs have been successfully applied to a multitude of both
discrete (point-to-point) [1, 2] and rhythmic (cyclic) movements [3, 4], the possi-
bility to sequence various DMPs to achieve a more complex task has not received
as much attention. Example tasks for discrete DMPs include the ball-in-a-cup
game [1] and hitting a ball [2]. Where rhythmic DMPs have been applied to
play drum [3] and to walk [4]. While those examples are complex in nature, the
generalization properties of DMPs allows them to encode these tasks by a single
primitive.

However, these properties also enable the sequencing of multiple DMPs in
order to achieve challenging multi-step tasks which can not be represented by a
single primitive. Examples of such multi-step activities include difficult prepa-
ration and assembly tasks, which additionally take place in constantly changing
environments. Therefore the ability to generalize and adapt those tasks becomes
an important aspect of their execution. Such flexibility is not given by encoding

2

the entire task as a single primitive. This motivates the need for sequences of
DMPs.

Breaking the task down into multiple steps allows for the generalization of
each steps and therefore increases the adaptability of the entire task significantly.
At the same time the teaching of the single steps is easier and more robust with
respect to complications during the teaching than the attempt to teach the entire
task at once. By using DMPs for each step it is possible to encode each step as
a single primitive regardless of discontinuities between the demonstrations. This
approach is illustrated in Fig. 1, where a sequence of three different demonstra-
tions (in gray), each corresponding to one step, is used to achieve a multi-step
task. Note that the primitives obtained from the demonstration do not create a
continuous chain (in gray). However, continuity can be enforced by generalizing
DMPs to different initial and final conditions such that the resulting movement
is feasible (in red).

Generalized DMPs
(execution of the task)

Individual demonstrations
(teaching of the task)

Sub-task 1

Sub-task 2

Sub-task 3

Start

Fig. 1. Sequence of demonstrated steps where each step is encoded by a DMP.

Since bimanual manipulation is one of the key elements to have robots au-
tonomously accomplishing complex tasks, we also motivate this work by a task
that requires the use of two manipulators. As illustrated in Fig. 2 we propose
teaching both arms with independent sequences of movement primitives, while
still demaning a colaborations between the manipulators in order to successfully
complete the task.

The contribution of this work is to exploit the inherent characteristics of
DMPs for the sequencing of multi-step and bimanual tasks. Additionally a mod-
ular system architecture is presented which combines the widespread ROS frame-
work with the real-time Simulation Laboratory (SL). The DMP-based bimanual
manipulation is evaluated on an advanced robotic system in a vegetable cutting
task. The experiments show that, DMPs become a natural choice for bimanual
manipulation due to their inherent generalization and time scaling capabilities.

3

Left manipulator Right manipulator

Fig. 2. Illustration of a bimanual task, by using a sequence of DMPs.

2 Related Work

In this work the sequencing of DMPs is proposed in order to achieve complex
tasks. In particular we focus on bimanual manipulation, where each primitive
finishes with zero velocity, which is the appropriate boundary condition for move-
ment representation with DMPs.

Certainly, for applications outside the scope of manipulation, zero velocity
at the transition of primitives can be restrictive and modifications have been
proposed. A simple modification presented in [5] is to start the next primitive
before the previous one finishes by taking advantage that it is possible to spec-
ify the initial velocity condition for the next DMP. In [6], the authors propose
a modification of the original DMP for hitting and batting such that the final
velocity of a DMP can be specified. Although the original in [6] did not aim at
sequencing of primitives, it could be adopted as an extension of this paper to
address transitions with non-zero velocity. An approach for sequencing DMPs
based on overlapping the last and first kernels of subsequent primitives is pre-
sented in [7], which guarantees smooth transitions in position and velocity of the
trajectory.

In general, the use of DMPs for bimanual manipulation has been much less
explored when compared to single-arm manipulation tasks. In [8], a dual-arm
system based on DMPs was used to learn pool stroke movements and move-
ments to flip a box using a pair of chopsticks. The demonstration was made by
kinesthetic teaching where the teacher taught both hands at the same time. The
left and right arm swing movements for maintaining the robot balance during
walking were also learned by DMP in [9] where the demonstration was obtained
by motion capture from real human walking. DMPs were also applied to make
a robot lift a box with both hands [10] with their motions being coupled by
virtual springs. Regarding DMP use in dual-am tasks, this work differs from the
previously cited works as the demonstrations are independent, such that each
arm executes its own sequence of canonical systems.

4

3 Dynamical movement primitives

Dynamical movement primitives (DMPs) represent movements in the form of a
dynamic system

τ ż = αz[βz(g − y) − z] + f(x)

τ ẏ = z
(1)

where τ is a temporal scaling variable that controls the duration of the move-
ment, αz and βz are positive constants given as design parameters, and f(x) is a
forcing function. When f(x) is zero, the movement described by (1) is that of a
critically damped, linear spring-damper system with stiffness αzβz and damping
αz whose equilibrium point is the goal g.

The forcing function is usually represented as a linear combination of N
pre-defined basis functions ψi as

f(x) =

∑N
i=1 ψi(x)∑N
i=1 ψi(x)

wix, (2)

where wi are weights that can be regressed from a given demonstration. The
function f(x) represents a force that acts on the linear spring-damper system,
which allows to represent arbitary trajectories.

The phase variable x acts as a replacement for time and synchronizes the
movements. It is given by the canonical system

τ ẋ = −αxx. (3)

The canonical system indexes the activation of the basis functions and always
starts with 1.

As usual, this work adopts normalized Gaussian kernels with centers ci and
widths determined by hi

ψi(x) =
exp[−hi(x− ci)

2]∑N
i=1 exp[−hi(x− ci)2]

. (4)

Given an observed movement of duration T , for example as a demonstrated
movement via kinesthetic teaching, the required forces fdemo can be computed
from (1) as

fdemo = τ2ÿdemo − αz[βz(g − ydemo) − τ ẏdemo]. (5)

The weights wi in (2) can then be regressed using least square estimation

wi =
xTΨiftarget
xTΨix

, (6)

where x = [x0, ..., xT]T , fdemo = [fdemo,0, ..., fdemo,T]T , and Ψi = diag([ψ0, ..., ψT]).
For a thorough and recent review on DMPs refer to [11].

5

4 System Architecture

In addition to the evaluation of DMP sequences, we briefly introduce a system
which enables the fast demonstration, learning, and execution of DMPs. We
want the possibility to easily integrate the work of others and access a variety
of different features. For these reasons we chose to make use of an existing
system. A framework which proved to be a reliable and widely accepted choice
is ROS. ROS offers a large variety of tools and libraries and even supports
multiple languages. These features make it an attractive choice for multiple
areas of robotics. The goal of performing highly dynamic tasks, in real-time on
robots demands performance critical, reliable, high-frequency control. A system
which was successfully applied on a multitude of such tasks is the Simulation
Laboratory (SL). SL is a simulation as well as a controller for the real robot.
Additionally it offers various functionalities which facilitate the work on robots
significantly.

In order to benefit from both systems we introduced a new system, entitled
SL robcom , which connects ROS and SL. Simplified SL robcom can be summa-
rized as a framework to send UDP based commands to SL, including a convenient
API for clients and a corresponding server in SL. In this setup we distribute the
software over two computers. The first computer, SL-PC, runs SL and functions
as a real-time controller for the real robot. SL exchanges motor commands and
sensor information with the real robot on a 1kHz basis. Therefore the task loop
of SL is subject to strict real-time constraints. The second computer, ROS-PC,
runs ROS and executes additional, potentially resource heavy applications. A
simplified illustration of the architecture is shown in Figure 3.

Robot ROS-PC

ROS

Perception

SL-PC

Decision making

SL_robcom client

. . .

SL

Simulation

Real-time control

SL_robcom server

. . .
Motor

SL_robocom
command

Motor
command

Fig. 3. Simplified illustration of the system architecture applied in this work.

In order to not violate the real time constraints, the server receives the mes-
sages in a separate thread. The message is passed to the SL task loop after all

6

packages were successfully received and the message was parsed. Meanwhile the
robot remains in an idle state. After the command was executed, the robot re-
turns to the idle state. Alternatively, if interrupted by another command, the
robot starts executing the new command. The ROS-PC is running a node, which
uses the client API of SL robcom to communicate with SL while using various
ROS packages. Given this setup we can now use the modularity and the various
features of ROS without endangering the real-time constraints on the SL-PC.

SL robcom is not limited to the communication between ROS and SL, but
offers a client API which can be accessed without ROS, e.g. directly via C++
and Matlab.

5 Experimental Setup

We evaluate the sequencing of DMPs on a complex multi-step cutting task. The
task is performed by a bimanual humanoid platform and was executed after a
single demonstration of each sequence.

5.1 Hardware

For this task we used the Darias robot platform, which is shown in Figure 4. It
consists of a dual-arm setup based on the third generation Kuka Light-Weight
Robot arm with 7 DoF each. Each arm has a five-finger DLR-HIT Hand II with
15 DoF each, i.e. three per finger. During experiments, low-gain position-based
impedance control running at 1 kHz was adopted. The position and orientation
of the cutting board were tracked using am optitrack motion capture system.

Fig. 4. The two-arm, two-hand robotic platform used for bimanual manipulation.

7

(a) (b) (c)

(i) Kinesthetic teaching of the left arm.

(d) (e) (f)

(ii) Kinesthetic teaching of the right arm.

(iii) the taught cut and the demonstration of the final movement

Fig. 5. The demonstration of the task. The top row (i) shows the demonstration of
the reaching and the grasping of the eggplant, as well as the position on the cutting
board. In the middle row (ii) the knife is lead to the eggplant and a subsequent cutting
motion is taught. The bottom row (iii) shows the final cut as well as the demonstration
of the final position.

5.2 Cutting Task

The robot is supposed to grasp an eggplant, place it and keep it on a tracked
cutting board with his left hand, while his right hand holds the knife, positions
it over the eggplant and cuts the eggplant. The task is divided into multiple
steps, where each step is first demonstrated to the robot by kinesthetic teaching
and afterwards executed autonomously as a sequence of learned DMPs. During
the autonomous execution, both the cutting board and the eggplant were placed
on different positions than during the teaching. In this manner we demonstrate
the generalizing ability of DMPs and the resulting adaptability of the complete
task. For each step a set of 22 DMPs are learned for each arm. The first seven
encode the position and the orientation of the end effector, where the position is
given as X,Y,Z coordinates and the orientation as an quaternion. The remaining
15 DMPs represent the joint position for the fingers. During the generalization

8

of the DMPs it is not granted that the quaternions stay normalized, therefore it
is important to normalize the resulting quaternions before applying them.

For safety reasons, the task starts with the robot already holding the knife
in his right hand.

5.3 Teaching

The demonstrations of the single steps are performed independently by kines-
thetic teaching, shown in Figure 5. During the teaching, both arms remained
in gravity compensation mode. Starting from the initial posture, the left arm
approaches the eggplant and grasps it. Afterwards, the eggplant is picked up
and positioned relative to the cutting board, Figure 5(i). Next the right arm po-
sitions the knife over the eggplant and, subsequently, performs the cut, as shown
in Figure 5(ii). After the successful cut, the left hand releases the eggplant and
both arms move back to their final position, Figure 5(iii).

The task is initialized by sending a command from the ROS-PC to the SL-PC
which orders the robot to go into the initial posture. In addition a task space for
the single steps can be defined, i.e. setting the goal relative to the object. For each
subsequent demonstration, a corresponding command is sent from the ROS-PC
to the SL-PC, which transfers the robot into gravity compensation mode and
starts the recording of the joint positions and the end effectors positions and
orientations in task space. Each step is demonstrated within a time frame from
10 to 18 seconds. After each demonstration the recorded data is returned from
the SL-PC to the ROS-PC where the data is processed and used to learn the
DMP weights, while at the same time the next step on the real robot can be
demonstrated. Once all weights have been learned the user at the ROS-PC can
send the weights as part of the corresponding command to the SL-PC in order
to execute the learned DMP on the real robot. Again data can be recorded and
sent back in order to compare the demonstrated and the executed trajectory.

5.4 Results

In order to show the generalizing ability of DMPs and the resulting adaptability
of a sequence of DMPs, we do not simply reproduce the learned trajectories.
Instead we increase the execution speed by a factor of about two, which leads
to an 8 second execution per step. Furthermore, we change the position of the
eggplant as well as the position of the cutting board. The grasps are defined
relative to them, and are therefore adopted automatically. In Figure 6 both
the demonstrated and the executed end effector trajectories are shown. Even
though the positions of the eggplant and the cutting board changed, the robot
was able to perform similar motions which resulted in the successful execution
of the task. The annotations (a). . . (f) and (a’). . . (f’) correspond to different
steps and positions during the demonstration and the execution of the task.
Corresponding pictures of the actual robot platform can be found in Figure 5
and Figure 7. It is also notable that the executed trajectories are smoother than
the demonstrations. This effect occurs due to the clean up effect of the DMPs.

9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5
y position (m)

x
po

si
tio

n
(m

)
(a)

(b)

(c)

(d)

(e)

(a’)
(b’)

(c’)
(d’)

(f)

(e’) (f’)

Demonstration
Generalization

Fig. 6. Trajectories of the demonstrated (green) and generalized (blue) motions pro-
jected on the XY-plane. The x and y axes are arranged accordingly to the perspective
of the robot. The annotations (a). . . (f) correspond to the steps and position depicted
in Figure5(a). . . (f). The annotations (a’). . . (f’) relate analogously to Figure7.

The magnitude of this effect depends on the number of Gaussian kernels as well
as their bandwidth. A higher number as well as a smaller bandwidth lead to a
less expressive effect.

During the execution of the task it was exposed that the taught cutting
motion, if only executed once, was not sufficient to cut through the eggplant.
Instead the cutting motion had to be executed at least three times. The forces
applied by the human during the demonstrations are currently not learned and
therefore the robot, cannot reach the desired position in one execution. In ad-
dition, the position of the knife in the hand varies between demonstration and
execution. Since the cutting motion was trained with one specific posture of the
knife a different posture makes the demonstration less effective. A solution to
the later problem would be to track the knife and the learn the cutting motion
with respect to the knifes posture instead of the hand posture. Thus, no matter
the position of the knife inside the hand the relation between knife and eggplant
would be maintained. Further improvement of the cutting could be achieved by
representing the motion as a rhythmic DMP, which is executed until the cutting
is completed.

A limitation in the current robot-setup is, that it is impossible to teach forces
to the robot. This means that once the robot reaches the desired configuration
it will not exert any forces upon the object. For deformable objects like the
eggplant, this problem can be circumvented by teaching a grasp that deforms
the object slightly. For non-deformable objects, like the knife, the taught con-
figuration needs to be modified manually, such that the attempt to reach this
position will create enough force to keep the object in a stable position. Instead
of relearning the weights or changing the desired goal state directly, we define
those modifications as offsets in the goal state. These offsets can be passed to
the command, which incorporates them into the target configuration, before the
command is sent to the SL-PC.

10

(a’) (b’) (c’)

(i) Execution of the generalized steps of the left arm.

(d’) (e’) (f’)

(ii) Execution of the generalized steps of the right arm.

(d’) (e’) (f’)

(iii) The executed cut and movement to the final position.

Fig. 7. The execution of the task. The top row (i) shows the autonomous execution
of the learned DMPs, generalized with respect to the position of the eggplant and the
cutting board. In the middle row (ii) the knife is positioned above the eggplant and
the cutting motion is executed. The bottom row (iii) shows the executed cut as well as
the movement to the final position.

6 Conclusion

This work presented the implementation of the DMP framework to learn and
generalize tasks represented as a sequence of primitives on a dual-arm robotic
system. The sequencing allowed the execution of a cutting task that can be
naturally demonstrated as a concatenation of movements associated to the of
sub-goals of the task. Also, our framework allows each arm to be taught and
executed independently of each other. The system architecture comprised the
integration of the widely used robotics framework ROS with the real-time sim-
ulation and control execution capabilities of SL. Our implementation allows the
seamless demonstration of a sequence of sub-tasks while learning DMP weights
for a subsequently generalized execution of the task. The SL robcom system will
be made publicly available in the near future.

11

Acknowledgment

The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7-ICT-2013-10) under grant
agreement 610878 (3rdHand).

References

1. Kober, J., Mohler, B., Peters, J.: Learning perceptual coupling for motor primi-
tives. In: Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ Interna-
tional Conference on, IEEE (2008) 834–839

2. Mülling, K., Kober, J., Kroemer, O., Peters, J.: Learning to select and generalize
striking movements in robot table tennis. The International Journal of Robotics
Research 32(3) (2013) 263–279

3. Schaal, S.: Dynamic movement primitives-a framework for motor control in humans
and humanoid robotics. In: Adaptive Motion of Animals and Machines. Springer
(2006) 261–280

4. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learn-
ing from demonstration and adaptation of biped locomotion. Robotics and Au-
tonomous Systems 47(2) (2004) 79–91

5. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and generalization of
motor skills by learning from demonstration. In: Proceedings of the 2009 IEEE
International Conference on Robotics and Automation. (2009) 763–768

6. Kober, J., Mulling, K., Kromer, O., Lampert, C., Scholkopf, B., Peters, J.: Move-
ment templates for learning of hitting and batting. In: Proceedings of the 2010
IEEE International Conference on Robotics and Automation, IEEE (2010) 853–858

7. Kulvicius, T., Ning, K., Tamosiunaite, M., Worgotter, F.: Joining movement se-
quences: Modified dynamic movement primitives for robotics applications exem-
plified on handwriting. Robotics, IEEE Transactions on 28(1) (2012) 145–157

8. Pastor, P., Kalakrishnan, M., Chitta, S., Theodorou, E., Schaal, S.: Skill learn-
ing and task outcome prediction for manipulation. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on, IEEE (2011) 3828–3834

9. Matsubara, T., Hyon, S.H., Morimoto, J.: Learning parametric dynamic movement
primitives from multiple demonstrations. Neural Networks 24(5) (2011) 493–500

10. Gams, A., Nemec, B., Zlajpah, L., Wachter, M., Ijspeert, A., Asfour, T., Ude,
A.: Modulation of motor primitives using force feedback: Interaction with the
environment and bimanual tasks. In: Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, IEEE (2013) 5629–5635

11. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical
movement primitives: learning attractor models for motor behaviors. Neural com-
putation 25(2) (2013) 328–373

