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Abstract—While reward functions are an essential component
of many robot learning methods, defining such functions remains
a hard problem in many practical applications. For tasks such
as grasping, there are no reliable success measures available.
Defining reward functions by hand requires extensive task knowl-
edge and often leads to undesired emergent behavior. Instead,
we propose to learn the reward function through active learning,
querying human expert knowledge for a subset of the agent’s
rollouts. We introduce a framework, wherein a traditional learn-
ing algorithm interplays with the reward learning component,
such that the evolution of the action learner guides the queries
of the reward learner. We demonstrate results of our method on
a robot grasping task and show that the learned reward function
generalizes to a similar task.

I. INTRODUCTION

An important goal of Reinforcement Learning (RL) is to
yield more autonomous robots. However, RL methods require
reward functions to guide the agent towards a desired be-
havior. Such reward functions are usually hand coded and,
unfortunately, defining rewards for real robot tasks manually is
challenging even for relatively well-understood problems such
as grasping. Thus, hand coding reward functions is shifting
the problem of requiring an expert to design a hard coded
controller to requiring a hard coded reward function.

Despite the variety of grasp stability measures that has been
developed [34], it has been shown that the resulting grasps
are outperformed by grasps learned from kinesthetic teach-
in [3, 23]. This example shows that even experts will often
design reward functions that are not effective in practice, or
lead to undesired emergent behavior [27].

To avoid specifying reward functions, Inverse RL (IRL)
extracts a reward function from demonstrations [30, 31, 36].
For many tasks, such demonstrations can be obtained through
methods such as kinesthetic teach-in or tele-operation. Unfor-
tunately some skills, such as dynamic skills, are often hard to
demonstrate (for example, teaching a robot to throw a basket
ball). Moreover, both methods require sufficient proficiency of
the demonstrator which may lead to the demonstrator having
to truly become an expert in performing the task first.

While it may be difficult to analytically design a reward
function or to give demonstrations, it is often easy for an expert
to rate an agent’s executions of a task. Thus, a promising
alternative is to use the human not as an expert in performing
the task, but as an expert in evaluating task executions.

Based on this insight, preference based algorithms allow the
expert to rank executions and learn a controller based on these
rankings [2, 6]. The generally used approach in ranking is to let

Fig. 1: The Robot-Grasping Task. While grasping is one of the most
researched robotic tasks, finding a good reward function still proves
difficult.

the expert rank the previously best sample against the current
sample, which is an intriguing idea, as humans are better at
giving relative judgments than absolute judgments. However,
this approach only provides a single bit of information. The
technical term describing how much information human sub-
jects can transmit for a given input stimuli is called channel
capacity [25]. The channel capacity is a measure for how many
input stimuli subjects can distinguish between. In a review of
several experiments, Miller [25] concludes that humans have
a general channel capacity somewhere between 1.6 and 3.9
bits for unidimensional stimuli. Adding more dimensions to
the stimuli further increases this value.

Experiments have also been performed to find out whether
humans can transmit more information when labelling stimuli
according to predescribed categories or when being allowed to
rate on a scale [15]. While there was no significant difference,
subjects performed better when rating on a scale.

Based on these insights, we propose an alternative frame-
work in which the human expert can assign numerical values
to observed demonstrations. Furthermore, numerical rewards
allow to indicate strong preferences over demonstrations.
Unfortunately, as already shown by Thomaz and Breazeal [35]
and by Cakmak and Thomaz [5], humans have considerable
noise in their ratings of actions. To deal with this mismatch
between good reward functions for policy search (PS) methods
and noisy human rating systems, we propose to learn a prob-
abilistic model of the reward function. In this paper, we take
advantage of the Gaussian Process (GP) regression framework
as well as the Bayesian Optimization (BO) literature. Having
access to BO methods, allows us to efficiently minimize
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Fig. 2: Sketch of the elements of different possible approaches. The left column shows the ‘vanilla’ RL where a reward function is assumed.
The middle column shows the proposed active reward learning approach, which shares the policy learning component with vanilla RL but
models a probabilistic reward model that gets updated by asking for expert ratings sometimes. The right column shows the BO approach,
where actions are chosen that maximize the utility function (for example one of the acquisition functions presented in II-A1 and requires an
expert rating for each of the chosen actions.

the number of expert interactions, which is essential when
designing methods for ‘autonomous’ agents. We evaluate the
proposed method on a series of simulated and one real robot
task and we also show that a reward function which is learned
for one task (grasping a box) can be used to learn a new task
(grasping a pestle).

II. METHOD

While there are many approaches to RL, Policy Search (PS)
is especially well suited for real robot tasks. It does not rely
on exhaustive sampling of the state-action space and, as a
result, many recent advances in robot learning rely on policy
search [22, 20, 26]. We consider the contextual episodic PS
case with continuous contexts s ∈ S and continuous control
parameters ω ∈ Ω. We use the term ‘context’ instead of the
more general term ‘state’ to indicate the initial state of the
robot and the environment. The distribution over contexts
is denoted by µπ(·) Whereas the traditional RL notation
uses actions a, we instead write control parameters ω to
clarify that we directly optimize for the parameters of a
controller which can, for example, be a Movement Primitive
as discussed in Section III-B. Executing a rollout with control
parameters ω results in a trajectory τ ∼ p(τ |s,ω), where the
trajectory encodes both, the robot’s state transitions as well
as relevant environment state transitions. The agent starts with
an initial control policy π0(ω|s) in iteration 0 and performs
a predetermined number of rollouts. After each iteration, the
agent updates its policy to maximize the expected reward

Es,ω,τ [R(τ )] =

∫∫∫
R (τ ) p(s,ω, τ ) dτ ds dω, (1)

with p(s,ω, τ ) = p(τ |s,ω)π(ω|s)µπ(s). Parameter-based
PS has been shown to be well suited for complex robot
tasks [9], as it abstracts complexity while retaining sufficient
flexibility in combination with suitable movement primitive
representations.

In the original RL setting a reward function is assumed to be
known that evaluates the agents behavior and assigns rewards
to the agent’s actions. While not always explicitly stated, the
reward function for real robot tasks often depends not on the
whole trajectory τ of the robot, but on features φ(τ ) of the
trajectory. We refer to the result of the feature extraction from

trajectories as the outcomes o = φ(τ ). We assume that the
reward depends only on the features of the trajectories. Such
outcomes could, for example, describe the minimal distance
to goal positions or the accumulative energy consumption.

As the problem of specifying good features φ(τ ) is beyond
the scope of this paper, we assume the features to be known,
as is usually assumed when designing reward functions.

As outcomes are of much lower dimensionality than trajec-
tories, we can use outcomes to efficiently model the reward
function R̂(o) from a training set D = {o1:n,R1:n} using
regression. Using the feature representation, the term R(τ )
in Eq. 1 is replaced by R (o=φ(τ )) to become

Es,ω,τ [R(o)]=

∫∫∫
R (o=φ(τ )) p(s,ω, τ ) dτ ds dω. (2)

Obviously, it is not sufficient to build the reward function
model on samples from the initial policy π0(ω|s), as the
agent is likely to exhibit poor performance in the early stages
of learning and the reward learner would not observe good
samples. Therefore, we need to couple the process of learning
a good policy π(ω|s) and a good reward function R̂(o), such
that they are developed interdependently. However, in such
a coupled active learning process, we need to know which
samples to query from our expert, as we want to minimize
expert interaction.

Modelling a probabilistic reward model p(R|o,D), instead
of a deterministic reward function R(o), allows us to leverage
the information about the certainty of our estimate to control
the amount of human interaction required, as we only need to
interact with the human expert if our model of the reward is
not certain enough. We describe the details of this process in
Section II-A.

When using a probabilistic model of the reward, we have
to replace the reward term in Eq. 1 with

R(o) = Ep(R|o)[R] =

∫
p(R|o) R dR,

as most PS methods work on the expectation of the reward.
Using the probabilistic model of the reward function the
PS method continuously learns how to achieve high reward
outcomes, while the reward model learner adapts the accuracy
of its model.



Input: Information loss tolerance ε, improvement threshold λ,
acquisition function u
Initialize π using a single Gaussian with random mean. GP with
zero mean prior.
while not converged

Set sample policy:
q(ω|s) = πold(ω|s)

Sample: collect samples from the sample policy
{si ∼ p(s),ωi ∼ q(ω|si),oi}, i ∈ {1, . . . , N}

Define Bellman Error Function
δ(s,ω) = R(o)− V (s)

Minimize the dual function
[α∗, η∗] = argmin[α,η] g (α, η)

Determine base line
V (s) = αT∗φ(s)

Policy update:
Calculate weighting
p(si,ωi) ∝ q(si,ωi) exp

(
1
η∗ δ

∗(si,ωi)
)

Estimate distribution π(ω|s) by
weighted maximum likelihood estimates

Reward model update:
FindNominee = true
while FindNominee

Nominate outcome:
o+ = argmaxu(o)
if
(
o+ /∈ D

)
∧
(
σ(o+)/β > λ

)
Demonstrate Corresponding Trajectory τ+

Query Expert Reward R+

D = D ∪ {o+, R+}
else

FindNominee = false
Update reward model p(R|o,D)
Optimize GP-hyper parameters θ

Output: Policy π(ω|s), reward model p(R|o,D)

TABLE I: We show the algorithmic form of active reward learning
with REPS. We specify the information loss tolerance ε as well
as an initial sampling policy and an improvement threshold λ. In
each iteration, the algorithm first samples from the sampling policy,
minimizes the dual function to find values for αT∗ and η∗ and
then computes the next policy. After each policy search iteration,
the reward function learner chooses whether to demonstrate samples
to the expert according to the acquisition function. The parameters
α and η are parameters of the dual function problem of REPS and
can be optimized through standard optimization algorithms [9].

A. Active Reward Learning

Our goal is to find a model p(R|o,D) that predicts the
reward given an observed outcome and training data D, which
is obtained from an expert. When modelling the reward, we
have to take into account that the expert can only give noisy
samples of his implicit reward function and we also have
to model this observation noise. Thus, we need to solve the
regression problem

R(o) = f(o) + η, η ∼ N (0, β) ,

where we assume zero mean Gaussian noise. Such a regression
problem can, for example, be solved with Gaussian Process
(GP) regression

f(o) ∼ GP (m(o), k(o,o′)) ,

where m(o) is the mean function and k(o,o′) is the covari-
ance function of the GP. For the remainder of this paper we

use the standard squared exponential covariance function

k(o,o′) = θ20 exp

(
−||o− o

′||2

2θ21

)
.

The set of hyper parameters θ = {θ0,θ1, β} is found through
optimization [29]. Given a training set D = {o1:n,R1:n},
we can write down the covariance matrix between previously
observed rewards and outcomes

K =

 k(o1,o1) . . . k(o1,on)
...

. . .
...

k(on,o1) . . . k(on,on)

+ βI.

Assuming a zero mean prior, the joint Gaussian probability of
the training samples in D and the reward prediction R+ of a
new unrated observation is given by[

R1:n

R+

]
∼ N

(
0,

[
K k̂
k̄ k(o+,o+)

])
,

with k̂ = [k(o1,o
+) . . . k(on,o

+)]T and k̄ =
[k(o+,o1) . . . k(o+,on)]. The predictive posterior reward
p(R+|o,D) of a new outcome o+ is then given by a Gaussian

p(R+|o,D) ∼ N
(
µ(o+), σ2(o+)

)
,

with mean and variance

µ(o+) = kTK−1R1:n,

σ2(o+) = k(o+,o+)− kTK−1k,

by conditioning the GP on the observed outcome o+. Using
the GP, we can represent both our expected reward µ(o+),
which is provided to the policy learner, and the variance of
the reward σ2(o+) which is essential to the active learning
component. The reward variance σ2(o+) depends on the
distance of the outcome o+ to all outcomes in the training set
D and the observation noise β, which is a hyper parameter
that we optimize for. Using the predictive variance, we can
employ one of many readily available BO methods to find the
maximum of the reward function.

1) Optimizing the Reward Model: The goal of BO is to
optimize a function under uncertainty. Acquisition functions
(AFs), are utility functions which maximize their function
value at locations of the input space which are likely to maxi-
mize the original problem. AFs usually encode an exploration-
exploitation trade-off, such that they do not only query samples
in known high value regions but also in regions that have not
been sufficiently explored before. While using GPs to model
the reward function allows us access to the BO toolbox in
general, we deviate from the standard BO approach in two
points. First, as our GP models a relationship of outcomes
to rewards instead of context-actions to rewards, we cannot
sample arbitrary outcomes ô to improve our estimate. To do
so, we would require access to p(τ |s,ω) such that we can
request the agent to perform actions that result in trajectories
τ̂ which yield the outcome ô = φ(τ̂ ). Second, we would
need to guarantee that the outcomes requested by the AF to
improve the reward model are physically possible. However,



this transition model is unknown and, thus, we have to revert
to the previously observed outcomes that have been generated
during the agent’s learning process so far.

Furthermore, we need to balance the improvement of our
current estimate of the reward function and the number of
queries that we request from the expert, i.e., we want to find a
trade-off between finding a good reward function and learning
the task with minimal human input.

2) Sample Efficiency: In the traditional BO framework, the
goal is to find a global maximum. Sampling of the function
can be stopped when the improvement of the function is
marginal, for example when the predicted variance around
the optimum is very low. However, in the proposed scenario
where a policy π(ω|s) and a reward model p(R|o) are learned
simultaneously and obtaining training samples of the reward
model is very expensive, the problem of deciding when to
improve the reward model becomes crucial.

The reward model relies on the policy π(ω|s) to provide
outcomes in interesting, i.e., high reward regions, and the pol-
icy relies on the reward model p(R|o) to guide its exploration
towards such regions of interest. Thus, the reward model needs
sufficient training data to approximately predict the reward
function in early stages and a higher density of training points
once the agents policy starts to converge to a solution. At the
same time, we want to minimize the number of queries to the
expert over the learning process.

In order to balance this trade-off, we propose an acquisition
algorithm which, according to a selected acquisition function
u(o), first samples the best observed sample outcome from the
history of the agent’s outcomes on+1 = arg maxo u(o|D).
In this sample based search, we also include all outcomes
that have been demonstrated to the expert. If the acquisition
function is maximized by an already demonstrated outcome,
we stop and do not query any samples in this iteration. Maxi-
mizing the AF by an already observed outcome is unique to the
sample based case, as in the continuous case, a point around
an observed outcome would usually have more variance and,
thus, maximize the AF. With our approach we achieve a sparse
sampling behavior that requires less expert interactions. If,
however, the outcome that maximizes u has not yet been rated
by the expert, we need to decide whether querying the outcome
is beneficial. For example, we may have already converged to
a good estimate of the reward function, and new outcomes
improve on the mean reward solely due to the observation
noise. In this case we do not want to query the expert. Thus,
we decide whether to query an outcome by thresholding the
ratio of predictive variance and estimated observation noise
σ(o)/

√
β > λ, where λ is a tuning parameter which allows

us to trade off the accuracy of the final solution with the
query frequency by adapting the available AFs to explicitly
take the estimated observation noise into account. While this
adaptation of the AFs introduces a new parameter to be tuned,
our experiments show that the use of this technique results in
less human interactions while maintaining high performance
and tuning of the parameter is straightforward.

If we decide to query the sample, we update the GP and

search for the new maximum of the acquisition function,
otherwise we stop and do not update the GP further in this
iteration.

The general information flow of our method is as follows.
We start with an uninformed, i.e., zero mean GP for p(R|o)
and we initialize the PS method with an initial policy π0(ω|s).
The PS learner then starts performing one iteration of rollouts,
which we also call episodes. After each iteration of rollouts,
rewards for the outcomes of the resulting trajectories o = φ(τ )
are requested from the reward learner R ∼ p(R|o). The
reward learner then decides whether to ask for expert ratings
for any of the outcomes to update its model. In that case,
the agent repeats the corresponding episode to present the
outcome to the expert. Finally, the reward learner returns the
mean estimate of the reward to the PS learner, which uses the
rewards to update its policy and start the next iteration.

III. BACKGROUND

In this section we provide compact background information
on components of the proposed algorithms that are necessary
to give a complete picture of the proposed approach.

A. Relative Entropy Policy Search

We pair our reward learning algorithm with the recently
proposed relative entropy policy search (REPS) [28]. REPS
is a natural choice for a PS method to be combined with an
active learning component as it has been shown to work well
on real robot problems [9] and is designed to ‘stay close to the
data’. Thus, previous expert queries will remain informative. A
distinctive feature of Relative Entropy Policy Search (REPS),
is that its successive policies vary smoothly and do not jump
in the parameter space or the context space. This behavior
is a beneficial characteristic to increase compliance with our
proposed active learning approach, as we are only able to
predict correct rewards within observed regions of the param-
eter space. To constrain the change in the policy, REPS limits
the Kullback-Leibler divergence between a sample distribution
q(s,ω) and the next distribution π(ω|s)µπ(s)

ε ≥
∑
s,ω

µπ(s)π(ω|s) log
µπ(s)π(ω|s)
q(s,ω)

. (3)

For the complete optimization problem and its solution we
refer to the original work [28].

B. Dynamic Movement Primitives

A popular use case for PS methods is to find good pa-
rameters of trajectory generators such as Dynamic Movement
Primitives (DMPs) [17]. The resulting desired trajectories can
then be tracked by a linear feedback controller. DMPs model
trajectories using an exponentially decreasing phase function
and a nonlinear forcing function. The forcing function excites
a spring damper system that depends on the phase and is
guaranteed to reach a desired goal position, which is one of
the parameters of a DMP. The forcing function is modelled
through a set of weighted basis functions ωΨ. Using the
weights ω of the basis functions Ψ as parameters, we can



learn parametrized joint trajectories, and an increasing number
of basis functions results in an increased flexibility of the
trajectory. We use DMPs for our simulated robot experiments.

C. Bayesian Optimization for RL

An alternative approach to learning control parameters ω
using PS methods is to model p(R|s,ω) directly and to
use Bayesian Optimization (BO) instead of the PS learner.
However, the approach proposed in this paper introduces a
layer of abstraction which allows us to learn a mapping of
only a low-dimensional input space to the reward, as we only
have to map from outcomes to reward as opposed to map from
state-action to reward. As BO methods are global methods,
they are more susceptible to the curse of dimensionality than
PS methods which are local methods. As a result, the mapping
p(R|s,ω) which the standard BO solution uses is considerably
more difficult to learn than the mapping of the modular
approach that we are proposing.

The BO approach would also require expert ratings for every
sample, while the proposed approach requires only occasional
human feedback.

D. Acquisition Functions

In the following we present four Acquisition Function (AF)
schemes taken from Hoffman et al. [16] that we used to
optimize the model of the reward function.

a) Probability of Improvement: The Probability of Im-
provement (PI) [16] in its original formulation greedily
searches for the optimal value of the input parameter that
maximizes the function. An adapted version of PI balances the
greedy optimization with an exploration-exploitation trade-off
parameter ξ. The adapted version is given by

PI(o) = Φ

(
µ(o)− f(o∗)− ξ

σ(o)

)
,

where o∗ is the best sample in the training set D and Φ(·)
is the normal cumulative density function. The exploration-
exploitation trade-off parameter ξ has to be chosen manually.

b) Expected Improvement: Instead of finding a point that
maximizes the PI, the Expected Improvement (EI) [16], tries
to find a point that maximizes the magnitude of improvement.
Thus, it does not only try to improve local maxima but also
considers maxima in different regions and is less greedy in
the search of an optimal reward R.

EI(o) = (µ(o)− f(o∗)− ξ)) Φ (M) + σ(o)ρ (M) ,

if σ(o) > 0 and zero otherwise, where ρ(·) is the normal
probability density function. M is given by

M =
µ(o)− f(o∗)− ξ

σ(o)
.

The EI acquisition function shares the tuning factor ξ for
the exploitation-exploration trade-off with the PI, where a
suggested value is ξ = 0.01 [16].

c) Upper Confidence Bound: The Upper Confidence
Bound directly uses the mean and standard deviation of the
reward function at the sample location to define the acquisition
function. An adapted version of the UCB function [33] is given
by

GP-UCB(o) = µ(o) +
√
vγnσ(o),

where recommended values v = 1 and γn =
2 log(nd/2+2π2/3δ) with d = dim(o) and δ ∈ (0, 1)
are given by Srinivas et al. [33].

d) GP Hedge: As each of the above acquisition functions
lead to a characteristic and distinct sampling behavior, it is
often not clear which acquisition function should be used.
Portfolio methods, such as the GP-Hedge [16], evaluate several
acquisition functions before deciding for a sample location.
Given a portfolio with J different acquisition functions, the
probability of selecting acquisition function j for the sample
n+ 1 is given by the softmax

p(j) =
exp(ηgjn)∑J
i=1 exp(ηgjn)

,

where η > 0 is the temperature of the soft-max distribution.
The gains vector g is initialized to zero before taking the
first sample g1:J0 = 0, and is then updated with the cu-
mulative reward gained by the selected acquisition function,
i.e., gjn+1 = gjn + µ(ojn+1), where ojn+1 is the sample point
nominated by acquisition function j. For all other gains the
value does not change, i.e., gi 6=jn+1 = gin.

IV. EVALUATIONS

In this section we show evaluations of the proposed active
reward learning approach. For all simulation experiments,
unless stated otherwise, we tested each setting ten times.

A. Five Link Reaching Task

A simulated planar robot consisting of five links connected
by rotary joints was controlled in joint space using Dynamic
Movement Primitives (DMP) [17], as described in Section
III-B. If not stated otherwise, we used 20 basis functions
per joint, resulting in a total of 100 parameters that had to
be learned. We evaluated our approach on a reaching task,
where an analytical reward function was readily available.
The hand coded reward function was given by R(pr) =
1000−100||pr−pg||, where pr was the position of the robot’s
end effector and pg was the desired target position. However,
we increased the difficulty of the task by not supplying the
outcome features in task space, but rather in joint space,
i.e., the GP had to model the forward kinematics to predict
the reward, making the problem both non-convex and high-
dimensional (five dimensional mapping).

To allow extensive and consistent evaluation of all parame-
ters of the presented approach, we programmed a noisy expert,
which returned the reward with additive white noise (standard
deviation was 20). In Fig. 7 we present results that compare
the coded noisy expert approach to actually querying a human
expert and show that the behavior is comparable. The human



(a) Pestle and the paper box
that is filled with metal bars.

(b) Failed grasp, not robust
against perturbations.

(c) Mediocre grasp, stable but
incorrect orientation.

(d) Good grasp, stable with in-
tended orientation.

Fig. 3: Examples of different grasps and their categorization. Grasps count as failed if the object is either not picked up at all or if small
perturbations would make the object drop. Grasps that are stable but do not keep the original orientation of the object count as OK but not
successful grasps. Grasps that are both stable and keep the original orientation count as successful grasps.
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Fig. 4: We evaluated our approach on a programmed, but noisy
expert to emulate human expert input. Vanilla RL REPS queries the
programmed expert for every sample, while our approach builds a
model of the reward function and only queries the expert occasionally.

expert could give rewards on a vertical bar through a graphical
interface.

1) Evaluation of Acquisition Functions: The evaluation of
the available AFs given in Fig. 4 shows that even though there
was only limited difference in the asymptotic performance,
there was considerable difference in the sample efficiency.
Especially the GP-UCB AF asks for many user queries. While
PI had the lowest asymptotic performance, as it is the most
greedy of the presented AFs, it also required the lowest number
of user queries. This behavior makes it an interesting candidate
when trying to minimize human interactions.

2) Evaluation of Uncertainty Threshold: To optimally trade
off the number of queries and the agents performance we
need to set the uncertainty threshold trade-off parameter λ <
σ(o)/

√
β. This parameter expresses how certain we require

our algorithm to be that a proposed query is not explained by
the estimated observation noise. If we choose λ to be greater
than 1, we require our estimate to improve on the observation
noise. Fig. 5 show the effects of adjusting λ. The performance
remained stable up to λ = 1.3 and started degrading with
λ = 2. Changing the order of magnitude of λ resulted in a
failure to learn the task. While the effects of setting λ = 1.5 on
the performance were moderate, the number of queries were
reduced by about 50% when compared to λ = 1.3.

3) Evaluation of Sparse Sampling: In order to minimize
human interaction, we stop improving the GP in each iteration
if the outcome that maximizes the AF has already been queried
before, instead of selecting the second best outcome according
to the AF. The results in Fig. 6 show, that sparse sampling
leads to equally good asymptotic performance but requires
considerably less expert interactions.

4) Evaluation Direct Learning: The premise of this paper
is that while BO can be used to efficiently learn the mapping
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Fig. 5: We evaluated the impact of the threshold factor λ that
influences when and how often we sample. Lower values of λ led to
better converged performance but required more user interaction.
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Fig. 6: Results of comparing our acquisition algorithm to the
standard acquisition algorithm. Our algorithm collects sparse user
queries and does not ask for any user queries after a PS iteration if
the outcome that maximizes the AF has already been queried before.

of outcome to reward, it would be too sample intensive to
directly learn the mapping from parameter space to outcome.
We validated this premise by comparing our joint approach to
directly learning the reward from the control parameters (i.e.,
from the basis function weights ω). The results in Fig. 8 show
that BO did not converge to a good solution within 50 expert
queries. Both methods were using PI.

5) Comparison to Inverse Reinforcement Learning: We
compared our algorithm to the Maximum Entropy IRL ap-
proach [36] on a via point task in two different scenarios.
Trajectories generated by DMPs had to pass one or two via
points, respectively (20 dimensional action space for each).
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Fig. 7: We validated our approach of using a noisy programmed
expert as substitute for a human expert on the simulated tasks. The
results show that both experts yielded similar learning behavior.
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Fig. 8: Comparison of ARL and directly learning the reward from
the control parameter ω using BO. In this figure we plot the
standard error as opposed to the standard deviation. ARL performs
significantly better after 50 queries (p < 0.05).

#UI = 5 #UI = 10 #UI = 20
ARL 1VP 995.2 ± 2.477 999.2 ± 0.25 999.2 ± 0.25
IRL 1VP 983± 3.306 977.3± 6.334 984± 3.036
ARL 2VPs 970.7± 13.1 998 ± 1.13 999.1 ± 0.172
IRL 2VPs 994.1 ± 1.874 996± 0.4736 996± 0.555

TABLE II: Comparison of IRL and ARL. We compare the methods
on two via point (VP) tasks with one and two VPs. The columns
show the achieved performance (mean and standard deviation) after
five, ten or 20 user interactions (UIs).

For this comparison only, we relaxed our assumption that no
demonstrations are available and provided the IRL approach
with (imperfect) demonstrations that passed close to the via
point (at most 0.1 units away). In Table II, we show the mean
and standard deviation of the best policy reached for either
five, ten or 20 user interactions (UI). In our approach, UIs
are ratings while in IRL UIs are demonstrations. The results
show that our approach yields competitive results while not
requiring access to demonstrations.

6) Alternative Policy Learners: While we used REPS for
most of our experiments, the proposed framework is not lim-
ited to a specific RL method. To investigate the compatibility
with other methods, we compared our framework using REPS
with our framework in combination with a Bayesian Policy
Gradient (BPG) method [13] on a via point task with one via
point (20 dimensional action space). BPG models the gradient
of the policy using a GP and uses the natural gradient in the
policy update. The results in Fig. 9 show that both methods
were able to learn the task in combination with our approach.

B. Robot Grasping

We used the results from Section IV-A to set the parameters
for the real robot experiment (we use PI and set λ = 3). We
learned the policy π(ω|s) with 15 samples per iteration for
a total of 10 iterations and we repeated the experiment three
times. The control parameters of the policy were the 15 joints
of the five finger DLR hand, which is mounted to a 7 DOFs
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Fig. 9: Performance of REPS and BPG on a via point task.

KUKA lightweight arm as shown in Fig. 1. We considered
the task of blind grasping as described in [8], where no object
information was available and we did not have visual feedback,
i.e., we did not have information about the contact points.
Instead, we calculated the forces in the finger tips through the
joint torques and and the hand kinematics. We used the finger
tip force magnitudes as outcome features which were used by
the GP to model the reward function.

Evaluating the real robot experiments presented the problem
of a success metric. As we did not have a ‘correct’ reward
function that we could evaluate the learned reward function
against, we resorted to introducing three label categories
which were only used for the evaluation after finishing the
experiments. The scheme presented in Fig. 3 labels grasps as
failures with a reward of −1, if the object was not lifted at all
or slipped when slightly perturbed. Grasps that were stable but
did not keep the intended orientation were given a reward of
0. Finally, grasps that lifted the object and kept the orientation
of the object were assigned a reward of 1. These labels and
reward values were not used during the learning of either the
policy or the reward model but only used to present results.
During the learning phase, the human expert assigned grasp
ratings in the range of ±1000.

1) Learn to Grasp Unknown Object: The object to be
grasped was a cardboard box filled with metal weights such
that the robot cannot grasp the object with very unstable grasps
or by deforming the paper box. The box, shown in Fig. 3a, was
of size 7.5cm x 5.5cm x 2cm and filled with two metal bars
with a combined weight of 350g. The results of three trials
presented in Fig. 10 show that the robot learned to perform
a successful grasp of the object in all three trials, while only
requesting six queries in the first and twelve queries in the
second trial. In the last trial, the robot’s performance first
increased quickly but dropped after 80 episodes (or rollouts),
coinciding with a sudden increase of user queries, such that
the final number of queries in the last trials was 27. The
reason for this unusual behavior was a malfunction of the
distal joint of the thumb, which rendered the grasping scheme
dysfunctional. As the learner could not reproduce outcomes
that led to good rewards, it resorted to finding a different grasp
strategy. At the same time, since the GP was presented with
new outcome samples in previously unobserved regions of the
outcome space, it requested new user queries to model the
reward function in the new region of interest.

We compared our learned reward function to a (naive) hand
coded reward function based on the same features. The hand
coded reward function aimed to reach a total force magnitude
over all fingers. Using the programmed reward, the robot was
able to reliably pick up the object after the first two trials and
in ten out of 15 grasps at the end of the third trial (We expect
the robot would have also learned to pick it up reliably in the
last trial with more iterations). However, the robot did not pick
up the object in a way that kept the original orientation of the
object. Encoding such behavior through only force features by
hand is challenging. The performance curve of the hand coded
reward function shows a slight dip, which is possible as we
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Fig. 11: Performance of one trial on the real robot system. The robot
uses the reward function learned in trial one of the original task to
learn to grasp a new, unknown object (a wooden pestle as shown in
Fig. 3a). For this trial, we did not allow any expert queries. The robot
successfully learned to grasp the object.

are not plotting the internal reward but the reward assigned
according to the grading scheme introduced in Fig. 3.

2) Transfer Learned Reward Function to New Object: As
we based our reward model only on the finger tip forces, it
is modular and can also be used for (reasonably) different
objects. To test these generalization capabilities, we started a
new trial with a different object (a pestle as shown in Fig.
3a) and initialized the GP with the training data from the first
trial of the previous task. For this experiment we only used
ratings from the previous trial, and did not ask for additional
expert ratings. The pestle that we used for this task was similar
in dimensions but different in shape, such that the agent had
to learn different joint configurations to achieve similar finger
forces that optimized the reward function. The dimensions of
the pestle were 18cm length, 1.5cm radius on the thin end and
2.25cm radius on the thick end. The results in Fig. 11 show
that the agent was able to learn to reliably perform a robust
grasp on the pestle.

V. RELATED WORK

The term reward shaping has been used to describe efforts to
adapt rewards functions such that the resulting policy remains
invariant but learning speed is increased [27, 10, 4, 32] or
that learning on a new task is accelerated [21]. Aside from
reward shaping, Dorigo and Colombetti [11] have used the
term robot shaping to describe efforts of teaching different
tasks to a robotic agent. Derived from this terminology the
TAMER framework [19] uses the term interactive shaping.
In TAMER the agent receives reinforcements from a human,
guiding the learning process of the agent, but there is no active

component. The Advise framework [14] also uses the term
shaping to describe the process of modelling an oracle and
are actively requesting labels for an agent’s action (good or
bad). This approach is tailored for discrete settings and the
feedback frequency is pre-defined.

In preference learning algorithms, the expert is usually
requested to rank the current best against a new execution
and the reward function is inferred from these rankings [2, 6].
Akrour et al. [1] can also deal with noisy rankings. Chu
and Ghahramani [7] introduced the use of GPs to preference
rankings. In preference based approaches, the expert is limited
to transmit one bit of information and cannot express strong
preferences, as, supposedly, human experts cannot give numer-
ical rewards that are sufficiently accurate. Our contribution
is to show how a rating based approach with explicit noise
model can be used in real robot continuous state-action space
problems taking advantage of the stronger guidance through
strong preferences (large differences in assigned rewards).

The problem of expert noise has also been addressed in
Bayesian RL and IRL. In Bayesian RL, Engel et al. [12]
has proposed to model the value function through a GP
and Ghavamzadeh and Engel [13] has proposed to model the
policy gradient through a GP. Especially the policy gradient
method is also well suited to work in combination with our
approached framework. If demonstrations are available, IRL
is a viable alternative. Ziebart et al. [36] have relaxed the
assumptions on the optimality of demonstrations such that a
reward function can be extracted from noisy demonstrations.

In a combination of IRL and preference learning, Jain et al.
[18] have proposed the iterative improvement of trajectories.
In their approach, the expert can choose to rank trajectories
or to demonstrate a new trajectory that does not have to be
optimal but only to improve on the current trajectory. This
approach cannot directly be used on learning tasks such as
grasping, as a forward model is required. Alternatively, Lopes
et al. [24] propose a framework where IRL is combined with
active learning such that the agent can decide when and where
to ask for demonstrations.

VI. CONCLUSION & FUTURE WORK

We presented a general framework for actively learning the
reward function from human experts while learning the agent’s
policy with any PS or policy gradient method. Our experiments
showed that the learned reward function outperforms naive
hand coded reward functions, generalizes to similar tasks
and that the approach is robust to sudden changes in the
environment, for example when a mechanical failure occurs.
In future work we plan to extend on the ground-laying work of
this paper and investigate possible synergies between specific
PS methods and the reward learning framework to improve on
the performance of the generic AFs.
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