
JMLR: Workshop and Conference Proceedings 24:1–14, 2012 European Workshop on Reinforcement Learning

Solving Nonlinear Continuous State-Action-Observation
POMDPs for Mechanical Systems with Gaussian Noise

Marc Peter Deisenroth marc@ias.tu-darmstadt.de

Jan Peters peters@ias.tu-darmstadt.de

Abstract

In this paper, we introduce a novel model-based approach to solving the important subclass
of partially observable Markov decision processes (POMDPs) with Gaussian noise in contin-
uous states, actions, and observations. This kind of POMDP frequently appears in robotics
and many other real-world control problems. However, except for the linear quadratic Gaus-
sian case, no efficient ways of computing optimal controllers are known. We propose a novel
method for efficiently approximating optimal solutions of nonlinear stochastic continuous
state-action-observation POMDPs in high dimensions. We use Gaussian processes (GPs)
to model both the latent transition dynamics and the measurement mapping. By explicit
marginalization over the GP posteriors our method is robust to model errors and can be
used for principled belief space inference, policy learning, and policy execution.

Keywords: continuous POMDPs, policy search, Gaussian processes

1. Introduction

Robust and scalable algorithms for planning and decision making under uncertainty are cru-
cial for the development of autonomous systems. In principle, partially observable Markov
decision processes (POMDPs) offer one of the most powerful mathematical frameworks for
decision making in uncertain environments. However, despite their generality, the lack of
efficient solvers for high-dimensional continuous POMDPs has been the key bottleneck for
their application in real-world situations.

To date, the vast majority of POMDP solvers are specific for domains with discrete
states, actions, or observations (Kaelbling et al., 1998; Ng and Jordan, 2000; Pineau et al.,
2003; Poupart et al., 2006; Porta et al., 2006; Ross et al., 2008; Kurniawati et al., 2008).
Provably optimal general solutions for continuous domains are known only for linear sys-
tems with quadratic cost and Gaussian noise (Bertsekas, 2005). For most other cases,
approximate solutions are needed.

A standard approach to solving a POMDP is to recast it as a completely observable MDP
with a state space that consists of information states. The information state consists of
either a complete history of actions and observations or the corresponding sufficient statistic,
the belief state (Kaelbling et al., 1998). Hence, MDP solvers applied to the information space
can be used for finding optimal controls/actions in POMDPs.

In the last decade, policy search methods have offered efficient solutions to many con-
tinuous real-world MDPs, e.g., in robotics and control (Bagnell and Schneider, 2001; Kober
and Peters, 2011; Deisenroth and Rasmussen, 2011). Policy search methods often cope
better with large state spaces and imperfect state estimators than value function methods,

c© 2012 M.P. Deisenroth & J. Peters.

Deisenroth Peters

making them promising for solving large POMDPs (Aberdeen, 2009; Ng and Jordan, 2000).
However, learning is generally relatively sample inefficient.

The pilco framework proposed by Deisenroth and Rasmussen (2011) is a model-based
policy search method for MDPs that achieved unprecedented sample efficiency. Based
on long-term planning, policy parameters are determined using analytic policy gradient
computations. Pilco uses a probabilistic Gaussian process (GP) forward dynamics model
that explicitly describes model uncertainties. The key to pilco’s sample efficiency is that
during policy evaluation/planning, the model uncertainties are marginalized out, which
makes learning robust to model errors. Due to its robustness to model errors, pilco learns
from scratch, i.e., with an uninformative initialization.

The contributions of this paper are fourfold: (i) Based on the pilco framework for
MDPs, we introduce an efficient solver for POMDPs with Gaussian noise and continuous
states, actions, and observations. GP priors on the transition and measurement functions
are used for the purposes of flexibility, robustness to model errors, and computational ad-
vantages. We use efficient approximate inference in belief space to compute long-term plans
and analytic policy gradients for learning prior policies. (ii) We analyze two approximate
methods for inference in belief space in terms of computational demand and learning perfor-
mance. (iii) We use GP-Bayes filters to compute POMDP posterior policies while applying
the policy. (iv) Compared to ground-truth optimal solutions, our POMDP solver achieves
near-optimal performance and scales well to high dimensions, i.e., 10 or more.

The POMDP solver by Dallaire et al. (2009) is similar to ours and also uses GP dynamics
and observation models. However, instead of maintaining a belief state distribution, Dallaire
et al. (2009) represent the belief state by its MAP estimate. Moreover, model uncertainty
is ignored. Additionally, only myopic controllers in finite action spaces are learned, i.e.,
controls are applied that minimize the immediate cost. Controllers that require long-term
planning cannot be learned.

The paper is structured as follows: In Sec. 2, we define the problem and provide back-
ground information. In Sec. 3, we present our novel POMDP solver. Its scalability and
optimality are analyzed in Sec. 4.

2. Problem Setup and Background

In a POMDP it is assumed that the transition dynamics are Markovian, but the underlying
state x cannot be observed directly. Instead, a probability distribution over latent states is
maintained. This belief state summarizes the history of the process and can be computed
recursively Bertsekas (2005). In the following, we consider POMDPs with transition and
measurement models given by

xt = f(xt−1,ut−1) + w , w ∼ N (0,Σw) , (1)

zt = g(xt) + v , v ∼ N (0,Σv) , (2)

where x ∈ RD is the state, z ∈ RE is the measurement, and u ∈ RF is the action/control
signal. The transition dynamics f and the measurement function g are often assumed to
be known. In this paper, we relax this assumption to having probability distributions over
the latent state transitions and the measurement mappings in the form of GPs instead.

2

Solving Nonlinear Continuous State-Action-Observation POMDPs

Given an initial state distribution p(x0), our objective is to find a mapping π from belief
states p(x) to distributions over controls u that minimizes the expected finite-horizon cost
Jπ =

∑T
t=0E[c(xt)] where c is an immediate cost function. The mapping π is referred to

as a state-feedback controller or policy and parametrized by θ.
In our POMDP setup, we compute a posterior policy p(π(xt, θ)|z1:i) conditioned on i

measurements z1, . . . , zi, where i ∈ {∅, 1, . . . , T}. In the POMDP planning phase, we com-
pute/learn a prior policy p(π(xt, θ)|z∅) since no measurements are available during planning,
see Sec. 3.1. These unavailable measurements are implicitly integrated out during planning.
In the POMDP execution phase, i.e., when the controller is being applied, measurements
zt are obtained, and the posterior policies p(π(xt, θ)|z1:t) are sequentially determined as
described in Sec. 3.2.

2.1. GP Dynamics and Measurement Models

Pilco’s probabilistic dynamics model is implemented as a GP, where we use tuples (xt−1,ut−1) ∈
RD+F as training inputs and differences ∆t = xt − xt−1 + w ∈ RD, w ∼ N (0,Σw),
Σw = diag([σ2

w1
, . . . , σ2

wD
]), as training targets. The GP yields one-step predictions

p(xt|xt−1,ut−1) = N (xt |µxt ,Σx
t) , (3)

µxt = xt−1 + Ef [∆t] , Σx
t = varf [∆t] . (4)

In this paper, we consider a prior mean function m ≡ 0 and the sum of a Gaussian kernel
with automatic relevance determination and a noise kernel, i.e.,

k(x̃p, x̃q) = σ2
f exp

(
− 1

2‖x̃p − x̃q‖2Λ−1

)
+ σ2

wδpq (5)

with x̃ := [x>u>]> being the control-augmented state. In Eq. (5), we define σ2
f as the

variance of the latent function f and Λ := diag([`21, . . . , `
2
D]), which depends on the char-

acteristic length-scales `i. There are n training inputs X̃ = [x̃1, . . . , x̃n] and corresponding
training targets y = [∆1, . . . ,∆n]>.

A univariate posterior predictive distribution p(∆t|x̃t−1) at a test input x̃t−1 is Gaussian
where the mean and variance, see Eq. (4), are explicitly given as

Ef [∆t−1] = µ∆ = k>∗ (K + σ2
wI)−1y = k>∗ β , (6)

varf [∆∗] = σ2
∆ = k∗∗ − k>∗ (K + σ2

wI)−1k∗ , (7)

β := K−1y , (8)

respectively, with k∗ := k(X̃, x̃t−1), k∗∗ := k(x̃t−1, x̃t−1), and the entries of K are Kij =
k(x̃i, x̃j).

For the measurement model we also use a prior mean function mg ≡ 0 and the covariance
function given in Eq. (5). The training inputs are states xi, i = 1, . . . , n, the training targets
are observations zi = g(xi) + v.

The posterior GP hyper-parameters (length-scales, signal variances σ2
f , σ

2
g , noise vari-

ances σ2
w, σ

2
v) of the dynamics and measurement GPs are learned using evidence maximiza-

tion Rasmussen and Williams (2006).
For multivariate targets, we train conditionally independent GPs for each target dimen-

sion, i.e., the GPs are independent for deterministically given test inputs. For uncertain
inputs, the target dimensions covary (Rasmussen and Williams, 2006).

3

Deisenroth Peters

3. Policy Search in POMDPs

In this paper, we generalize the pilco framework by Deisenroth and Rasmussen (2011) to
an efficient POMDP solver with continuous states, actions, and observations. In POMDPs,
we distinguish between inference during planning and inference in an execution phase when
the learned controller is applied. In both cases, we plan in belief/information space. In the
planning phase, no state measurements are available, and we learn a prior policy using policy
search. In the execution phase, we take current measurements into account to compute
posterior policies.

3.1. Planning in Belief Space: Prior Policy

To compute the long-term expected cost J(θ), we iteratively compute long-term predictive
distributions p(x1|z∅), . . . , p(xT |z∅) given a policy π. External measurements z are not
available, indicated by z∅. To compute the predictive state distributions, we compute
p(x0|z∅) → p(u0|z∅) → p(u0,x0|z∅) → p(x1|z∅) → p(u1|z∅) → p(u1,x1|z∅) → . . . →
p(xT |z∅). The predictive belief state distribution p(xt|z∅) at time t is given by

p(xt|z∅) =

∫
p(xt|x̃t−1)p(x̃t−1|z∅) dx̃t−1 (9)

for t = 1, . . . , T . The conditional probability p(xt|x̃t−1) = p(xt|xt−1,ut−1) is given in
Eq. (3). Note that we implicitly integrate out observations z1, . . . , zT , which are not avail-
able during planning. The integral in Eq. (9) cannot be computed analytically and requires
approximations. Once the distributions p(x1|z∅), . . . , p(xT |z∅) are determined, the expected
long-term cost J(θ) and its gradients with respect to the policy parameters

dJ(θ)

dθ
=

T∑
t=0

(
∂E[c(xt)|z∅]

∂µxt|∅

dµxt|∅

dθ
+
∂E[c(xt)|z∅]

∂Σx
t|∅

dΣx
t|∅

dθ

)

can be computed and used for policy learning. For details on the gradient computations,
we refer to (Deisenroth and Rasmussen, 2011).

In the following, we detail two deterministic Gaussian approximations to Eq. (9), the
moment-matching approximation that is used in the pilco MDP framework (Deisenroth
and Rasmussen, 2011) and an approximation based on linearization of the posterior GP
mean function proposed by Ko and Fox (2008).1 We assume that a Gaussian approximation

N

([
xt−1

ut−1

] ∣∣∣∣∣
[
µxt−1|∅
µut−1|∅

]
,

[
Σx
t−1|∅ Σxu

t−1|∅
Σux
t−1|∅ Σu

t−1|∅

])
(10)

1. Both approximations allow for the computation of analytic policy gradients within the pilco framework.
Thus, we can deal with thousands of policy parameters. Standard policy search methods rely on finite
differences and sampling for gradient estimation (Williams, 1992; Peters and Schaal, 2008), which does
not scale well to high-dimensional parameter vectors.

4

Solving Nonlinear Continuous State-Action-Observation POMDPs

of the control-augmented state x̃t−1 is known. The objective of either approximate inference
method is to compute the mean µxt|∅ and the covariance Σx

t|∅ of p(xt|∅), which are given by

µxt|∅ = µxt−1|∅ + µ∆|∅ (11)

Σx
t|∅ = Σx

t−1|∅ + Σ∆|∅ + Σx
t−1,∆|∅ + Σx

∆,t−1|∅ (12)

Σx
t−1,∆|∅ = cov[xt−1,ut−1|z∅](Σu

t−1|∅)
−1cov[ut−1,∆t|z∅] . (13)

The cross-covariance Σx
t−1,∆|∅ depends on the policy parametrization but can often be de-

termined analytically. Since x̃t−1 and ∆t are both random variables, we apply the laws for
the expectation and the covariance of the sum of random variables in Eqs. (11)–(12).

3.1.1. Moment Matching

Following Deisenroth and Rasmussen (2011), we will now summarize how to approximate
the predictive distribution p(xt) in Eq. (9) using moment matching. Hence, we analytically
compute the mean µt and the covariance Σt of p(xt), see Eqs. (11)–(12).

Using the law of iterated expectations, we obtain

µ∆|∅ = Ex̃t−1

[
Ef [f(x̃t−1)|x̃t−1]|z∅

]
= Ex̃t−1 [mf (x̃t−1)|z∅] ,

where mf is the posterior mean function of the dynamics GP. For target dimension a =
1, . . . , D, we obtain

µa∆|∅ = q>a βa , (14)

qai =
σ2
f√

|Σ̃t−1|∅Λ
−1
a +I|

exp
(
− 1

2ν
>
i (Σ̃t−1|∅ + Λa)

−1νi
)
,

νi := (x̃i − µ̃t−1|∅) (15)

for i = 1, . . . , n, where βa is defined in Eq. (8).
For the predictive covariance matrix Σx

t|∅ in Eq. (12), we focus on computing Σ∆|∅.
Using the law of iterated variances, the entries of Σ∆|∅ for target dimensions a, b = 1, . . . , D
are

σ2
aa=Ex̃t−1

[
varf [∆a|x̃t−1]|z∅

]
+Ef,x̃t−1 [∆2

a|z∅]−(µa∆|∅)
2, (16)

σ2
ab=Ef,x̃t−1 [∆a∆b|z∅]−µa∆|∅µ

b
∆|∅ , a 6= b , (17)

respectively, where µa∆ is known from Eq. (14) and ∆a := x
(a)
t −x

(a)
t−1. The off-diagonal terms

σ2
ab do not contain an additional term Ex̃t−1 [covf [∆a,∆b|x̃t−1]|z∅] because of the conditional

independence assumption used for GP training: Target dimensions do not covary for a given
x̃t−1.

For the term common to both σ2
aa and σ2

ab, we obtain

Ef,x̃t−1 [∆a∆b|z∅] = β>a Qβb , (18)

where the entries Qij of Q ∈ Rn×n are given as

Qij =
ka(x̃i,µ̃t−1|∅)kb(x̃j ,µ̃t−1|∅)√

|R|
exp

(
1
2z>ijR

−1Σ̃t−1|∅zij
)

(19)

5

Deisenroth Peters

with R := Σ̃t−1|∅(Λ
−1
a + Λ−1

b) + I and zij := Λ−1
a νi + Λ−1

b νj with νi taken from Eq. (15).
Hence, the off-diagonal entries σ2

ab of Σ∆|∅ are fully determined by Eqs. (14)–(15) and
(17)–(19).

From Eq. (16), we see that the diagonal entries σ2
aa of Σ∆|∅ contain an additional term

Ex̃t−1

[
varf [∆a|x̃t−1]|z∅

]
= σ2

fa − tr
(
K−1
a Q

)
+ σ2

wa
(20)

with Q given in Eq. (19). This concludes the computation of Σ∆|∅ and Σx
t|∅ is computed

using Eq. (12).
The moment-matching approximation minimizes the KL divergence KL(p||q) between

the true distribution p and an approximate Gaussian distribution q. This is generally a
conservative approximation, i.e., q has probability mass where p has mass (Bishop, 2006).

3.1.2. Linearizing the GP Mean Function

An alternative way of approximating the predictive GP distributions p(x1|z∅), . . . , p(xT |z∅)
is to linearize the posterior GP mean function Ko and Fox (2009). Given this linearized
function, we apply standard results for mapping Gaussian distributions through linear mod-
els. Linearizing the posterior GP mean function yields to a predicted mean that corresponds
to the posterior GP mean function evaluated at the mean of the input distribution, i.e.,

µa∆|∅ = Ef [fa(µt−1)|z∅] = r>a βa (21)

rai = σ2
fa exp

(
− 1

2(x̃i − µ̃t−1|∅)
>Λ−1

a (x̃i − µ̃t−1|∅)
)

(22)

for i = 1, . . . , n and target dimensions a = 1, . . . , D, where βa is given in Eq. (8). The
covariance matrix Σ∆|∅ of the GP difference prediction is

Σ∆|∅ = VΣ̃t−1|∅V
> + Σw ,V =

∂µ∆|∅
∂µ̃t−1|∅

= β>a
∂ra

∂µ̃t−1|∅
, (23)

where ra is given in Eq. (22). In Eq. (23), Σw is a diagonal matrix whose entries are the
model uncertainty plus the noise variance evaluated at µ̃t−1. This means “model uncer-
tainty” no longer depends on the density of the data points. Instead it is assumed constant.

Using linearization, the approximation optimality of the moment matching is lost.
Fig. 1(a) illustrates some differences between approximate predictions using moment match-
ing and linearization. In particular, it is shown that the predictive distribution based on
linearization can be too tight. These errors vanish when the input distribution is relatively
peaked.

Fig. 1(b) shows the computational demand of approximate inference and derivative
computations that are needed for policy search of a single time step, using moment matching
(MMD) and linearization (LinD) for data sets of size n = 100, 300, 500 and dimensions
D = 1, . . . , 20. Average performances and twice the standard errors are shown. Especially
in high dimensions, linearization is computationally substantially cheaper. This speedup is
largely due to the simplified treatment of model uncertainty.

6

Solving Nonlinear Continuous State-Action-Observation POMDPs

−1 −0.5 0 0.5 1

∆
t

−1 −0.5 0 0.5 1
0

1

(x
t−1

, u
t−1

)

p
(x

t−
1
,
u

t−
1
)

0 1 2 3

∆
t

p(∆
t
)

(a) Predictive distributions based on mo-
ment matching (blue) and linearization
(red). Using linearization for approx-
imate inference can lead to predictive
distributions that are too tight.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10
−3

10
−2

10
−1

10
0

Dimensionality

C
P

U
 t
im

e
 i
n
 s

MMD (100)
MMD (300)
MMD (500)
LinD (100)
LinD (300)
LinD (500)

(b) Computational demand of approxi-
mate inference and derivative compu-
tations for a single time slice using mo-
ment matching (MMD) and lineariza-
tion (LinD) for n = 100, 300, 500 data
points and D = 1, . . . , 20 dimensions.

Figure 1: Approximate inference in GPs using moment matching and linearization of the
posterior mean. While moment matching does not tend to predictive distributions
that are too tight (left), linearizing the mean is substantially faster (right).

3.2. Execution Phase: Posterior Policy

Unlike in MDPs, we do not have direct access to the latent states when controlling the sys-
tem. Instead, we have access to noisy observations zt = g(xt)+v, t = 1, . . . , T,v ∼ N (0,Σv)
of the latent state. Nevertheless, the state-feedback controller applies controls based on po-
tential values of the latent state x. To compute a posterior policy p(πt(θ

∗)|z1:t), we first
compute a posterior (belief state) distribution p(xt|z1:t) on xt using filtering techniques.
The posterior policy distribution

p(πt(θ
∗)|z1:t) =

∫
p(π(xt, θ

∗)|xt)p(xt|z1:t) dxt (24)

is determined based on the belief state. Without loss of generality, we assume that we
obtain a measurement zt at each time step t = 1, . . . , T of the execution horizon. To
compute the posterior distribution p(xt|z1:t), we apply GP-Bayes filters introduced by Ko
and Fox (2008); Deisenroth et al. (2009). Note that Eq. (24) is similar to the time update
of a Kalman filter, but it does not correspond to an average over Q-functions. Averaging
over policies as in Eq. (24) is appropriate for unimodal distributions. In the LQG case, it
is optimal (Bertsekas, 2005). However, a Gaussian approximation is very poor in discrete
POMDPs, which we do not deal with in this paper.

3.2.1. GP-Bayes Filters for State Estimation

The GP-Bayes filters approximate p(xt|z1:t) by first computing a Gaussian approximation

N

([
xt
zt

] ∣∣∣∣∣
[
µxt|t−1

µzt|t−1

]
,

[
Σx
t|t−1 Σxz

t|t−1

Σzx
t|t−1 Σz

t|t−1

])
(25)

7

Deisenroth Peters

to the joint distribution p(xt, zt|z1:t−1), either based on moment matching (GP-ADF) or
linearization (GP-EKF), see Secs. 3.1.1 and 3.1.2, respectively. The computation of this
joint distribution is sufficient for Gaussian filtering (Deisenroth and Ohlsson, 2011). Second,
the mean and the covariance of a Gaussian approximation to the desired posterior p(xt|z1:t)
are

µxt|t = µxt|t−1 + Σxz
t|t−1(Σz

t|t−1)−1(zt − µzt|t−1) , (26)

Σx
t|t = Σx

t|t−1 −Σxz
t|t−1(Σz

t|t−1)−1Σzx
t|t−1 . (27)

by Gaussian conditioning on Eq. (25)

3.2.2. Control Selection

The belief state distribution p(xt|z1:t) causes the learned policy π∗ to output a control
distribution p(ut|z1:t), see Eq. (24). In the execution phase, we have to decide on a single
control and choose the mean µut|t = Ext [π(xt, θ

∗)|z1:t] of the posterior control distribution.
Note that for nonlinear policies, this control selection differs from a certainty-equivalence
controller. We do not consider the case of actuator noise. Thus, a Gaussian approximation
to the joint distribution p(x̃t) = p(xt,ut) is now given as

N

([
xt
ut

] ∣∣∣∣∣
[
µxt|t
µut|t

]
,

[
Σx
t|t 0

0 0

])
. (28)

Note that this Gaussian approximation during interaction differs from the joint distribution
during planning, see Eq. (10): During planning, we map control distributions through the
dynamic system, whereas we decide on a single control signal in the execution phase.

4. Results

In the evaluations, we will show the following properties of our POMDP solver: (i) It works
near optimally compared to the optimal solution for LQG systems, i.e., the only problem
class which we know how to solve exactly. (ii) When only minimally altering this problem
class, the optimal solution for the linear system breaks down while our method still works
well. (iii) We show that our POMDP solver even works for highly nonlinear problems where
general solvers are unknown.

In our experiments, we applied the following steps until convergence. After initializing
the policy parameters, random controls were applied to collect an initial data set, and the
GP dynamics and measurement models were trained.2 Based on these models, policy search
using the results from Sec. 3.1 returned optimized policy parameters θ∗. When executing
the policy π(x, θ∗), we might have real-time constraints and, hence, cannot identify the
latent states after each time step. Thus, we maintained a posterior distribution over the
latent state by performing GP filtering, see Sec. 3.2.1. The controls ut, t = 1, . . . , T to be
applied were determined based on the posteriors p(ut|z1:t), see Sec. 3.2.2. After a single
rollout, the recorded trajectory was used to update the GP models and the policy.

2. We employed the idealizing assumption that in a (potentially time consuming) post-processing step the
latent variables can be identified such that GP training is a supervised learning problem.

8

Solving Nonlinear Continuous State-Action-Observation POMDPs

Table 1: Average trajectory-loss ratios of LQGC over both POMDP-pilco and an uncon-
trolled system.

Dimensionality

System Controller 2 3 4 5 6 7 8 9 10

Linear
POMDP pilco 0.97 0.99 0.96 0.97 0.89 0.98 0.97 0.94 0.86

Uncontrolled 0.9 0.71 0.16 0.52 0.47 0.42 0.23 0.24 0.01

Tanh
POMDP pilco 1.00 0.98 0.97 0.95 0.93 0.95 1.5× 107 1.9× 108 3.9× 106

Uncontrolled 0.83 0.41 0.10 0.18 0.19 0.16 3.5× 106 5.1× 107 1.1× 106

4.1. Comparison to Ground Truth: LQG

In the following, we compare our approach to a provably optimal controller in linear
POMDPs with Gaussian noise and quadratic costs. We consider time-invariant systems
with incomplete state information

xt = Axt−1 + But−1 + w , w ∼ N (0,Σw) (29)

zt = Cxt + v , v ∼ N (0,Σv) , (30)

where x ∈ RD, z ∈ RE ,u ∈ RF . The matrices A,B,C are of appropriate dimensions. We
assume that the noise covariance matrices Σw,Σv are diagonal.

We used a quadratic cost c(xt) = x>t Q0xt, where Q0 is symmetric positive definite and
xtarget = 0. The optimal controller for the system in Eqs. (29)–(30) is given by u∗t = −Ltµ

x
t|t ,

where µxt|t = E[xt|z1:t] and Lt is an optimal feedback gain matrix (Bertsekas, 2005).

We randomly generated LQG problems, see Eqs. (29)–(30), with D = E = F = 2, . . . , 10.
This means, we randomly generated the matrices A,B,C,Q0,Σw,Σv and the mean of the
prior distribution p(x0) = N (µ0, I), where µ0 ∼ N (0, 5I). All LQG problems were both
controllable and observable (Bertsekas, 2005). The planning horizon was T = 20 time steps.

Despite the linearity of the system, we trained GP dynamics and measurement models
using nonlinear Gaussian covariance functions. For the controller π, we chose a linear
parametrization, i.e., π(x) = Φx, where θ = Φ ∈ RF×D are the policy parameters to
be learned. In this section, only the moment matching approximation (see Sec. 3.1.1) is
considered.

POMDP-pilco performed 15 policy searches. Thus, the learned GP models were based
on only up to 320 data points (15 controlled rollouts plus a single initial random rollout).
The controllers were applied to control the system starting from 1000 initial states ran-
domly sampled from p(x0). This learning and test procedure was repeated N = 4 times
with different random LQG problems. The upper half of Tab. 1 describes the average per-
formance ratios of the optimal ground-truth LQG controller (LQGC) with respect to both
the learned POMDP-pilco controller and an uncontrolled system, i.e., u = 0. Even in 10D,
our learned data-driven controller is competitive with a performance loss of 14% and per-
forms substantially better than the uncontrolled system. However, we also noticed a small
performance drop from dimension six onward. This drop is a result of relatively small data
set used for GP training. Further, the number of policy parameters scales quadratically
with the dimensionality, which makes their optimization more prone to local minima due
to the use of nonlinear kernels.

9

Deisenroth Peters

4.2. Limits of LQGC

In the following, we will show that when minimally altering the LQG problem class, the
optimal LQGC applied to a linearized POMDP can degrade. On the other hand, our
POMDP pilco controller appropriately deals with the nonlinear POMDP and can learn
controllers superior to LQGC. We consider the moderately nonlinear system

xt = tanh(Axt−1) + But−1 + w , (31)

zt = tanh(Cxt) + v , (32)

where w ∼ N (0, 0.1I) and v ∼ N (0, 0.1I). To apply LQGC, we globally linearize Eqs. (31)–
(32) at the origin. This approximation is good in the non-saturating regime of tanh(·). We
initialized our POMDP solver identically to the linear case, see Sec. 4.1. Again, we generated
random POMDPs for D = E = F = 2, . . . , 10 and evaluated them as in Sec. 4.1.

Tab. 1 shows that in low dimensions, POMDP pilco performed as well as in the linear
case, compared to the linearized system. In higher dimensions, however, it was much more
likely that the latent state ended up in a saturating area of tanh. Then, the LQGC failed
dramatically as shown in the lower half of Tab. 1. The reason for this failure is that
the linearization around the origin introduces big errors in the saturating regions of tanh
resulting in very large values of the optimal feedback gain matrix L, resulting in even worse
“overshooting” at the next time step. Even an uncontrolled system performed better in
this case.

4.3. The POMDP Cart-Pole Swingup

We applied our proposed method to a POMDP version of the cart-pole swingup benchmark
problem, where the state of the system cannot be measured directly. In the cart-pole
swingup problem, we consider a cart running on a track with a freely swinging pendulum
attached to it. Initially, the pendulum hangs downward. By applying forces u ∈ [−10, 10] N
to the cart, the objective is to swing the pendulum up and to balance it in the upright
position in the center of the track. Neither myopic nor linear control can solve the task.

4.3.1. Setup

The latent state x = [x, ẋ, φ, φ̇] evolved according to the differential equations (DEQs)

ẍ = 2mlφ̇2 sinφ+3mg sinφ cosφ+4u(t)−4bẋ
4(M+m)−3m cos2 φ

(33)

φ̈ = −3mlφ̇2 sinφ cosφ−6(M+m)g sinφ−6(u(t)−bẋ) cosφ
4l(m+M)−3ml cos2 φ

(34)

where x and ẋ are the position and the velocity of the cart, respectively, φ is the angle of
the pendulum (measured counter-clockwise from hanging down), and φ̇ the corresponding
angular velocity. In Eqs. (33)–(34), M = 0.5 kg was the cart’s mass, m = 0.5 kg the
pendulum’s mass, b = 0.1 N s/m the coefficient of friction between the cart and the ground,
l = 0.6 m the length of the pendulum, and g = 9.82 m/s2 the acceleration of gravity. The

transition function f was f(xt, ut) =
∫ t+∆t

t

[
ẋ ẍ φ̇ φ̈

]>
(τ) dτ , where ∆t = 0.1 s. The

successor state

xt+1 = xt+∆t = f(xt, ut) + w , w ∼ N (0,Σw) (35)

10

Solving Nonlinear Continuous State-Action-Observation POMDPs

was computed using an ODE solver with a zero-order hold control signal u(τ). The system
noise covariance in Eq. (35) was set to Σw = diag([0.01 m2, 0.1 m2/s2, 0.01 rad2, 0.1 rad2/s2]).

At every discrete time step ∆t, the latent state xt was measured indirectly: We observed
the difference δ and its time derivative δ̇ of the (x, y)-coordinate of target position (pendu-
lum inverted in the middle of the track) and the current (x, y)-coordinate of the tip of the
pendulum in a global coordinate system. Thus, the measurement equation is nonlinear in
the state:

zt=

[
δ

δ̇

]
+v , δ=

[
xt+l sinφt
−l−l cosφt

]
. (36)

The measurement noise covariance was set to Σv = 10−3diag([1 m2, 1 m2, 1 m2/s2, 0.1 m2/s2]).
We chose a saturating cost function c(x) = 1 − exp(−1

2‖δ‖
2/σ2

c), where σc = 0.25 m is
the width of the cost function. Note that the pendulum’s length is l = 0.6 m and for c(x) < 1
it is required that the pendulum is above horizontal. The policy was parametrized as an
RBF network, i.e., π(x, θ) =

∑L
i=1wiF (x, µi), where F (x, µi) are axes-aligned Gaussian-

shaped basis functions located at µi ∈ RD with shared widths P. The L(1 +D) +D policy
parameters θ were the weights wi, the locations µi, and the D widths on the diagonal of
P. We set the number of basis functions to L = 100 resulting in 404 policy parameters.
The latent state prior was p(x0) = N (0, 10−2I), the finite prediction horizon was 3 s, i.e.,
30 time steps. We randomly sampled the initial policy parameters from Gaussians.

4.3.2. Analysis

We analyzed the learning performances for the two inference methods for planning described
in Secs. 3.1.1–3.1.2 and their corresponding GP-Bayes filters during the execution phase,
which we refer to as GP-ADF (moment matching) and GP-EKF (linearization), respectively.
Further, we compared these methods to baselines, which are the pilco algorithm applied
to the stochastic cart-pole swingup MDP, i.e., the measurement Eq. (36) is the identity
mapping with Σv = 0. Our results support two conclusions: First, the learned POMDP
controllers were close to the corresponding MDP controllers that require access to the latent
state to execute the learned policies. Second, approximate inference using moment matching
led to better performance than approximate inference using linearization.

Using N = 4 independent random initializations, 30 policy searches were performed for
each with the following setups: moment matching in an MDP (corresponds to MDP pilco),
GP-ADF in a POMDP, linearization in an MDP, and GP-EKF in a POMDP. After each
policy search, a single test rollout with the learned policy was performed, adding 30 data
points to the GP training sets. In the MDP setup, controls were computed based on the
latent state, in the POMDP case, controls were applied depending on the posterior state
distributions determined by the GP-Bayes filters.

First and most importantly, all learned controllers succeeded in solving the task. To
evaluate the learning performances in more detail, we applied each intermediate policy of
the four learning setups 10 times to the system (MDP or POMDP) where x0 ∼ p(x0).

Fig. 2 summarizes the results. The figure shows the expected cost per time step of a 30-
step horizon rollout after 0, . . . , 30 policy searches, where the 0-th policy search corresponds
to the random initial rollout. Our conclusions are: (i) Both Fig. 2(a) and 2(b) demonstrate

11

Deisenroth Peters

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

policy searches

e
x
p

e
c
te

d
 c

o
s
t

p
e

r
ti
m

e
 s

te
p

MM (MDP)
GP−ADF (POMDP)

(a) Performances using moment
matching

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

policy searches

e
x
p

e
c
te

d
 c

o
s
t

p
e

r
ti
m

e
 s

te
p

Lin (MDP)
GP−EKF (POMDP)

(b) Performances using lineariza-
tion.

Figure 2: Mean performance (cost per time step) of different learned controllers with stan-
dard errors. The learned POMDP controllers (red) are close to the corresponding
MDP controllers (black). Moment matching (MM, left) leads to faster learning
and better solutions than linearization (Lin, right).

that the learned POMDP controllers achieved performances close to the corresponding MDP
controllers. The differences were largely due to the remaining belief state uncertainties
p(xt|z1:t) in the inverted position: Any suboptimal control caused remarkable increase in
the immediate cost. (ii) All controllers were learned with uninformative prior knowledge
and very limited data: After about 10 policy searches (30 seconds of data), the task was
learned by either method. (iii) Learning with moment matching required less data and
led to superior performance (the vertical axes in Figs. 2(a) and 2(b) are identical). The
learning speed difference was caused by the tendency of the GP-EKF to produce incoherent
filter distributions p(xt|z1:t), especially in the early stages of learning when the GP model
uncertainty was large.

5. Conclusions and Future Work

We introduced a novel efficient model-based solver for POMDPs with continuous state,
action, and observation spaces. Our policy search approach exploits efficient GP inference
and filtering techniques in belief space. Compared to ground-truth solutions, our algorithm
learned near-optimal policies in up to 10 dimensions from uninformative prior knowledge and
little data. Furthermore, our method reliably solved even POMDPs with unknown optimal
policies. We analyzed two approximate belief-space inference methods: While linearization
is computationally advantageous, moment matching yields more coherent predictions.

A promising extension to any POMDP solver is to compute the belief state posteriors
not only conditioned on measurements and controls, but also on observed rewards. Recently,
we started pursuing this direction. Preliminary results are promising.

A current limitation of our approach is the requirement of a data post-processing step
to identify latent states for supervised training of GPs. Approaches as proposed by Wang
et al. (2008); Ko and Fox (2009) and especially McHutchon and Rasmussen (2012) can be
applied to learning GP models from noisy training inputs. In future, we will investigate
these methods for learning and long-term planning in POMDPs.

12

Solving Nonlinear Continuous State-Action-Observation POMDPs

Acknowledgements

The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement # 231495.

References

D. A. Aberdeen. Policy-Gradient Algorithms for POMDPs. PhD thesis, ANU, 2009.

J. A. Bagnell and J. G. Schneider. Autonomous Helicopter Control using Reinforcement
Learning Policy Search Methods. In ICRA, 2001.

D. P. Bertsekas. Dynamic Programming and Optimal Control Vol. 1. Athena Scientific,
2005.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

P. Dallaire, C. Besse, S. Ross, and B. Chaib-draa. Bayesian Reinforcement Learning in
Continuous POMDPs with Gaussian Processes. In IROS, 2009.

M. P. Deisenroth and H. Ohlsson. A General Perspective on Gaussian Filtering and Smooth-
ing. In ACC, 2011.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A Model-Based and Data-Efficient Ap-
proach to Policy Search. In ICML, 2011.

M. P. Deisenroth, M. F. Huber, and U. D. Hanebeck. Analytic Moment-based Gaussian
Process Filtering. In ICML, 2009.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and Acting in Partially
Observable Stochastic Domains. AI, 101, 1998.

J. Ko and D. Fox. GP-BayesFilters: Bayesian Filtering using Gaussian Process Prediction
and Observation Models. In IROS, 2008.

J. Ko and D. Fox. Learning GP-BayesFilters via Gaussian Process Latent Variable Models.
In RSS, 2009.

J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. Machine Learning,
2011.

H. Kurniawati, D. Hsu, and W. Sun Lee. SARSOP: Efficient Point-based POMDP Planning
by Approximating Optimally Reachable Belief Spaces. In RSS, 2008.

A. McHutchon and C. E. Rasmussen. Gaussian Process Training with Input Noise. In
NIPS. 2012.

A. Y. Ng and M. Jordan. Pegasus: A Policy Search Method for Large MDPs and POMDPs.
In UAI, 2000.

J. Peters and S. Schaal. Natural Actor-Critic. Neurocomputing, 71, 2008.

13

Deisenroth Peters

J. Pineau, G. Gordon, and S. Thrun. Point-based Value Iteration: An Anytime Algorithm
for POMDPs. In IJCAI, 2003.

J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart. Point-Based Value Iteration for
Continuous POMDPs. JMLR, 7, 2006.

P. Poupart, N. Vlassis, J. Hoey, and K.Regan. An Analytic Solution to Discrete Bayesian
Reinforcement Learning. In ICML, 2006.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. 2006.

S. Ross, B. Chaib-draa, and J. Pineau. Bayesian Reinforcement Learning in Continuous
POMDPs with Application to Robot Navigation. In ICRA, 2008.

J. M. Wang, D. J. Fleet, and A. Hertzmann. Gaussian Process Dynamical Models for
Human Motion. PAMI, 30, 2008.

R. J. Williams. Simple Statistical Gradient-following Algorithms for Connectionist Rein-
forcement Learning. Machine Learning, 8, 1992.

14

	Introduction
	Problem Setup and Background
	GP Dynamics and Measurement Models

	Policy Search in POMDPs
	Planning in Belief Space: Prior Policy
	Moment Matching
	Linearizing the GP Mean Function

	Execution Phase: Posterior Policy
	GP-Bayes Filters for State Estimation
	Control Selection

	Results
	Comparison to Ground Truth: LQG
	Limits of LQGC
	The POMDP Cart-Pole Swingup
	Setup
	Analysis

	Conclusions and Future Work

