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Abstract— Learning policies that generalize across multiple
tasks is an important and challenging research topic in rein-
forcement learning and robotics. Training individual policies
for every single potential task is often impractical, especially
for continuous task variations, requiring more principled ap-
proaches to share and transfer knowledge among similar tasks.
We present a novel approach for learning a nonlinear feedback
policy that generalizes across multiple tasks. The key idea is to
define a parametrized policy as a function of both the state and
the task, which allows learning a single policy that generalizes
across multiple known and unknown tasks. Applications of our
novel approach to reinforcement and imitation learning in real-
robot experiments are shown.

I. INTRODUCTION

Complex robots often violate common modeling assump-
tions, such as rigid-body dynamics. A typical example is
a tendon-driven robot arm, shown in Fig. 1, for which
these typical assumption are violated due to elasticities and
springs. Therefore, learning controllers is a viable alternative
to programming robots. To learn controllers for complex
robots, reinforcement learning (RL) is promising due to the
generality of the RL paradigm [21]. However, without a
good initialization (e.g., by human demonstrations [19], [3])
or specific expert knowledge [4] RL often relies on data-
intensive learning methods (e.g., Q-learning). For a fragile
robotic system, however, thousands of physical interactions
are practically infeasible because of time-consuming exper-
iments and hardware wear.

To make RL practically feasible in robotics, we need
to speed up learning by reducing the number of necessary
interactions. For this purpose, model-based RL is often more
promising than model-free RL, such as Q-learning or TD-
learning [5]. In model-based RL, data is used to learn a
model of the system. This model is then used for policy
evaluation and improvement, reducing the interaction time
with the system. However, model-based RL suffers from
model errors as it typically assumes that the learned model
closely resembles the true underlying dynamics [20], [19].
These model errors propagate through to the learned policy,
which inherently depends on the quality of the learned
model. A principled way of accounting for model errors and
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Fig. 1. Tendon-driven BioRob X4.

the resulting optimization bias is to take the uncertainty about
the learned model into account for long-term predictions and
policy learning [20], [6], [4], [9]. Besides sample-efficient
learning, generalizing learned concepts to new situations is
a key research topic in RL. Learned controllers often deal
with a single situation/context, e.g., they drive the system to
a desired state. In a robotics context, solutions for multiple
related tasks are often desired, e.g., for grasping multiple
objects [17] or in robot games, such as robot table tennis [18]
or soccer [7].

We consider a multi-task learning set-up with a continuous
set of tasks for which a policy has to be learned. Since it
is often impossible to learn individual policies for all con-
ceivable tasks, a multi-task learning approach is required that
generalizes across these tasks. Two general approaches exist
to tackle this challenge by either hierarchically combining
local controllers or a richer policy parametrization.

First, local policies can be learned, and generalization
can be achieved by combining them, e.g., by means of a
gating network [14]. This approach has been successfully
applied in RL [22] and robotics [18]. In [18], a gating
network generalizes a set of motor primitives for playing
robot-table tennis. The limitation of this approach is that it
can only deal with convex combinations of local policies,
implicitly requiring local policies that are linear in the
policy parameters. In [23], [7], it was proposed to share
state-action values across tasks to transfer knowledge. This
approach was successfully applied to kicking a ball with a
NAO robot in the context of RoboCup. However, a mapping
from source to target tasks is explicitly required. In [8],
it was proposed to sample a number of tasks from a task
distribution, learn the corresponding individual policies, and
generalize them to new problems by combining classifiers
and nonlinear regression. In [15], [8] mappings from tasks
to meta-parameters of a policy were learned to generalize
across tasks. The task-specific policies are trained indepen-
dently, and the elementary movements are given by Dynamic
Movement Primitives [13]. Second, instead of a combination
of local policies, we can parametrize the policy directly by
the task. For instance, in [16], a value function-based transfer
learning approach is proposed that generalizes across tasks
by finding a regression function mapping a task-augmented



state space to expected returns.
We follow this second approach as it allows for general-

izing nonlinear policies: During training, access to a set of
tasks is given and a single controller is learned jointly for
all tasks using policy search. Generalization to new tasks
in the same domain is achieved by defining the policy as
a function of both the state and the task. At test time, this
allows for generalization to unseen tasks without retraining.
For learning the parameters of the multi-task policy, we use
the PILCO policy search framework [9]. PILCO learns flexible
Gaussian process (GP) forward models and uses fast deter-
ministic approximate inference for long-term predictions for
data-efficient learning. In a robotics context, policy search
methods have been successfully applied to many tasks [10]
and seem to be more promising than value function-based
methods. Hence, this paper addresses two key problems in
robotics: multi-task and data-efficient policy learning.

II. POLICY SEARCH FOR LEARNING MULTIPLE TASKS

We consider dynamical systems xt+1 = f(xt,ut) + w
with continuous states x ∈ RD and controls u ∈ RF and
unknown transition dynamics f , where w ∼ N (0,Σw) is
i.i.d. Gaussian noise with covariance Σw. In (single-task)
policy search, we seek a deterministic policy π : x 7→
π(x,θ) = u that minimizes the expected long-term cost

Jπ(θ) =
∑T

t=1
Ext [c(xt)] , p(x0) = N (µx0 ,Σ

x
0) , (1)

of following π for T steps. Note that the trajectory
x1, . . . ,xT depends on the policy π and, thus, the parameters
θ. In (1), c(xt) is a cost function of state x at time t. The
policy π is parametrized by θ ∈ RP . Typically, the cost c
incorporates some information about a task η, e.g., a desired
target location xtarget. A policy that minimizes (1) solves the
task η of controlling the robot toward the target.

A. Task-Dependent Policies

We propose to learn a single policy for all tasks jointly to
generalize classical policy search to a multi-task scenario. We
assume that the dynamics are stationary with the transition
probabilities and control spaces shared by all tasks. By find-
ing a single policy that is sufficiently flexible to learn a set
of training tasks ηtrain

i , we aim to obtain good generalization
performance to related test tasks ηtest

j by reducing the danger
of overfitting to the training tasks, a common problem with
current hierarchical approaches.

To learn a single controller for multiple tasks ηk, we
propose to make the policy a function of the state x, the
parameters θ, and the task η, such that u = π(x,η,θ).
In this way, a trained policy has the potential to generalize
to previously unseen tasks by computing different control
signals for a fixed state x and parameters θ but varying tasks
ηk. Fig. 2 gives an intuition of what kind of generalization
power we can expect from such a policy: Assume a given
policy parametrization, a fixed state, and five training targets
ηtrain
i . For each pair (x,ηtrain

i ,θ), the policy determines the
corresponding controls π(x,ηtrain

i ,θ), which are denoted by
the red circles. The differences in these control signals are
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Fig. 2. Two multi-task policies for a given state, but varying task η. The
change in the controls is solely due to the change in the task. The black
policy is determined by our proposed multi-task approach (MTPS+); the
blue, dashed policy is obtained by hierarchically combining local controllers
(RW-IC). The controls of the training tasks u = π(x, η) are marked
by the red circles (MTPS+) and the green stars (RW-IC), respectively.
MTPS+ generalizes more smoothly across tasks, whereas the hierarchical
combination of independently trained local policies does not generalize well.

Fig. 3. Multi-Task Policy Search

1: init: Pass in training tasks ηtrain
i , initialize policy pa-

rameters θ randomly. Apply random control signals and
record data.

2: repeat
3: Update GP forward dynamics model using all data
4: repeat
5: Long-term predictions: Compute Eη[Jπ(θ,η)]
6: Analytically compute gradient Eη[dJπ(θ,η)/dθ]
7: Update policy parameters θ (e.g., BFGS)
8: until convergence; return θ∗
9: Set π∗ ← π(θ∗)

10: Apply π∗ to robot and record data
11: until ∀i: task ηtrain

i learned
12: Apply π∗ to test tasks ηtest

j

achieved solely by changing ηtrain
i in π(x,ηtrain

i ,θ) as x and
θ were assumed fixed. The parametrization of the policy by
θ and η determines the generalization power of π to new
(but related) tasks ηtest

j at test time. The policy for a fixed
state but varying test tasks ηtest

j is represented by the black
curve. A corresponding policy for a hierarchical combination
of local policies is shown in the blue curve. To find good
parameters of the multi-task policy, we incorporate our multi-
task learning approach into the model-based PILCO policy
search framework [9]. The high-level steps of the resulting
algorithm are summarized in Fig. 3. We assume that a set
of training tasks ηtrain

i is given. The parametrized policy π is
initialized randomly, and, subsequently, applied to the robot,
see line 1 in Fig. 3. Based on the initial collected data, a
probabilistic GP forward model of the robot dynamics is
learned (line 3) to consistently account for model errors.

We define the policy π as an explicit function of both
the state x and the task η, i.e., the policy depends on a
task-augmented state and u = π(x,η,θ). Before going into
details, let us consider the case where a function g relates
state and task. In this paper, we consider two cases: (a)
A linear relationship between the task η and the state xt
with g(xt,η) = η − xt. For example, the state and the
task (corresponding to a target location) can be both defined
in camera coordinates, and the target location parametrizes



and defines the task. (b) The task variable η and the state
vector are not directly related, in which case g(xt,η) = η.
For instance, the task variable could simply be an index. We
approximate the joint distribution p(xt, g(xt,η)) by

N
([
µxt
µηt

]
,

[
Σx
t Cxη

t

Cηx
t Ση

t

])
=: N

(
xx,ηt |µ

x,η
t ,Σx,η

t

)
, (2)

where the state distribution isN
(
xt |µxt ,Σx

t

)
andCxη

t is the
cross-covariance between the state and g(xt,η). The cross-
covariances for g(xt,η) = η−xt are Cxη

t = −Σx
t . If state

and task are unrelated, i.e., g(xt,η) = η, then Cxη
t = 0.

The Gaussian approximation of the joint p(xt, g(xt,η))
in (2) serves as the input distribution to the controller
function π. Although we assume that the tasks ηtest

i are given
deterministically at test time, introducing a task uncertainty
Ση
t > 0 during training can make sense: First, Ση

t defines a
task distribution, which may allow for better generalization
performance compared to Ση

t = 0. Second, Ση
t > 0 serves

as a regularizer and makes policy overfitting less likely.

B. Multi-Task Policy Evaluation

For policy evaluation, we analytically approximate the
expected long-term cost Jπ(θ) by averaging over all tasks
η, see line 5 in Fig. 3, according to

Eη[J
π(θ,η)] ≈ 1

M

∑M

i=1
Jπ(θ,ηtrain

i ) , (3)

where M is the number of tasks considered during training.
The expected cost Jπ(θ,ηtrain

i ) corresponds to (1) for a
specific training task ηtrain

i . The intuition behind the expected
long-term cost in (3) is to allow for learning a single
controller for multiple tasks jointly. Hence, the controller
parameters θ have to be updated in the context of all
tasks. The resulting controller is not necessarily optimal
for a single task, but (neglecting approximations and local
minima) optimal across all tasks on average, presumably
leading to good generalization performance. The expected
long-term cost Jπ(θ,ηtrain

i ) in (3) is computed as follows.
First, based on the learned GP dynamics model, ap-

proximations to the long-term predictive state distributions
p(x1|η), . . . , p(xT |η) are computed analytically: For a joint
Gaussian prior p(xt,ut|η), the successor state distribution

p(xt+1|ηtrain
i )=

∫∫∫
p(xt+1|xt,ut)p(xt,ut|ηtrain

i )dfdxtdut

(4)

cannot be computed analytically for nonlinear covari-
ance functions. However, we approximate it by a Gaus-
sian distribution N

(
xt+1 |µxt+1,Σ

x
t+1

)
using exact mo-

ment matching [9]. In (4), the transition probability
p(xt+1|xt,ut) = p(f(xt,ut)|xt,ut) is the GP predictive
distribution at (xt,ut). Iterating the moment-matching ap-
proximation of (4) for all time steps of the finite hori-
zon T yields Gaussian marginal predictive distributions
p(x1|ηtrain

i ), . . . , p(xT |ηtrain
i ).

Second, these approximate Gaussian long-term predictive
state distributions are used to compute the expected imme-
diate cost Ext

[c(xt)|ηtrain
i ] =

∫
cη(xt)p(xt|ηtrain

i )dxt for a

particular task ηtrain
i , where p(xt|ηtrain

i ) = N
(
xt |µxt ,Σx

t

)
and cη is a task-specific cost function. This integral can be
solved analytically for many choices of the immediate cost
function cη , such as polynomials or unnormalized Gaussians.
Summing the values Ext

[c(xt)|ηtrain
i ] from t = 1, . . . , T

finally yields Jπ(θ,ηtrain
i ) in (3).

C. Gradient-based Policy Improvement
The closed-form approximation of Jπ(θ,η) by means of

moment matching allows for an analytic computation of the
corresponding gradient dJπ(θ,η)/dθ with respect to the
policy parameters θ, see (3) and line 6 in Fig. 3, given by

dJπ(θ,η)/dθ =
∑T

t=1

d

dθ
Ext

[c(xt)|η] . (5)

These gradients can be used in any gradient-based opti-
mization toolbox, e.g., BFGS (line 7). The derivatives of
Jπ(θ,ηtrain

i ) with respect to the policy parameters θ re-
quires repeated application of the chain-rule. Defining Et :=
Ext

[c(xt)|ηtrain
i ] in (5) yields

dEt
dθ

=
dEt

dp(xt)

dp(xt)

dθ
:=

∂Et
∂µxt

dµxt
dθ

+
∂Et
∂Σx

t

dΣx
t

dθ
, (6)

where we took the derivative with respect to p(xt), i.e., the
parameters (mean µxt and covariance Σx

t ) of the Gaussian
approximation to the state distribution p(xt). The chain-rule
yields the total derivative

dp(xt)

dθ
=

∂p(xt)

∂p(xt−1)

dp(xt−1)

dθ
+
∂p(xt)

∂θ
. (7)

We assume that the total derivative dp(xt−1)/dθ is known
from the computation for the previous time step. Hence,
we only need to compute the partial derivative ∂p(xt)/∂θ.
Note that xt = f(xt−1,ut−1) + w and ut−1 =
π(xt−1, g(xt−1,η),θ). Therefore, we obtain ∂p(xt)/∂θ =
{∂µxt /∂θ, ∂Σx

t /∂θ} with
∂{µxt ,Σx

t }
∂θ

=
∂{µxt ,Σx

t }
∂p(ut−1)

∂p(ut−1)

∂θ

=
∂{µxt ,Σx

t }
∂µut−1

∂µut−1
∂θ

+
∂{µxt ,Σx

t }
∂Σu

t−1

∂Σu
t−1
∂θ

. (8)

We approximate the distribution of the control signal
p(ut−1) =

∫
π(xt−1, g(xt−1,η),θ)p(xt−1)dxt−1 by a

Gaussian with mean µut−1 and covariance Σu
t−1. These

moments (and their gradients with respect to θ) can often be
computed analytically, e.g., in linear models with polynomial
or Gaussian basis functions. The augmentation of the policy
with the (transformed) task variable requires an additional
layer of gradients for computing dJπ(θ)/dθ. The variable
transformation affects the partial derivatives of µut−1 and
Σu
t−1 (marked red in (8)), such that

∂{µut−1,Σu
t−1}

∂{µxt−1,Σx
t−1,θ}

=
∂{µut−1,Σu

t−1}
∂p(xt−1, g(xt−1,η))

× ∂p(xt−1, g(xt−1,η))

∂{µxt−1,Σx
t−1,θ}

. (9)

We incorporate these derivatives into (8) via the chain and
product-rules for an analytic gradient dJπ(θ,ηtrain

i )/dθ in (3)
to update the policy (lines 6–7 in Fig. 3).



III. EVALUATIONS AND RESULTS

We applied our approach to multi-task policy search to
three tasks: 1) the under-actuated cart-pole swing-up, 2)
a low-cost robotic manipulator system that learns block
stacking, 3) an imitation learning ball-hitting task with a
tendon-driven robot. In all cases, the system dynamics were
unknown and inferred from data using GPs.

A. Multi-Task Cart-Pole Swing-up

The cart-pole system consists of a cart with mass 0.5 kg
and a pendulum of length 0.6m and mass 0.5 kg attached
to the cart. Every 0.1 s, an external force was applied to the
cart, but not to the pendulum. The state x = [χ, χ̇, ϕ, ϕ̇]
of the system comprised the position χ and velocity χ̇
of the cart, the angle ϕ and angular velocity ϕ̇ of the
pendulum. The nonlinear controller was parametrized as a
regularized RBF network with 100 Gaussian basis functions.
The controller parameters were the locations of the basis
functions, a shared (diagonal) width-matrix, and the weights,
resulting in approximately 800 policy parameters.

Initially, the system was expected to be in a state, where
the pendulum hangs down; more specifically, p(x0) =
N (0, 0.12I). By pushing the cart to the left and to the right,
the objective was to swing the pendulum up and to balance
it in the inverted position at a target location η of the cart
specified at test time, such that xtarget = [η, ∗, π + 2kπ, ∗]
with η ∈ [−1.5, 1.5]m and k ∈ Z. The cost function c in (1)
was chosen as c(x) = 1−exp(−8‖x−xtarget‖2) ∈ [0, 1] and
penalized the Euclidean distance of the tip of the pendulum
from its desired inverted position with the cart being at target
location η. Optimally solving the task required the cart to
stop at the target location η. Balancing the pendulum with
the cart offset by 20 cm caused an immediate cost (per time
step) of about 0.4. We considered four experimental set-ups:
Nearest neighbor independent controllers (NN-IC):
A baseline experiment with five independently learned
controllers for the desired swing-up locations η =
{±1m,±0.5m, 0m}. Each controller was learned by the
PILCO framework [9] in 10 trials with a total experience
of 200 s. For the test tasks ηtest, we applied the controller
with the nearest training task ηtrain.
Re-weighted independent controllers (RW-IC): Training
was identical to NN-IC. At test time, we combined individual
controllers using a gating network, similar to [18], resulting
in a convex combination of local policies with weights

vi =
exp
(
− 1

2κ‖η
test−ηtrain

i ‖
2
)

∑|ηtrain|
j exp

(
− 1

2κ‖η
test−ηtrain

j ‖2
) , (10)

such that the applied control signal was u =
∑
i viπi(x).

An extensive grid search resulted in κ = 0.0068m2, leading
to the best test performance in this scenario, making RW-IC
nearly identical to the NN-IC.
Multi-task policy search, Ση = 0 (MTPS0): Multi-task
policy search with five known tasks during training, which
only differ in the location of the cart where the pendulum is
supposed to be balanced. The target locations were ηtrain =
{±1m,±0.5m, 0m}. Moreover, g(xt, η) = η − χ(t) and
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(a) NN-IC: No generalization.
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(b) RW-IC: No generalization.
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(c) MTPS0: Some generalization.
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(d) MTPS+: Good generalization in
the “coverage” of the Gaussians.

Fig. 4. Generalization performance for the multi-task cart-pole swing-
up. The graphs show the expected cost per time step along with twice the
standard errors.

Ση = 0. We show results after 20 trials, i.e., a total
experience of 70 s only.
Multi-task policy search, Ση > 0 (MTPS+): Multi-
task policy search with the five training tasks ηtrain =
{±1m,±0.5m, 0m}, but with training task covariance
Ση = diag([0.12, 0, 0, 0]). We show results after 20 trials,
i.e., 70 s total experience.

For the performance analysis, we applied the learned
policies 100 times to the test-target locations ηtest =
−1.5,−1.4, . . . , 1.5. The initial state of a rollout was sam-
pled from p(x0). For the MTPS experiments, we plugged the
test tasks into (2) to compute the corresponding controls.

Fig. 4 illustrates the generalization performance of the
learned controllers. The horizontal axes denote the locations
ηtest of the target position of the cart at test time. The height
of the bars show the average (over trials) cost per time step.
The means of the training tasks ηtrain are the location of the
red bars. Fig. 4(d) shows the distribution p(ηtrain

i ) used during
training as the bell-curves, which approximately covers the
task range η ∈ [−1.2m, 1.2m].

The NN-IC controller, see Fig. 4(a), balanced the pen-
dulum at a cart location that was not further away than
0.2m, which incurred a cost of up to 0.45. In Fig. 4(b),
the performances for the hierarchical RW-IC controller are
shown. The performance for the best value κ in the gating
network, see (10), was similar to the performance of the
NN-IC controller. However, between the training tasks for
the local controllers, i.e., in the range of [−0.9m, 0.9m],
the convex combination of local controllers led to more
failures than in NN-IC, where the pendulum could not be
swung up successfully: Convex combinations of nonlinear
local controllers eventually decreased the (non-existing) gen-
eralization performance of RW-IC.

Fig. 4(c) shows the performance of the MTPS0 controller.
The MTPS0 controller successfully performed the swing-up
plus balancing task for all tasks ηtest close to the training



tasks. However, the performance varied strongly. Fig. 4(d)
shows that the MTPS+ controller successfully performed the
swing-up plus balancing task for all tasks ηtest at test time
that were sufficiently covered by the uncertain training tasks
ηtrain
i , i = 1, . . . , 5, indicated by the bell curves representing

Ση > 0. Relatively constant performance across the test
tasks covered by the bell curves was achieved. An average
cost of 0.3 meant that the pendulum might be balanced with
the cart slightly offset. Fig. 2 shows the learned MTPS+
policy for all test tasks ηtest with the state x = µ0 fixed.

Tab. I summarizes the controller performances. We av-
eraged over all test tasks ηtest and 100 applications of the
learned policy, where the initial state was sampled from
p(x0). Although NN-IC and RW-IC performed the swing-up
reliably, they incurred the largest cost: For most test tasks,
they balanced the pendulum at the wrong cart position as they
did not generalize from training tasks to unseen test tasks. In
the MTPS experiments, the average cost was lowest. MTPS+
led to the best overall generalization performance, although
it might not solve each individual test task optimally.

Fig. 2 illustrates the difference in generalization per-
formance between our MTPS+ approach and the RW-IC
approach, where controls ui from local policies πi are
combined. Since the local policies are trained independently,
a (convex) combination of local controls makes only sense
in special cases, e.g., when the local policies are linear in the
parameters. In this example, however, the local policies are
nonlinear. Since the local policies are learned independently,
their overall generalization performance is poor. On the other
hand, MTPS+ learns a single policy for a task ηi always in
the light of all other tasks ηj 6=i as well, and, therefore, leads
to an overall smooth generalization.

B. Multi-Task Robot Manipulator

B1

B2

B3

B4

B5

B6

Fig. 5. Low-cost manipulator by
Lynxmotion [1] performing a block-
stacking task using visual feedback
from a PrimeSense depth camera.

We applied our pro-
posed multi-task learning
method to a block-stacking
task with a low-cost, off-
the-shelf robotic manipu-
lator ($370) by Lynxmo-
tion [1], see Fig. 5, and
a PrimeSense [2] depth
camera ($130) as a vi-
sual sensor. The arm had
six controllable degrees of
freedom: base rotate, three
joints, wrist rotate, and a
gripper (open/close). The plastic arm could be controlled
by commanding both a desired configuration of the six
servos and the duration for executing the command [11].
The camera was identical to the Kinect sensor, providing a
synchronized depth and RGB image at 30Hz. We used the
camera for 3D-tracking of the block in the robot’s gripper.

TABLE I
MULTI-TASK CART-POLE: AVERAGE COSTS ACROSS 31 TEST TASKS.

NN-IC RW-IC MTPS0 MTPS+
Cost 0.39 0.4 0.33 0.30

The goal was to make the robot learn to stack a tower
of six blocks using multi-task learning. The cost function
c in (1) penalized the distance of the block in the gripper
from the desired drop-off location. We only specified the
3D camera coordinates of the blocks B2, B4, and B5 as the
training tasks ηtrain, see Fig. 5. Thus, at test time, stacking B3
and B6 required exploiting the generalization of our multi-
task policy search. We chose g(x,η) = η − x and set Ση

such that the task space, i.e., all 6 blocks, was well covered.
The mean µ0 of the initial distribution p(x0) corresponded
to an upright configuration of the arm.

A GP dynamics model was learned that mapped the 3D
camera coordinates of the block in the gripper and the
commanded controls at time t to the corresponding 3D
coordinates of the block in the gripper at time t + 1. The
control signals were changed at a rate of 2Hz. Note that
the learned model is not an inverse kinematics model as
the robot’s joint state is unknown. We used an affine policy
ut = π(xt,η,θ) = Ax

x,η
t +b with θ = {A, b}. The policy

defined a mapping π : R6 → R4, where the four controlled
degrees of freedom were the base rotate and three joints.
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Fig. 6. Average distances of the block in the
gripper from the target position with twice the
standard error.

We report
results based
on 16 training
trials, each of
length 5 s, which
amounts to a
total experience
of 80 s only.
The test phase
consisted of 10
trials per stacking
task, where the arm was supposed to stack the block on
the currently topmost block. The tasks ηtest

j at test time
corresponded to stacking blocks B2–B6 in Fig. 5. Fig. 6
shows the average distance of the block in the gripper from
the target position, which was b = 4.3 cm above the topmost
block. Here, “block2” means that the task was to move
block B2 in the gripper on top of block 1. The horizontal
axis shows times at which the manipulator’s control signal
was changed (rate 2Hz), the vertical axis shows the average
distances (over 10 test trials) to the target position in meters.
For all blocks (including blocks B3 and B6, which were not
part of the training tasks ηtrain) the distances approached
zero over time. Thus, the learned multi-task controller
interpolated (block B3) and extrapolated (block B6) from
the training tasks to the test tasks without re-training.

C. Multi-Task Imitation Learning of Ball-Hitting Movements

We demonstrate the successful application of our MTPS
approach to imitation learning. Instead of defining a cost
function c in (1), a teacher provides demonstrations that
the robot should imitate. We show that our MTPS approach
allows to generalize from demonstrated behavior to behaviors
that have not been observed before. In [12], we developed
a method for model-based imitation learning based on prob-
abilistic trajectory matching for a single task. The key idea



(a) Set-up for the imitation learning experi-
ments. Orange balls represent the three train-
ing tasks ηtrain

i . The blue rectangle indicates
the regions of the test tasks ηtest

j to which the
learned controller is supposed to generalize.

distance [m]

(b) Training task lo-
cations (white disks).
Blue and cyan indi-
cate that the task was
solved successfully.

Fig. 7. Set-up and results for the imitation learning experiments with a
bio-inspired BioRobTM.

is to match a distribution over predicted robot trajectories
p(τπ) directly with an observed distribution p(τ exp) over
expert trajectories τ exp by finding a policy π∗ that minimizes
the KL divergence between them.

In this paper, we extend this imitation learning approach
to a multi-task scenario to jointly learning to imitate multiple
tasks from a small set of demonstrations. In particular, we
applied our multi-task learning approach to learning a con-
troller for hitting movements with variable ball positions in a
2D-plane using the tendon-driven BioRobTM X4, a five DoF
compliant, light-weight robotic arm, capable of achieving
high accelerations, see Fig. 7(a). While the BioRob’s design
has advantages over traditional approaches, modeling and
controlling such a compliant system is challenging.

We considered three joints of the robot, such that the state
x ∈ R6 contained the joint positions q and velocities q̇
of the robot. The corresponding motor torques u ∈ R3 were
directly determined by the policy π. For learning a controller,
we used an RBF network with 250 Gaussian basis functions
with about 2300 policy parameters. Unlike in the previous
examples, we represented a task as a two-dimensional vector
η ∈ R2 corresponding to the ball position in Cartesian
coordinates in an arbitrary reference frame within the hitting
plane. As the task representation η was basically an index
and, hence, unrelated to the state of the robot, g(x,η) = η,
the cross-covariances Cxη in (2) were 0.

As training tasks ηtrain
j , we defined hitting movements

for three different ball positions, see Fig. 7(a). For each
training task, an expert demonstrated two hitting movements
via kinesthetic teaching. Our goal was to learn a single policy
that a) learns to imitate three distinct expert demonstrations,
and b) generalizes from demonstrated behaviors to tasks that
were not demonstrated. These tests tasks were defined as
hitting balls in a larger region around the training locations,
indicated by the blue box in Fig. 7(a). We set the matrices Ση

such that the blue box was covered well. Fig. 7(b) shows the
performance results as a heatmap after 15 iterations of the
algorithm in Fig. 3. The evaluation measure was the distance
in m between the ball position and the center of the table-
tennis racket. We computed this error in a regular 7x5 grid of
the blue area in Fig. 7(a). The distances in the blue and cyan

areas were sufficient to successfully hit the ball (the racket’s
radius is about 0.08m). Hence, our approach successfully
generalized from given demonstrations to new tasks.

IV. CONCLUSION

We have presented a policy-search approach to multi-
task learning for robots with stationary dynamics. Instead
of combining local policies, our approach learns a single
policy jointly for all tasks. The key idea is to explicitly
parametrize the policy by the task and, thus, enable the policy
to generalize from training tasks to similar, but unknown,
tasks at test time. This generalization is phrased as an opti-
mization problem, which can be solved jointly with learning
the policy parameters. For solving this optimization problem,
we incorporated our approach into the PILCO policy search
framework, which allows for data-efficient policy learning.
We have reported promising real-robot results on both multi-
task RL and imitation learning, the latter of which allows to
generalize imitated behavior to solving tasks that were not
in the library of demonstrations.
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