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Abstract

Efficient skill acquisition is crucial for creating versatile robots. One intuitive way to teach a robot new
tricks is to demonstrate a task and enable the robot to imitate the demonstrated behavior. This approach is
known as imitation learning. Classical methods of imitation learning, such as inverse reinforcement learning
or behavioral cloning, suffer substantially from the correspondence problem when the actions (i.e., motor
commands, torques or forces) of the teacher are not observed or the body of the teacher differs substantially,
e.g., in the actuation. To address these drawbacks we propose to train a robot-specific controller that directly
matches robot trajectories with observed ones. We present a novel and robust probabilistic model-based
approach for solving a probabilistic trajectory matching problem via policy search. For this purpose, we
propose to learn a probabilistic model of the system, which we exploit for mental rehearsal of the current
controller by making predictions about future trajectories. These internal simulations allow for learning a
controller without continuously interacting with the real system, which results in a reduced overall interac-
tion time. Using long-term predictions from this learned model, we train robot-specific controllers that re-
produce the expert’s distribution of demonstrations without the need to observe motor commands during the
demonstration. We show that our method achieves a higher learning speed than both model-based imitation
learning based on dynamics motor primitives and trial-and-error based learning systems with hand-crafted
reward functions.We demonstrate that our approach addresses the correspondence problem in a principled
way. The strength of the resulting approach is shown by imitating human behavior using a tendon-driven
compliant robotic arm, where we also demonstrate the generalization ability of our approach.

1 Introduction

Programming robots to perform complex tasks is difficult with classical methods for instructing robots, such
as textual or GUI-driven programming techniques [8]. These methods require a large amount of work for
programming a single task, and transfer to new environments is often difficult. Especially for programming
versatile robots, where fast learning of new tasks in changing environments is necessary, these methods are
often impracticable.

Imitation learning (IL) is an approach to address such skill acquisition problems in an elegant way: A
teacher’s demonstration of a task is recorded, and, subsequently, learning algorithms transfer the task to a
robot [2,4]. Especially for tasks that humans can perform well, this approach is often easier and more straight-
forward for transferring skills than programming methods. Another advantage is that if robot movements
resemble human movements, they will be accepted more easily by humans, which, from a psychological point
of view, is desirable when integrating robots into domestic environments.

Common IL methods include behavioral cloning [6] and inverse reinforcement learning [29]. In behavioral
cloning, demonstrated trajectories are used to learn a policy from observed states to controls. Subsequently, the
robot applies the policy. In inverse reinforcement learning, the demonstrations are used to learn the teacher’s
reward function. Subsequently, a policy is learned that optimizes the learned cost function.

One key challenge in imitation learning is the correspondence problem [25]: If the body of the teacher and
the robot differ, finding an adequate mapping of the teacher’s demonstrations to the robot is non-trivial. The
correspondence problem can occur in many different forms: One form is due to different anatomies between the



Figure 1: The BioRobTM is a compliant, biomechanically-inspired robot manipulator with drive cables and
springs, which represent tendons and their elasticity. Classical control approaches based on rigid body dynamics
are unrealistic for this robot because they ignore the cable-driven properties and the elasticity of the tendons.

teacher and the robot. As a consequence, some demonstrated behaviors of the teacher may not be executable
by the robot. Another form of the correspondence problem are different dynamics properties between teacher
and robot. For example, robots often have torque limits, such that the robot’s joints cannot achieve the same
velocities as the teacher’s joints.

In this paper, we propose a novel model-based imitation learning approach that addresses the correspon-
dence problem and allows robots to efficiently acquire new behaviors from expert demonstrations. The key
idea is to directly match the predicted state trajectory of the robot with the teacher’s demonstration by learning
a robot-specific controller. This gives us the advantage that we do not need to record the actions of the expert
demonstrations, which allows us to choose from a wider range of demonstration methods (e.g., visual motion
recordings, recordings with other robots) and to use the same demonstrations for teaching multiple different
robots.

Our approach exploits a forward model of the robot’s dynamics to generate trajectory predictions of the
current controller. Using these simulations instead of sampling real robot trajectories, reduces the interaction
time with the robot. Such data efficient learning saves experimental time and reduces the number of repairs. In
the absence of a good parametric robot model, we propose to learn a data-driven forward model using a prob-
abilistic non-parametric Gaussian process [33]. Learning a non-parametric forward model is especially suited
for robots, where it is difficult to model the robot’s dynamics with classical approaches like rigid-body dynam-
ics (e.g., the BioRobTM, see Figure 1). A probabilistic model allows us to take uncertainty about the robot’s
dynamics into account, which reduces learning bias due to model errors [3, 37], a problem that is particularly
pronounced when only a few samples and no informative prior knowledge is available. Furthermore, we do not
need to make potentially unrealistic assumptions (e.g., about rigid body dynamics or linear friction), which are
typically made when learning parametric forward models in robotics [39].

The contribution of this paper is an imitation learning framework based on probabilistic trajectory matching
that addresses the correspondence problem in a principled way. We show that our IL approach learns faster and
more robust than related approaches and demonstrate its generalization properties on an elastic compliant robot
manipulator.

The rest of the paper is structured as follows: In Section 2, we present related work on skill learning in
robotics. In Section 3, we introduce our problem formulation and provide some background on probabilistic
model learning. In Section 4, we describe our model-based imitation learning approach, where we use rein-
forcement learning methods to find optimal policies. In Section 5, we demonstrate the viability of our approach
on both simulated and real robots, such as the biomechanically-inspired manipulator shown in Figure 1.

2 Related Work

Research in the field of imitation learning devised techniques that differ in the way the demonstrations are
provided (e.g., motion capture [41], physical interaction [7]), the level at which the imitation happens (e.g., at



the symbolic [43] or trajectory level [10]), whether they use a system model, and whether/how they employ
reward functions for the task. A detailed survey about learning skills from demonstration can be found in [2].

A classic form of imitation learning is Behavioral Cloning (BC). In BC, the behavior of a skilled human is
recorded and, subsequently, an induction algorithm is executed over the traces of the behavior [6]. In classical
BC, the objective of cloning observed expert demonstrations is phrased as a supervised learning problem. This
problem is solved by learning a function from demonstration data that maps states to actions, i.e., a policy. An
impressive early application of BC was the autonomous vehicle ALVINN [31], which learned a neural-network
policy for driving a car from recorded state-action training pairs of a human driver. Advantages of BC are
the straightforward application and the clean-up effect, i.e., the smoothing of noisy imperfect demonstrations.
However, BC restricts the ways how the demonstrations can be recorded because it also needs to observe the
action signals during the demonstration. Additionally, it suffers severely from the correspondence problem
because it directly maps recored states to recorded actions without taking the anatomy and physics of the robot
into account. Therefore, BC is not robust to changes in either the control task or the environment and cannot
provide strong performance guarantees.

One more modern approach of imitation learning is the use of Dynamic Movement Primitives (DMP)
[35, 36]. DMPs are a formulation of movements as nonlinear differential equations that provide the option
to modify the movement in different ways, e.g., goal position, duration. The shape of DMPs is learned from
demonstrated trajectories. Since DMPs are typically used in the robot’s joint space, demonstrations in task
space requires an additional mapping. Multiple extensions and modification for DMPs exist, e.g., real-time
goal adaption [17] or generalizing movements with a mixture of DMPs [23].

Inverse Reinforcement Learning (IRL) is a form of imitation learning that automatically extracts a reward
function from demonstrations of a task [9, 29]. Subsequently, a policy is found that maximizes this reward
function. By maximizing the teacher’s reward function, the learned policy is supposed to produce a behavior
similar to the demonstration. Hence, IRL is suited for tasks where the hand-crafted definition of a suitable
reward function is difficult (e.g., parking lot navigation [1], quadruped locomotion [20]). Drawbacks of IRL
are that the performance of most methods rely on feature selection, which can strongly bias the performance.

The transfer of a skill through imitation learning limits the performance of the robot to the skill of the teacher
that provided the demonstration. Reinforcement Learning (RL) is a common technique to improve skills after
applying imitation learning. RL [40] is an approach, where a task-specific reward function is maximized. RL
has been successfully used in robotics applications for learning the ball-in-a-cup game [19] and helicopter
hovering [28]. However, a major difficulty in RL is engineering a suitable reward function for more complex
tasks.

In this paper, we phrase imitation learning directly as a probabilistic trajectory-matching problem. We learn
policies that maximize the similarity between distributions over demonstrated expert trajectories and predicted
robot trajectories. As a difference measure between trajectory distributions we use the Kullback-Leibler (KL)
divergence. We show that our imitation learning problem is equivalent to an RL problem with an induced
cost function. Compared to other IL algorithms our IL approach addresses the correspondence problem in two
ways. First, robot-specific controllers are learned that explicitly take the robot’s torque limits and anatomic
differences between the robot and the teacher into account. Second, it is not necessary to record actions of the
teacher’s demonstrations.

3 Problem Statement and Background

Throughout this paper, we use the following notation: We denote states by x ∈ RD and actions by u ∈ RE ,
respectively. Furthermore, we define a trajectory τ as a sequence of states x0,x1, . . . ,xT for a fixed finite
time horizon T . Our goal is to match trajectories by learning a parametrized state-feedback policy π such that
u = π(x,θ) with policy parameters θ.

3.1 Problem Statement

We assume that the teacher provides n trajectories τ i from which the robot should learn to imitate the demon-
strated behavior. We assume that the demonstrated trajectories start from an initial state distribution p(x0) to
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Figure 2: Learning a probabilistic forward model with Gaussian processes. The horizontal axis represents
state-action input pairs (xt,ut) of the model and the vertical axis represents the predicted next state xt+1. The
black crosses denote the training data and the grey shaded area represents two times the standard deviation of
the predictive uncertainty. It can be seen, that in the region around the training points, the predictions are more
certain than at inputs further away. The red line denotes a test input in a region where we have not observed
any data. Here, the model would return the prior with our initial uncertainty.

account for variability in the demonstrations. Since we have n different trajectories, we use the probability dis-
tribution p(τ exp) to represent the variability of the demonstrated trajectories. For example, a transporting task
requires at the pick-up position of the object a higher accuracy, and, hence, the variance of the demonstrations
is smaller there than during the transport itself. We also use a probability distribution for representing the robot
trajectory predictions p(τ π), which allows us to represent uncertainty of the robot’s dynamics in a principled
way.

Our goal is to find a policy π, such that the robot’s behavior matches the demonstrations. For this purpose,
our objective is to match the distribution over predicted trajectories p(τ π) with the distribution over demon-
strated trajectories p(τ exp). As a similarity measure between these distributions, we use the Kullback-Leibler
(KL) divergence [38]. Hence, our imitation learning objective is to find a policy such that

π∗ ∈ arg min
π

KL
(
p(τ exp)||p(τ π)

)
. (1)

For predicting p(τ π), we exploit a learned model of the robot’s forward dynamics, which we describe in the
following.

3.2 Learning Probabilistic Forward Models

We learn a forward model of the robot’s dynamics for performing internal simulations, which is related to the
concept that humans rely on internal models for planning, control and learning of their dynamics behavior [42].
A forward model f maps a state xt and action ut of the system to the next state xt+1. In our case, we assume
that xt+1 = f(xt,ut) + ε where ε ∼ N (0,Σε) is i.i.d. Gaussian noise with Σε = diag([σ21 . . . σ

2
D]). Such

a model represents the transition dynamics of a robot. We represent the model by a Gaussian Process (GP),
i.e., a probability distribution over models [33]. A GP is defined as a collection of random variables, any finite
number of which is Gaussian distributed. Since a GP is a consistent, non-parametric method, we do not have
to specify a restrictive parametric model. The GP infers a posterior distribution over the underlying function
f directly from the data, while the uncertainty about this estimate is represented as well. As training inputs to
the GP, we use state-action pairs (x

(i)
t ,u

(i)
t ) and as targets the corresponding successors x(i)

t+1 for i = 1, . . . , n.
Such a GP represents one-step transitions in the form

p(xt+1|xt,ut) = N (xt+1|µt+1,Σt+1) (2)

with µt+1 = Ef [f(xt,ut)] = mf (xt,ut), (3)

Σt+1 = varf [f(xt,ut)] = σ2f (xt,ut), (4)



where mf is the mean and σ2f the variance of f . An example of such a model is visualized in Figure 2, where
the horizontal axis represents state-action input pairs (xt,ut) and the vertical axis represents the predicted next
state xt+1.

A GP is completely specified by a mean function m and a covariance function k. The mean function allows
to integrate prior knowledge about the underlying dynamics f (e.g., rigid-body dynamics) and the covariance
function incorporates some high-level structured assumptions about the true underlying function (e.g., smooth-
ness). We use an uninformative prior mean function m ≡ 0 for symmetry reasons and a squared exponential
covariance function plus noise covariance

k(x̃p, x̃q) = α2 exp
(
−1

2(x̃p−x̃q)>Λ−1(x̃p−x̃q)
)

+ δpqσ
2
ε , (5)

with inputs of the form x̃ = [x>,u>]>, so that we obtain a smooth function. The parameter α2 is the signal
variance, Λ = diag([l21, . . . , l

2
D]) is a matrix with the squared length-scales, and δpq is the Kronecker symbol,

which is 1 when p = q, and 0 otherwise. The posterior predictive distribution at a test input x̃? is given by the
mean and variance

mf (x̃?) = k>?K
−1y, (6)

σ2f (x̃?) = k?? − k>?K−1k? (7)

with k? := k(X̃, x̃?), k?? := k(x̃?, x̃?), Gram matrix K with Kij = k(x̃i, x̃j), and training inputs X̃ =
[x̃1, . . . , x̃n] with corresponding targets y = [y1, . . . , yn]>. Equations (2)–(7) are used to simulate the system
for a single time step and map the current state-action pair (xt,ut) onto a probability distribution over the next
state xt+1 (see Figure 2). The GP model can be reused for different tasks as long the dynamics of the system
do not change.

4 Probabilistic Imitation Learning via Trajectory Matching

Our goal is to imitate the expert’s behavior by finding a policy π∗ that minimizes the KL divergence between
the distribution p(τ exp) over demonstrated trajectories and the distribution p(τ π) over predicted trajectories
when executing a policy π, see Equation (1).

The KL divergence is a difference measure between two probability distributions and is defined for contin-
uous distributions p(x) and q(x) as

KL
(
p(x)||q(x)

)
=

∫
p(x) log

p(x)

q(x)
dx. (8)

The KL divergence has been widely used in machine learning research for the development of new algorithms
that are based on minimizing Equation (8). In robotics research, it has been previously used to measure the
distance between Hidden Markov Models [18, 24] and for mapping and localization algorithms [11].

4.1 Trajectory Representation

We approximate a distribution over trajectories p(τ ) = p(x0, . . . ,xT ) by a Gaussian N (τ |µτ ,Στ ) that fac-
torizes according to

p(τ ) ≈
T∏
t=1

p(xt) =

T∏
t=1

N (xt|µt,Σt) . (9)

This simplifying assumption implies that Στ ∈ RTD×TD is block diagonal without cross-correlations among
states at different time steps. In the following paragraphs, we describe how we compute the probability distri-
butions over trajectories p(τ exp) from demonstrations and p(τ π) with model predictions for our objective in
Equation (1).



4.1.1 Estimation of a Distribution over Expert Trajectories
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Figure 3: Estimation of a Gaussian distribution
p(τ exp) over trajectories.

The demonstrations of the teacher are converted such
that they are time-aligned, i.e., each trajectory τ i con-
sists of a sequence of T states. This can be achieved for
example through dynamic time warping [34]. The mean
and covariance matrix of the marginals p(xt) are com-
puted as unbiased estimates p(xt) ≈ N (µ̂

exp
t , Σ̂

exp
t ),

where

µ̂
exp
t =

1

n

n∑
i=1

xit (10)

Σ̂
exp
t =

1

n− 1

n∑
i=1

(xit−µ̂
exp
t )(xit−µ̂

exp
t )>. (11)

In Equations (10)–(11), xit is the state after t time steps of the ith demonstrated expert trajectory. This estimation
yields an approximate Gaussian distribution over the expert trajectories

p(τ exp) = N (µ̂exp, Σ̂
exp

) = N



µ̂

exp
1

µ̂
exp
2
...

µ̂
exp
T

 ,


Σ̂
exp
1 0 . . . 0

0 Σ̂
exp
2

...
...

. . . 0

0 . . . 0 Σ̂
exp
T


 (12)

with a block diagonal covariance matrix Σ̂
exp

. An illustration of such a trajectory representation is shown in
Figure 3, where multiple teacher demonstrations (blue dotted lines) are estimated by a Gaussian (red shaded
graph).

4.1.2 Predicting a Distribution over Robot Trajectories

We use the learned GP forward model described in Section 3.2 for iteratively predicting the state distributions
p(x1), . . . , p(xT ) for a given policy π and an initial state distribution p(x0). These long-term predictions are
the marginal distributions of p(τ π). Note that even for a given input pair x̃t = (xt,ut), the GP’s prediction is
a probability distribution given by Equations (6)–(7). Iteratively computing the predictions p(x1), . . . , p(xT ),
therefore, requires to predict with Gaussian processes at uncertain inputs [32]. Computing p(xt+1) at an un-
certain input p(xt,ut) = N (x̃t|µ̃t, Σ̃t) requires integrating out both the uncertainty about the state-action pair
x̃t and the posterior uncertainty about the function f ∼ GP according to

p(xt+1) =

∫∫
p(xt+1|x̃t)p(x̃t)dfdx̃t, (13)

where xt+1 = f(x̃t) = f(xt,ut). The transition probability p(xt+1|x̃t) is the posterior GP predictive dis-
tribution given in Equations (6)–(7) and p(x̃t) = N (x̃t|µ̃t, Σ̃t) is assumed Gaussian. This mapping of an
uncertain input p(xt,ut) through a GP is visualized in Figure 4. The input distribution is shown in the bottom
panel, and the GP is shown in the top left panel. The exact predictive distribution p(xt+1) from Equation (13)
is visualized in the top right panel of Figure 4 as the red shaded area. However, computing the exact distri-
bution p(xt+1) given in Equation (13) is analytically intractable. Therefore, we approximate it by a Gaussian
p(xt+1) ≈ N (xt+1|µt+1,Σt+1), which is shown as the blue graph in the top right panel of Figure 4.

For the Gaussian approximation of p(xt+1) we use exact moment matching. Following [13] the mean is
computed (using the law of total expectation and Equation (6)) by

µt+1 = E[f(x̃t)] = Ex̃
[
Ef [f(x̃t)|x̃t]

] (3)
= Ex̃

[
mf (x̃t)

]
(14)

=

∫
mf (x̃t)N (x̃t|µ̃t, Σ̃t)dx̃t

(6)
=

∫
k(x̃t, X̃)N (x̃t|µ̃t, Σ̃t)dx̃tK

−1y

= β>q
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Figure 4: Visualization of predictions with Gaussian processes at uncertain inputs. The bottom panel shows the
Gaussian input distribution p(xt,ut) = N (x̃|µ̃t, Σ̃t). The upper left panel shows the distribution f ∼ GP .
The upper right panel shows the exact prediction p(xt+1) shaded in red, which cannot be computed analytically
(see Equation (13)). Therefore, we use exact moment matching to approximate this distribution with a Gaussian
N (xt+1|µt+1,Σt+1), which is drawn as a blue graph in the upper right panel.

with β = K−1y and q = [q1, · · · , qn]>. Using Equation (5), the entries of q are given by

qi =

∫
k(x̃t, x̃i)N (x̃t|µ̃t, Σ̃t)dx̃t = α2|Σ̃tΛ

−1 + I|−
1
2 exp(−1

2ν
>
i (Σ̃t + Λ)−1νi), (15)

where we used νi := x̃i− µ̃t with the training input x̃i. The predictive covariance matrix Σt+1 can be derived
similarly. The entries of the covariance matrix Σt+1 ∈ RD×D for the target dimension a, b = 1, . . . , D are

σ2ab = β>a (Q− qaq>b )βb + δab
(
α2
a − tr(K−1Q)

)
. (16)

In Equation (16), the entries Qij ofQ ∈ Rn×n are given by

Qij =α2
aα

2
b

∣∣(Λ−1a + Λ−1b )Σ̃t + I
∣∣− 1

2 exp
(
−1

2(x̃i − x̃j)>(Λa + Λb)
−1(x̃i − x̃j)

)
× exp

(
−1

2(ẑij − µ̃t)>
(
(Λ−1a + Λ−1b )−1 + Σ̃t

)−1
(ẑij − µ̃t)

)
(17)

with

ẑij = Λb(Λa + Λb)
−1x̃i + Λa(Λa + Λb)

−1x̃j , (18)

where i, j = 1, . . . , n. For a detailed derivation of these results, see [13].
The GP predictions at uncertain inputs from Equations (14)–(18) allow the system to iteratively predict the

long-term outcome for a policy π and a given distribution of the start state x0, which results in a probability
distribution over trajectories p(τ π).

4.2 Natural Cost Function

In the previous sections, we detailed how to approximate p(τ exp) and p(τ π) by Gaussian distributions. For
such a special case of two Gaussian distributions p(x) ∼ N (x|µ0,Σ0) and q(x) ∼ N (x|µ1,Σ1), the KL
divergence in Equation (8) has the closed form expression

KL (p||q) = 1
2 log

∣∣Σ−11 Σ0

∣∣+ 1
2 tr
(
Σ−11

(
(µ0−µ1)(µ0−µ1)

>+Σ0−Σ1

))
. (19)

We use Equation (19) for our imitation learning approach as a cost function between probability distributions
over trajectories p(τ exp) and p(τ π). The trajectory factorization in Equation (9) simplifies the KL divergence



Algorithm 1 Probabilistic Model-based Imitation Learning
input: n expert trajectories τ i of a task
init: Estimate expert distribution over trajectories p(τ exp) (see Section 4.1.1)

Record state-action pairs of the robot (e.g., through applying random control signals)
repeat

Learn/update probabilistic GP forward model (see Section 3.2)
Predict p(τ π) (see Section 4.1.2)
Learn policy π? ∈ arg minπ KL

(
p(τ exp)||p(τ π)

)
(see Section 4.3)

Apply π? to system and record data
until task learned

as it is suffices to sum up the KL divergences of the marginal distributions p(xexp
t ), p(xπt ) and we obtain the

imitation learning objective function

JπIL = KL
(
p(τ exp)||p(τ π)

)
=

T∑
t=1

KL
(
p(x

exp
t )||p(xπt )

)
. (20)

Here, we used the trajectory representations from Section 4.1 and Equation (8). Since the marginals p(xt) are
approximated by Gaussians, the KL divergence in Equation (20) can be evaluated in closed form by applying
Equation (19).

Matching the predicted trajectory of the current policy with the expert trajectory via minimizing the KL
divergence induces a natural cost function in a standard RL context [16]: Equation (20) shows that matching
two factorized distributions by means of the KL divergence yields an additive objective function. Therefore,
with c(xt) = KL

(
p(x

exp
t )||p(xπt )

)
, we can use reinforcement learning methods to minimize Equation (20)

since the IL objective JπIL corresponds to a RL long-term cost JπRL of the form

JπRL =
T∑
t=1

c(xπt ) =
T∑
t=1

KL
(
p(x

exp
t )||p(xπt )

)
=

T∑
t=1

KL
(
N (µ̂

exp
t , Σ̂

exp
t )||N (µπt ,Σ

π
t )
)

= JπIL . (21)

In Equation (21), we used our assumption that trajectories are represented by Gaussian distributions with block-
diagonal covariance matrices.

Since KL
(
p(x

exp
t )||p(xπt )

)
corresponds to a RL long-term cost function, we can apply RL algorithms to

find optimal policies. In principle, any algorithm that can predict trajectories of the current policy π is suitable.
For instance, model-free methods based on sampling trajectories directly from the robot [30,40] or model-based
RL algorithms that learn forward models of the robot and, subsequently, use them for predictions [5,14,15,27]
are suitable. In this paper, we use a policy search method with learned probabilistic forward models to minimize
the KL divergence KL

(
p(τ exp)||p(τ π)

)
.

4.3 Policy Learning

For learning a policy that solves the imitation learning problem in Equation (1), we exploit the result in Equa-
tion (21) and use the PILCO (Probabilistic Inference for Learning COntrol) framework [13] as RL method for
matching the trajectory distributions p(τ exp) and p(τ π). An overview of our method is given in Algorithm 1.
Our objective is to find policy parameters θ of a policy π that minimize the long-term cost in Equation (21). To
find policy parameters θ, such that the distribution over the predicted trajectory matches the distribution over
the expert trajectory, we minimize our cost function in Equation (20) by means of gradient-based optimization.
The gradient of the IL objective JπIL with respect to the policy parameters θ is

dJπIL
dθ

=

T∑
t=1

(
∂KL
∂µπt

dµπt
dθ

+
∂KL
∂Σπ

t

dΣπ
t

dθ

)
, (22)



where we require the partial derivatives of the KL divergence with respect to the mean µπt and the covariance
Σπ
t of the predicted state distribution at time t. The partial derivatives are given by

∂KL
∂µπt

= −(Σπ
t )−1(µ̂

exp
t −µπt ), (23)

∂KL
∂Σπ

t

= 1
2(Σπ

t )−1 − 1
2(Σπ

t )−1
(

(Σπ
t )−1 + (µ̂

exp
t −µπt )(µ̂

exp
t −µπt )>

)
(Σπ

t )−1 . (24)

The derivatives of the mean µπt and covariance Σπ
t with respect to θ are the same as in [13]. All the derivatives

in Equation (22) can be computed analytically and allow to use of fast gradient-based optimization methods,
such as CG or BFGS.

With the KL divergence as difference measure between the estimated expert distribution p(τ exp) over tra-
jectories and the predictive distribution p(τ π) over trajectories, we have formulated model-based imitation
learning as a reinforcement learning problem. Thereby, the KL divergence serves as an induced natural cost
function. The analytic gradients of the loss function allow us to use gradient-based policy search methods.
Therefore, we introduced all ingredients for performing probabilistic model-based imitation learning (see Al-
gorithm 1) and solving the problem defined in Equation (1).

5 Experimental Results

In this section, we demonstrate the performance of our model-based imitation learning approach in different ex-
periments. First, we learn a swing up task for a simulated double pendulum. Second, we imitate demonstrations
provided via kinesthetic teaching with a tendon-driven real BioRobTM with complex internal dynamics.

In the following experiments, we use a non-linear Radial Basis Function (RBF) network with axis-aligned
Gaussian features φ as policy parametrization. This policy can be written as

π̃(x,θ) =

m∑
i=1

wiφi(x) with (25)

φi(x) = exp
(
− 1

2(x− ci)>Γ−1(x− ci)
)
, (26)

weights wi, centers ci, and widths γi of each dimension in Γ = diag(γ21 , γ
2
2 , . . . , γ

2
D). We learn the parameters

θ = {w, c,γ} of the RBF network by minimizing Equation (22) with gradient-based optimization methods.
For taking the torque limits umax into account, we squash the policy π̃ through a sinusoidal function to obtain
the torque-restricted policy

π(x,θ) = umax sin
(
π̃(x,θ)

)
. (27)

Therefore, the planning phase already takes the robot’s torque limits into account, which restricts the policy to
the mechanically admissible range.

5.1 Double Pendulum

q2

q1
(x1, y1)

(x2, y2)

Figure 5: Parametrization of the double pendulum and
a sequence of configurations during the upswing task.

The double pendulum consists of two links and two
actuated joints and is mounted on the ground (see
Figure 5). The system state consists of joint posi-
tions and velocities x = [q1, q1, q̇2, q̇2]

>; the motor
torques serve as actions u = [u1, u2]

>. The task
was to swing up and balance the double pendulum
in the inverted position, see Figure 5. Each link had a
mass m = 0.5 kg and a length l = 0.5 m. The motor
torques were limited to the range [−3.5, 3.5] Nm. We
used a sampling frequency of 10 Hz at which the control signals could be changed and a total prediction horizon
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Figure 6: The Figures show the task space positions [x1, y1, x2, y2] of the double pendulum. The blue shaded
graph shows the expert trajectory distribution p(τ exp) and the red graph shows the predicted robot trajectory
distribution p(τ π). In both cases, the twice the standard deviations are shown.

of T = 2.5 s. For the RBF network in Equations (25)–(26) we used 100 basis functions, which resulted in 812
policy parameters θ.

The GP forward model was learned in joint space, but trajectory matching via minimizing the KL diver-
gence was performed in task space to show the flexibility of our approach. Therefore, the observed trajectories
consisted of a sequence of link positions [x1, y1, x2, y2]. The distribution p(τ exp) over expert trajectories was
based on five similar successful demonstrations of the task and created according to Section 4.1. Figure 6
shows the predicted robot trajectory distribution p(τ π) in the blue shaded graph and the distribution over ex-
pert trajectories p(τ exp), represented by the red graph. Both predictive distributions are shown in task space
coordinates. The figure illustrates that the learned policy adapts to changing variability of the demonstrations,
which is especially pronounced in the x1-coordinate, i.e., the x-coordinate of the inner link.

5.1.1 Comparison to Reinforcement Learning and Imitation Learning

To qualitatively evaluate learning speed, we compared our proposed model-based IL approach with reinforce-
ment learning. Unlike our IL approach, which matches trajectories by minimizing the KL divergence, rein-
forcement learning requires a hand-crafted cost function, where we chose the common cost function

c(x) = 1− exp(−||x− xtarget||2/8) (28)

with the target state xtarget in task space. As RL algorithm, we used the PILCO policy search framework [13],
which allows an adequate comparison of the learning speed since it also learns a probabilistic forward model.
The average success rate as a function of required data is visualized in Figure 7. A run was considered success-
ful, when the double pendulum performed the swing-up and balanced in the inverted position. The success rate
is given in percent and averaged over ten independent experiments of the algorithms. In each experiment, the
model was initialized with a different random rollout. The shaded red graph represents PILCO’s learning speed
and reaches a success rate of 95 % after about 50 s of robot interactions. The performance of the model-based
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(b) Comparison to Imitation Learning with DMPs

Figure 7: Average success rate for solving the double pendulum swing-up task as a function of required data the
robot effectively used for learning. The green errorbar in (a) and (b) shows the performance of the model-based
IL approach described in Section 4. The shaded red graph in (a) shows the success rate of a learned controller
with the hand-crafted reward function from Equation (28). The shaded blue graph in (b) shows the model-based
imitation learning controller from Equation (29). All learned models were initialized with a random rollout.
Therefore, they start at 2.5 s.

IL algorithm with the KL divergence is visualized as the green graph and reaches a similar success rate after
about 33 s only. This performance boost can be explained by the fact that the RL method with the hand-crafted
cost function initially needs to explore good trajectories that lead to the desired configuration. Our imitation
learning algorithm instead exploits information about the desired trajectories through the expert’s trajectory dis-
tribution that pushes the exploration towards states of these expert trajectories. The presence of demonstrations
that guide the learning process can be considered a kind of natural reward shaping [26] that speeds up learning.

For evaluating the robustness of our IL controller, we compared our approach to another model-based
imitation learning method. In particular, we used a learned inverse model combined with a PD controller, such
that our policy was given by

π(q, q̇, t) = finv(qt, q̇t, q
exp
t+1, q̇

exp
t+1, q̈

exp
t+1) +Kp(q

exp
t − qt) +Kd(q̇

exp
t − q̇t), (29)

where we used dynamic movement primitives (DMPs) for representing the expert movement [35, 36]. The
inverse model was learned incrementally with GPs similar to our forward model as described in 5.2.3. As
inputs of the GP model we used the current joint position and velocity [qt, q̇t] and the desired joint position,
velocity and acceleration of the next state [q

exp
t+1, q̇

exp
t+1, q̈

exp
t+1], which were given by the DMP. The outputs of the

model were feedforward torques, which are the first term in Equation (29). We combined this feedforward part
with a feedback controller where we selected Kp = 0.5I and Kd = 0.25I as suited. The success rate of this
method is visualized as the blue shaded graph in Figure 7. In each run for estimating the success rate, the start
position of both approaches was sampled from the same probability distribution p(x0) to test the robustness of
the controllers. It can be seen that the DMP-based method was able to solve the task and reached an average
success rate of about 80 %. This method learned initially faster than our IL approach since the PD Controller
pushed the robot into the direction of the expert demonstrations. However, the DMP-based approach did not
reach a high success rate, due to the variations in the starting position. Our imitation learning method with the
KL divergence shows a higher robustness and solved the task with an average success rate of about 95 %.

These overall results show that the KL divergence is an appropriate measure for matching trajectory distri-
butions in the context of IL, which leads to a fast learning of robust policies.



Figure 8: The upper photo series shows a kinesthetic demonstration by an expert and the lower photos show
the learned movement after the fourth iteration of our approach.

5.1.2 Addressing the Correspondence Problem

Our approach is more robust to the correspondence problem than other imitation learning methods (e.g., behav-
ioral cloning) because we train robot-specific controllers. This property gives us the ability to change attributes
of the robot that the teacher does not have (i.e., changing the weight at the robot’s end effector) where we
are still able to learn. In our experiments with the double pendulum, we applied our method to the double-
pendulum swing-up task, where the mass values of the second link were different during demonstrations and
the robot’s execution. The expert trajectories were created with a mass of 0.5 kg of the second link. We tested
our approach in cases where the robot’s second link masses ranged between 0.15 kg and 1 kg. In such a case,
classical behavioral cloning would fail because the recorded state-actions pairs do not resemble the robot be-
havior with the changed attributes. Our imitation learning approach, however, can still learn a controller as we
search for a controller that takes the different attributes during learning into account. Our approach successfully
performed the task in the range between 0.15 kg and 0.57 kg for the second link. Learning did not succeed for
mass values above 0.57 kg, due to the torque limits. Unfortunately, our approach is not robust to all kinds of
correspondence problems, particularly if the required control commands for imitating the teacher exceed the
control limits of the robot. In this case, we cannot imitate the teacher. However, we may sometimes still find
good solutions.

5.2 Kinesthetic Teaching with a BioRob

In the following section, we evaluate the performance of our imitation learning approach on a real robot. We
used the biomechanically-inspired compliant BioRobTM [22] to learn a fast ball-hitting movement that we
demonstrated via kinesthetic teaching. We describe first the robot hardware and the experimental set-up, and
afterward we detail model and controller learning.

5.2.1 Hardware Description

The BioRobTM (see Figure 1) is a compliant, light-weight robotic arm, capable of achieving high accelerations.
Its design tries to place the servo motors close to the torso, minimizing the inertia of the links and enable the
end-effector to move with high velocities. Experimental results have shown Cartesian velocities of the end-
effector of up to 6.88 m/s [21]. The BioRob X4 is equipped with an end-effector module that increases the
total number of degree of freedom to five. The torque is transferred from the motor to the joints via a system
of pulleys, drive cables, and springs, which, in the biologically-inspired context, represent tendons and their
elasticity. In terms of safety, decoupling the joint and motor inertia protects the items in the robot’s workspace



and the motor gearboxes in the event of collisions. While the BioRob’s design has advantages over traditional
approaches, it has the disadvantage that controlling such a compliant system is a highly challenging task.

Classical control approaches that consider only the rigid body dynamics of the system are unrealistic for
controlling the robot as they omit the cable-driven properties, such as the elasticity of the tendons, the cable
slacking effects, stiction, and the energy stored in the cable springs. Linear control approaches suffer even more
form the actuator dynamics. As a result, both forward and inverse rigid-body dynamics models are not suffi-
ciently accurate for classical control, and the robot fails to follow desired trajectories not even approximately.
Moreover, if the control torques are not sufficiently smooth, oscillations close to the eigen-frequency occur.
During the oscillations, the motors hold the same position, while the joints, due to the kinematic decoupling
from the motors, oscillate. These oscillations differ from the classical under-damped control systems, and, thus,
damping them is a non-trivial task.

5.2.2 Task Setup

We attached a table tennis racket to the end-effector of the robot and attached a ball to a string hanging down
from the ceiling, see Figure 8. The shape of the racket alongside with the high velocities produces a significant
amount of drag, which is hard to model accurately, leading to substantial errors in parametric models. Thus,
learning a non-parametric GP forward model that extracts useful information from data and, subsequently,
learning control policies for solving the task, is particularly promising for this compliant tendon-driven robot.

We controlled three joints of the BioRobTM for performing the task. The state x ∈ R6 was given by
three joint positions and velocities of the robot; the actions u ∈ R3 were given by the corresponding motor
torques. The applied motor commands to the robot were the outcome of the policy in Equation (27) without
any feedback component. We provided three demonstrations of the task via kinesthetic teaching, as shown in
Figure 8, to create a distribution over expert trajectories. Therefore, we took the robot by the hand and recorded
the system states. The task was first to move back and then to perform a fast up movement to hit the ball, see
Figure 8.

5.2.3 Model Learning
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Figure 9: Cross-validation of the frequency value fs.

An important parameter when learning models is
the sampling frequency fs = 1/∆T where ∆T
is the time difference between xt and xt+1 in
our learned forward model, see Equations (2)–(4).
High frequencies result in increased computational
time as the number of time steps for a given predic-
tion horizon increases. Moreover, changes in suc-
ceeding states can be too insignificant to learn a ro-
bust model because of a low signal-to-noise ratio:
Small changes increase the risk that important in-
formation about the underlying function is filtered
out.

For finding an appropriate sampling frequency
fs, we used k-fold cross-validation with the log-
likelihood of our GP predictions. We divided the
recorded data into k = 5 training/test folds and
computed for each fold the predictive log-likelihood with different fs values. The log-likelihood for one fold is
defined as

log p(yi|X,y−i) = −1
2 log |Σi| − D

2 log(2π)− 1
2(yi − µi)>Σ−1i (yi − µi). (30)

Here, y−i denotes the training set without the test values yi of the current fold, D is the number of test
values and µi and Σi are the predicted mean and variance of the test inputs xi according to Equations (6)–(7),
respectively. Figure 9 shows the averaged log-likelihood over different frequencies fs. These results show that
a sampling frequency fs of around 10 Hz is most suited for model learning. Higher fs values reach a lower



0 0.5 1 1.5 2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

time [s]

J
o

in
t 

2
 P

o
s
it
io

n
 [

ra
d

]

 

 

Expert Trajectory

Predicted Trajectory

Executed Trajectories

(a) Position of Joint 2.

0 0.5 1 1.5 2

0

0.5

1

1.5

2

time [s]

J
o
in

t 
3
 P

o
s
it
io

n
 [
ra

d
]

 

 

Expert Trajectory

Predicted Trajectory

Executed Trajectories

(b) Position of Joint 3.

0 0.5 1 1.5 2

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time [s]

J
o

in
t 

4
 P

o
s
it
io

n
 [

ra
d

]

 

 

Expert Trajectory

Predicted Trajectory

Executed Trajectories

(c) Position of Joint 4.

Figure 10: Results after learning the imitation of a task with the BioRobTM from kinesthetic teaching. The
figures above show the distribution p(τ exp) over expert trajectories (shaded blue area) and the distribution
p(τ π) over predicted trajectories from the learned forward model (green error bars). Both are plotted with
two times the standard deviation. The red dashed lines show some executed trajectories of the robot where we
applied the learned policy. There start state was sampled from the initial distribution p(x0).

predictive log-likelihood, which can be explained either by the fact that either they fit to the measurement noise
leading to overfitting or the signal-to-noise ratio is very low.

5.2.4 Controller Learning

For learning a BioRob controller we used the RBF network from Equation (27) with 80 basis functions, re-
sulting in 738 policy parameters. According to the cross-validation results from Section 5.2.3, we selected a
sampling frequency of 10 Hz as optimal for our GP forward model. We recorded state-action pairs to initialize
the GP forward model. Therefore, we executed simple movements with a PD controller at robot configurations
around the start distribution p(x0) of the task. These data points corresponded to a total experience of 6 s. Our
probabilistic IL approach based on trajectory matching led to rapid learning. After the second attempt, the robot
was already able to hit the ball and to do a movement similar to the teacher’s. After the fourth trial, the robot
solved the task and could imitate the demonstrations reliable (see Figure 10).

The predicted distribution p(τ π) over robot trajectories, the expert distribution p(τ exp) over demonstrated
trajectories, and some executed trajectories after four learning iterations of our proposed IL approach are visu-
alized in Figure 10. The figure shows the positions of the three joints that were used for the task. The trajectory
prediction of the GP is shown as green error bars. The blue shaded graph is the expert trajectory. Some executed
trajectories of the robot where we applied the learned policy are shown as red dashed lines. The robot was able
to imitate the demonstrations in a robust manner from different starting positions, using a total of less than 30 s
of data to learn both an accurate forward model and a robust controller.

5.2.5 Generalization to Multiple Targets

The policy that the robot learned in the previous experiments was able to imitate a simple task without any
generalization abilities. One of the key challenges in imitation learning is the generalization to more complex
tasks, where a policy needs to be adaptable to changes in the environment (e.g., to an object position).

For making the policy generalizable to different target positions, we incorporate our IL framework into the
multi target scenario [12]. We evaluated the generalization ability of our approach by extending the experiments
from Section 5.2.4 to variable ball positions in a 2D-plane, see Figure 11(a). For this purpose, we directly
parametrized the policy π by the target variables η. The key idea to train the policy π(x,θ,η) on a small
predefined set of training targets ηtrain

i , e.g., the orange balls in Figure 11(a). In the test phase, the policy can
generalize to test targets ηtest

i that are previously unseen but related to the training targets.In our experiments,
the test targets were located inside the blue box in Figure 11(a). Therefore, the controller automatically learns
the implicit similarity of the targets. For a detailed description of this approach, we refer to [12].



(a) Set-up of the multiple target imitation learning experiments. (b) Evaluation of the multiple target imi-
tation learning experiments.

Figure 11: (a) Set-up for the imitation learning experiments. The orange balls represent the three training targets
ηtrain
i . The blue rectangle indicates the regions of the test targets ηtest

j for our learned controller to which we
want to generalize. (b) Evaluation of the imitation learning experiments with the BioRobTM. The three white
discs show the training target locations. The color encodes the minimum distance between the ball position and
the trajectory of the center of the table-tennis racket. In the blue and cyan areas, the robot successfully hit the
table tennis ball.

We define the multiple target loss function as

JπMT(θ,η) ≈ 1

M

M∑
i=1

JπIL
(
θ,ηtrain

i

)
=

1

M

M∑
i=1

KL
(
p(τ

exp
i )||p(τ π|ηtrain

i )
)
, (31)

where we sum the loss function JπIL from Equation (1) over M training targets ηtrain
i . For each training target,

we demonstrated multiple trajectories to estimate the corresponding expert trajectory distribution p(τ exp
i ). Op-

timizing Equation (31) with Algorithm 1 allows the robot to learn a single policy, explicitly parametrized by
the target location η.

As the policy parametrization, we used the RBF network of Equation (27) with 250 Gaussian basis func-
tions, resulting in 2774 policy parameters θ. A target was represented as a two-dimensional vector η ∈ R2

corresponding to the ball position in Cartesian coordinates in an arbitrary reference frame within the hitting
plane. As training targets ηtrain

j , we defined hitting movements for three different ball positions (see Fig-
ure 11(a)). For each training target, an expert demonstrated two hitting movements via kinesthetic teaching.
Our goal was to learn a policy that a) learns to imitate three distinct expert demonstrations, and b) generalizes
from demonstrated behaviors to targets that were not demonstrated. In particular, these test targets were to hit
balls in a larger region around the training locations, indicated by the blue box in Figure 11(a).

Figure 11(b) shows the performance results as heatmap after 15 iterations of Algorithm 1. The evaluation
measure was the distance between the ball position and the center of the table-tennis racket. We computed
this error in a regular 7x5 grid of the blue area in Figure 11(b). The distances in the blue and cyan areas were
sufficient to successfully hit the ball. We conclude that our approach successfully generalized demonstrations
to new targets.

6 Conclusion

In this paper, we have presented a probabilistic model-based imitation learning approach that enables robots
to acquire new tricks through teacher demonstrations. The three key components of our approach are: 1)



the probabilistic modeling of both the robot’s dynamics and the teacher’s demonstrations that allows us to
take uncertainty appropriately into account; 2) the mental rehearsal of the current controller with predictions
of distributions over plausible trajectories guarantees data efficient learning; 3) the search for robot-specific
controllers that match the robot trajectory with the expert trajectory, which enables us to use demonstration
methods that do not record the actions of the teacher. We have shown that matching trajectories with the
Kullback-Leibler divergence as similarity measure is equivalent to a reinforcement learning problem, where the
similarity measure serves as an induced immediate cost function. We addressed the correspondence problem
and showed that we are able to do imitation in the task space and that differences in the dynamics between
teacher and robot do not disrupt learning as long as the kinematic and dynamics restrictions of the robot are
not passed. Our experimental results have shown that we reach a faster learning than reinforcement learning
with hand-crafted cost functions. Additionally, the comparison to the model-based imitation learning method
with DMPs showed that our approach has a high robustness to changes in the task set-up. Furthermore, we
demonstrated the applicability of our approach to real robots, where we used a compliant robot to imitate
demonstrations provided by kinesthetic teaching in a fast and robust manner. We also showed that we can learn
more complex imitation tasks, where we generalized to multiple targets.
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