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Abstract. Path integral (PI) control defines a general class of control problems
for which the optimal control computation is equivalent to an inference problem
that can be solved by evaluation of a path integral over state trajectories. How-
ever, this potential is mostly unused in real-world problems because of two main
limitations: first, current approaches can typically only be applied to learn open-
loop controllers and second, current sampling procedures are inefficient and not
scalable to high dimensional systems. We introduce the efficient Path Integral
Relative-Entropy Policy Search (PI-REPS) algorithm for learning feedback poli-
cies with PI control. Our algorithm is inspired by information theoretic policy
updates that are often used in policy search. We use these updates to approximate
the state trajectory distribution that is known to be optimal from the PI control
theory. Our approach allows for a principled treatment of different sampling dis-
tributions and can be used to estimate many types of parametric or non-parametric
feedback controllers. We show that PI-REPS significantly outperforms current
methods and is able to solve tasks that are out of reach for current methods.
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1 Introduction

Stochastic Optimal Control is a powerful framework for computing optimal controllers
in noisy systems with continuous states and actions. Optimal control computation usu-
ally involves estimation of the value function (or optimal cost-to-go) which, except for
the simplest case of a linear system with quadratic rewards and Gaussian noise, is hard
to perform exactly. In all other cases, we either have to rely on approximations of the
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system dynamics, e.g. by linearizations [22] or the value function [12]5. However, such
approximations can significantly degenerate the quality of the estimated controls and
hinder the application for complex, non-linear tasks.

Path integral (PI) control theory [7,20] defines a general class of stochastic optimal
control problems for which the optimal cost-to-go (and the optimal control) is given
explicitly in terms of a path integral. Its computation only involves the path costs of
sample roll-outs or (state) trajectories, which are given by the reward along the state
trajectory plus the log-probability of the trajectory under the uncontrolled dynamics.
The optimal trajectory distribution of the system corresponds to a soft-max probability
distribution that uses the path costs in its exponent. This fact allows for using proba-
bilistic inference methods for the computation of the optimal controls, which is one of
the main reasons why PI control theory has recently gained a lot of popularity.

However, PI control theory suffers from limitations that reduce its direct application
in real-world problems. First, to compute the optimal control, one has to sample many
trajectories starting from a certain (initial) state x0. Such procedure is clearly infeasi-
ble for real stochastic environments, as the re-generation of a large number of sample
trajectories would be required for each time-step. Hence, current algorithms based on
PI control theory are so far limited to optimize state-independent controllers, such as
open-loop torque control [19] or parametrized movement primitives such as Dynamic
Movement Primitives [18,5].

Second, PI control theory requires sampling from the uncontrolled process. Such
procedure requires a huge amount of samples in order to reach areas with low path
costs. While open-loop iterative approaches [19] address this problem by importance
sampling using a mean control trajectory, they do not provide a principled treatment for
adjusting also the variance of the sampling policy. As the uncontrolled process might
have small variance, such procedure still takes a large amount of samples to converge to
the optimal policy. While some approaches that are used in practice relax these theoret-
ical conditions and also change the sampling variance heuristically [16], they disregard
the theoretical basis of PI control and are also restricted to open-loop controllers.

In this paper we introduce Path Integral Relative-Entropy Policy Search (PI-REPS),
a new policy search approach that learns to sample from the optimal state trajectory
distribution. We reuse insights from the policy search community and require that the
information loss of the trajectory distribution update is bounded [11]. Such strategy en-
sures a stable and smooth learning process. However, instead of explicitly maximizing
the expected reward as it is typically done in policy search, our aim is now to approxi-
mate the optimal state trajectory distribution obtained by PI control. This computation
involves minimizing the Kullback-Leibler (KL) divergence between the trajectory dis-
tribution obtained after the policy update and the desired distribution under additional
constraints. PI-REPS includes the probability distribution of the initial state x0 in the
KL optimization. This allows direct applicability of the method for learning state feed-
back controllers and leads to an improvement in terms of sampling efficiency.

In the next section we review current control methods based on path integral theory.
In section 3, we describe in detail PI-REPS. In section 4, we show empirically that

5 In [12], the function that is approximated is called desirability function which corresponds to
the exp-transformed value function.
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PI-REPS outperforms current PI-based and policy search methods on a double-link
swing-up as well as on a quad-link swing-up problem.

2 Path Integral Control

We now briefly review the concepts of PI control that are relevant for the present pa-
per. We consider the following stochastic dynamics of the state vector xt ∈ Rn under
controls ut ∈ Rm

dxt = f(xt)dt+ G(xt)(utdt+ dξt) (1)

where ξt is m−dimensional Wiener noise with covariance Σu ∈ Rm×m and f and G
are arbitrary functions. For zero control, the system is driven uniquely by the determin-
istic drift f(xt)dt = ftdt and the local diffusion G(xt)dξt = Gtdξt. The cost-to-go is
defined as an expectation over all trajectories starting at x0 with control path u0:T−dt

J(x0,u0:T−dt) =

〈
rT (xT ) +

T−dt∑
t=0

Ct(xt,ut)dt

〉
(2)

The terms rT (xT ) andCt(xt,ut) denote the cost at end-time T and the immediate (run-
ning) cost respectively. Ct(xt,ut) is expressed as a sum of an arbitrary state-dependent
term rt(xt) and a quadratic control term uᵀ

tRut

Ct(xt,ut) = rt(xt) +
1

2
uᵀ
tRut.

Minimization of (2) leads to the Hamilton-Jacobi-Bellman (HJB) equations, which
in the general case are non-linear, second order partial differential equations. How-
ever, if the cost matrix and noise covariance are such that R = λΣu

−1 the resulting
equation is linear in the exponentially transformed cost-to-go function Ψ(x0), where
J(x0) = −λ logΨ(x0). The function Ψ(x0) is called desirability function. The solu-
tion for Ψ(x0) using the optimal controls is given by the Feynman-Kac formula as a
path integral [7]

Ψ(x0) =

∫
puc(τ |x0) exp

(
−
∑T
t=0 rt(xt)

λ

)
dτ (3)

where puc(τ |x0) is the conditional probability of a state trajectory τ = xdt:T starting
at x0 and following the uncontrolled process.

The relation R = λΣu
−1 forces control and noise to act in the same dimensions,

but in an inverse relation. Thus, for fixed λ, the larger the noise, the cheaper the control
and vice-versa. Parameter λ can be seen as a temperature: higher values of λ result in
optimal solutions that are closer to the uncontrolled process.

Define the path value of a trajectory τ as

S(τ |x0) =

T∑
t=0

rt(xt)− λ log puc(τ |x0). (4)
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The optimal path distribution can be obtained from (3) and is given by

p∗(τ |x0) =
exp(−S(τ |x0)/λ)∫
exp(−S(τ |x0)/λ)dτ

. (5)

The optimal control is given as an expectation of the first direction of the noise
dξ0 over the optimal trajectory distribution (5). This is an inference problem that can
be solved using Monte Carlo methods, e.g, by forward sampling from the uncontrolled
process, as proposed in [7]. However, as the optimal trajectory distribution depends on
the initial state x0, the sampling process has to be repeated at each state which limits
the application of PI control in practice. This restriction can be ignored as in [3], at the
cost of losing theoretical guarantees of optimality.

2.1 Iterative Path Integral Control

Sampling from uncontrolled process will often result in a poor estimate of the optimal
trajectory distribution as the uncontrolled process typically leads to areas of high state
costs, i.e., most generated trajectories will have very small probability under the optimal
trajectory distribution. Formally, the main problem is the evaluation of the integral in
the normalization of equation (5), as this integral is performed over the whole trajectory
space. To alleviate this problem, importance sampling schemes that use a (baseline)
controlled process to improve the sampling efficiency has been proposed [7]. In this
case, the path cost (4) has to be corrected for the extra drift term introduced by the
baseline control. An iterative version of this approach was formally derived in [19] and
has resulted in several applications [14,2].

There are two main problems with this approach: first, it only considers the mean
control trajectory. Since it neglects the state-dependence of the control beyond the initial
state, the result is an open-loop controller that may perform poorly when applied to a
stochastic system. Second, this approach does not provide a principled treatment for
adapting the sampling variance, and hence, might need a large amount of samples if the
variance of the uncontrolled process is low.

2.2 Policy Improvement with Path Integrals (PI2)

Inspired by the PI theory, [18] introduced the PI2 algorithm in the reinforcement learn-
ing community, which has been successfully applied to a variety of robotic systems for
tasks such as planning, gain scheduling and variable stiffness control [3,15,17].

PI2 uses parametrized policies to represent trajectories in the state space. Typically,
PI2 uses open-loop controllers such as Dynamic Movement Primitives (DMPs) [6]. PI2

identifies the parameters θt of the DMP with the control commands ut in eq. (1). Such
strategy, however, renders the constraint R = λΣu

−1 meaningless. This constraint is
also often neglected which might even lead to better performance [16]. The method is
model-free in the sense that no model needs to be learned. However, it is implicitly
assumed that all the noise of the system is generated by the exploration in the DMP
parameters, which is an unrealistic assumption. The noise ξt in PI2 is interpreted as
user controlled exploration noise that acts on θt.
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2.3 Kullback Leibler divergence minimization

The PI class of control problems is included in a larger class of (discrete) problems, also
known as linearly solvable Markov Decision Processes (MDP) or KL-control [20,21,8]
for which the control cost can be expressed as a KL divergence between a controlled
process p(τ |x0) and puc(τ |x0).

Unlike the continuous case where the controls act as a drift on the uncontrolled
process (1), the controls in the discrete case can fully reshape the state-transition proba-
bilities p(xt+1|xt), with the only restriction of being compatible with the uncontrolled
process, i.e. p(xt+1|xt) = 0,∀xt+1 such that puc(xt+1|xt) = 0. Policy iteration al-
gorithms for that broader class of problems also consider KL minimization have been
proposed recently in [1,12]. However, in continuous state spaces, these approaches typ-
ically rely on an iterative approximation of the desirability function. Similar to value
function approximation, the errors of such approximation can accumulate and damage
the policy update. Moreover, these methods do not provide a principled treatment for
setting the variance of the sampling policy. Another extension of the PI control theory
can be found in [13], where the path integrals are embedded in a reproducing Kernel
Hilbert Space (RKHS). While this is also a promising approach, it again relies on ap-
proximation of the desirability function Ψ(x) which we typically want to avoid.

In the area of policy search, a common approach is to bound the KL-divergence be-
tween the old and the new policy. A bound on the KL-divergence can be more efficient
as penalizing the KL for determining the policy update as we obtain a pre-specified
step-size of the policy update in the space of probability distributions. This step-size
enables to control the exploration that is performed by the policy update in a more prin-
cipled way. This insight has led to the development of several successful policy search
algorithms, such as the relative entropy policy search (REPS) algorithm [11], contex-
tual REPS [10] or a hierarchical extension of REPS [4]. Bounding the KL-divergence
between the old and the new policy is almost equivalent to penalizing it, however, it
qualifies us to let the temperature of the soft-max distribution be set by the KL-bound
instead of hand-tuning the temperature or using heuristics.

REPS divides the policy updates into two steps. It first computes a probability for
each observed state action pair by solving an optimization problem with the objective
of maximizing the expected rewards while bounding the KL-divergence between the
new and the old distributions. This probability corresponds to the desired probability
that this sample is used by the new policy. Subsequently, these probabilities are used
as weights to estimate a new parametric policy by performing a weighted maximum
likelihood update. While our approach is inspired by REPS-based algorithms, there are
significant differences: REPS is used to either directly learn in the parameter space
of low-level controllers [4,10], which is restricted to controllers with a small number
of parameters, such as DMPs [5] or it used to estimate the probability of state action
samples [11].

3 Path Integral - Relative Entropy Policy Search (PI-REPS)

PI-REPS considers problems of the PI class but uses an explicit representation of a time-
dependent stochastic policy πt(ut|xt),∀t < T , that maps a state xt into a probability
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distribution over control actions ut. The objective of PI-REPS is to find the optimal
policy π∗ that generates the optimal distribution of state trajectories given by the PI
theory, Eq. (5), under some additional constraints. For that, it alternates two steps. In
the first step, the target distribution (5) is approximated from samples generated by the
current policy. At the same time, the information loss to the old policy is bounded to
avoid overly greedy policy updates [11,4]. The result of this optimization problem is
specified by a weight for each of the seen sample trajectories.

This weight is used in the second step, where the current policy π̃t(ut|xt) is up-
dated in a way that can reproduce the desired weighted trajectory distribution. This
policy update is computed in a (weighted) maximum likelihood sense. These two steps
are iterated until convergence. We describe the details of PI-REPS in the following
subsections.

3.1 Learning the Optimal Trajectory Distribution

In first step of PI-REPS, the current control policy is used to generate data in the form of
sample trajectoriesD = {x[i]

0:T }i=1...N . Based on these data, we obtain a new trajectory
distribution that minimizes the expected KL-divergence to the optimal distribution, i.e.,

argminp

∫
µ(x0)KL (p(τ |x0) ‖ p∗(τ |x0)) dx0. (6)

As we want to learn a trajectory distribution, we can not directly use the average reward
as optimization criterion as this is done in REPS. REPS would choose a trajectory distri-
bution that might be infeasible, while for PI-REPS we know that the target distribution
p∗(τ |x0) is optimal, and, hence, feasible.

In addition to this objective, we also want to stay close to the old trajectory distri-
bution q(τ |x0), i.e., we bound∫

µ(x0)KL (p(τ |x0) ‖ q(τ |x0)) dx0 ≤ ε. (7)

As in REPS, the parameter ε can be used as trade-off between exploration and exploita-
tion. As additional constraint, we require that p(τ |x0) defines a proper probability dis-
tribution, i.e.,

∀x0 :

∫
p(τ |x0)dτ = 1.

However, this optimization problem requires that we obtain many trajectory samples
for each initial state, which is infeasible in many situations. We want to be able to deal
with situations where only one trajectory per initial state x0 can be obtained. For this
reason, we extend our objective to optimize also over the initial state distribution, i.e.,
we optimize over the joint distribution p(τ ,x0). The resulting objective is given by

argminp

∫
p(τ ,x0) log

p(τ ,x0)

p∗(τ ,x0)
dτdx0

=argmaxp

∫
p(τ ,x0)

(
1

λ
S(τ |x0) + log µ(x0)− log p(τ ,x0)

)
dτdx0, (8)
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where p∗(τ ,x0) = p∗(τ |x0)µ(x0). However, the initial state distribution µ(x0) can not
be freely chosen as it is given by the task. Hence, we need to ensure that the marginal
distribution p(x0) =

∫
p(τ ,x0)dτ matches the given state distribution µ(x0) for all

states x0. Note that by introducing these constraints we would end up in the origi-
nal optimization problem (6), but with an infinite number of constraints. However, a
common approach to relax this condition is to only match state-feature averages of the
marginals [10,4], i.e.∫

p(x0)φ(x0)dx0 =

∫
µ(x0)φ(x0)dx0 = φ̂0,

where φ̂0 is the mean feature vector of the samples corresponding to the initial state.
The feature vector φ(·) can be, for example, all linear and quadratic terms of the initial
state. In this case, we would match mean and covariance of both distributions. The
complete optimization problem reads6

argmaxp

∫
p(τ ,x0)

(S(τ |x0)

λ
− log p(τ ,x0)

)
dτdx0,

s.t.:
∫
p(x0)φ(x0)dx0 = φ̂0,∫
p(τ ,x0) log

p(τ ,x0)

q(τ ,x0)
dτdx0 ≤ ε,∫

p(τ ,x0)dτdx0 = 1. (9)

We solve the above optimization problem using the method of Lagrange multipli-
ers. The solution for p(τ ,x0) can be obtained in closed form (see supplement for the
derivation)

p(τ ,x0) ∝ q(τ ,x0)
η
η+1 exp

(
S(τ |x0)− φ(x0)

ᵀ
θ

η + 1

)
(10)

where η and θ are the Lagrange multipliers corresponding to the KL-divergence and
the feature constraints respectively. Their optimal values can be found by optimizing
the corresponding dual function g(θ, η)

[θ∗, η∗] = argminθ,ηg(θ, η), s.t: η > 0, (11)

which is also given in the supplement. Note that the solution p(τ ,x0) represents a ge-
ometric average between the old distribution and the optimal distribution. The parame-
ter η, which specifies how much we want to interpolate, is chosen by the optimization.

3.2 Weighted Maximum Likelihood Policy Updates

From estimates of the probability p(τ ,x0) of the sample trajectories, we can fit a
parametrized policy π̂t(ut|xt;ωt) for each time-step t < T that can reproduce the tra-
jectory distribution p(τ ,x0). For each time-step, we want to find the policy π̂t such that

6 Note that the logµ(x0) term can be neglected. Due to the initial state constraints, the path-cost
component which is only dependent on the initial state has no influence.
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the resulting transition probabilities pπ̂(xt+1|xt) =
∫
P (xt+1|xt,ut)π̂t(ut|xt;ωt)dut

match the estimated transition distribution from p(τ ,x0), where P (xt+1|xt,ut) corre-
sponds to the model dynamics, assumed to be known. This is an inference problem with
latent variables ut. To solve it, we first compute, for each transition, the action u∗t that is
most likely to have generated the transition. This controls u∗t can be computed from the
given control affine system dynamics with u∗t = (GT

t Gt)
−1GT

t (dxt − f(xt)dt)/dt
7.

Subsequently we extract a parametric policy out of the trajectory distribution p(τ ,x0)
computed from PI-REPS by minimizing

ω∗t = argminωtKL
(
p(τ ,x0) ‖ pπ̂(τ ,x0)

)
= argminωt

∫
p(τ ,x0) log

(
p(xt+1|xt)
pπ̂(xt+1|xt)

)
dτdx0 + const

≈ argmaxωt

∫
p(τ ,x0) log π̂t(u

∗
t |xt;ωt)dτdx0 + const

= argmaxωt
∑
i

p(τ [i],x
[i]
0 )

q(τ [i],x
[i]
0 )

log π̂t(u
∗[i]
t |x

[i]
t ;ωt).

The division by q(τ [i],x
[i]
0 ) in the fourth row of the equation results from using samples

from q(τ [i],x
[i]
0 ) to approximate the integral. This minimization problem can be seen

as a weighted maximum likelihood problem with weights di, i = 1 . . . N given by

di = q(τ [i],x
[i]
0 )

−1
η+1 exp

(
S(τ [i]|x[i]

0 )− θᵀφ[i]
x0

η + 1

)
.

In the presented approach we use time-dependent Gaussian policies that are linear in
the states, i.e. π̂t(ut|xt) ∼ N (ut|kt + Ktxt,Σt). The resulting update equations for
kt, Kt and Σt are given by a weighted linear regression and the weighted sample-
covariance matrix, respectively [10]. The estimate of Σt will also contain the variance
of the control noise. As this noise is automatically added by the system dynamics, we
do not need to add this noise as exploration noise of the policy. Hence, we subtract the
control noise from the estimated variance of the policy while ensuring that Σt stays
positive (semi-)definite.

3.3 Step-Based versus Episode-Based Weight Computation

So far, we computed a single weight per trajectory and used this weight to update the
policy for all time-steps. However, we can use the simple observation that, if a tra-
jectory distribution is optimal for the time-steps t = 1 . . . T , it also has to be opti-
mal for all time segments that also end in T but start at t′ > 1. Hence we can per-
form the optimization for each time-step separately and use the obtained weights to
fit the policy for the corresponding time step. We path value to come St(τ ′|xt) =∑T
h=t rh(xh) + λ log puc(τ

′|xt), where τ ′ = τ t+dt:T in the exponent of the optimal
trajectory distribution. For the initial feature constraints, we use the observed average

7 If the controls ut and the noise εt can be observed, u∗
t can be computed by u∗

t = ut + εt.
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state features from the old policy at this time step. Such an approach has the advan-
tage that it can considerably reduce the variance of the weights computed for later time
steps, and, hence, render PI-REPS more sample efficient. However, as the optimization
has now to be done for each time step, the step-based variant is also computationally
more demanding.

3.4 Relation to existing approaches

To point out the contributions of this paper, we summarize the novel aspects of PI-
REPS with respect to the previously mentioned approaches. In comparison to the REPS
algorithm, we use our algorithm to generate a weighting of trajectories, not state-action
pairs. As we learn trajectory distributions, we can not freely choose the desired tra-
jectory distribution as certain distributions might not be feasible. In PI-REPS we cir-
cumvent this problem by minimizing the Kullback-Leibler divergence to the optimal
trajectory distribution instead of maximizing the reward. Due to the optimization over
trajectory distributions, the weighted maximum likelihood update is different as we
need to obtain u∗t from the system dynamics instead of using the executed action ut.

The constrained optimization problem also leads to a very different solution: while
PI-REPS interpolates between the old (initial) and the optimal trajectory distribution
(eq. 13), REPS is always affected by the influence of the initial distribution. PI-REPS
also considers the initial state in the optimization. Although a similar constraint has
been used in REPS for contextual policy search [10], our use is novel since it allows a
time step version of the algorithm that, as we show in section 3.3, improves significantly
the sample efficiency.

4 Experiments

We evaluated PI-REPS on two simulated benchmark tasks, a double-link swing-up and
a quad-link swing-up task. We compared it against variants of previous approaches
such as iterative PI control (open loop) [14] and a closed loop extension by fitting a
policy with weighted maximum likelihood as performed by our approach. Moreover, we
compare the episode-based and the step-based version of PI-REPS and also present the
first experiments for model-based reinforcement learning, where in addition to learning
a controller, we also learn the forward model of the robot. Finally, we evaluated the
influence of the control noise, the KL-bound ε as well as the influence of the initial
policy and the number of samples used for the policy update. Our experiments show
that PI-REPS is a promising approach for stochastic optimal control and model-based
reinforcement learning that can find high-quality policies for tasks that are beyond the
reach of current methods.

4.1 Double Link Swing-Up

In this task, we used a two link pendulum that needs to swing-up from the bottom
position and balance at the top position. Each link had a length of 1m and a weight
of 1kg. The torque of each motor was limited to |ui| < 10Nm. We used a viscous
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friction model to damp the joint velocities. One episode was composed of 70 time steps
with dt = 66ms. The state rewards were rt(q, q̇) = −104qTq, which punishes the
squared distance of the joint angles to the upright position. The reward was given for
the last 20 time steps only. The default standard deviation of the control noise was set
to Σu = 0.5/dtI. We used the double link swing-up task for exhaustive parameter
evaluation and comparison for being a challenging task but still feasible for running a
large number of experiments.

Comparison of different path integral algorithms. We compared our method to different
versions of current PI algorithms. We used the step-based variants of all algorithms in
this comparison. The episode variants basically show the same results with a slower
convergence rate. In the first approach, we applied the iterative path integral method
with open loop control to our problem with control noise, as described in section 2.1.
Here we simply used a constant action for each time step. In order to estimate this
action from samples we used the weighting di = exp(S(τ [i]|x[i]

0 )/λ) for each sample.
As in the original PI2 approach [18], we scaled the λ parameter by the range of the path
integral values S(τ [i]|x[i]

0 ), i.e. λ = λPI2/(maxi S(τ
[i]|x[i]

0 ) −mini S(τ
[i]|x[i]

0 )). The
value for λPI2 was empirically optimized. Subsequently, we extended this approach to
use the time-dependent linear feedback policy and maximum likelihood updates for the
policy as introduced by our approach. Note that this approach is also equivalent to the
state of the art policy search approach PoWER [9]. However, in contrast to our method,
PoWER as well as PI2 do not use a principled approach to set the temperature of the
soft-max distribution. Moreover, they do not account for the state-dependent part of the
path integral as it is done by the use of our baseline. We also evaluated the effect of the
baseline by using PI-REPS without state features. In each iteration of the algorithm, we
sampled 800 new trajectories. Although this number of trajectories is too large for a real
robot application, PI-REPS is model-based and therefore we can first learn a model of
the robot using the real robot interactions and, subsequently, use the model to generate
an arbitrary number of trajectories. The results of such a model-based reinforcement
learning approach are presented at the end of this subsection.

Fig. 1(a) shows a global comparison of the methods. As expected, it can be seen
that the open-loop control policy, as used in our version of PI2, can not deal with the
stochastic setup. If we extend PI2 to learn a linear feedback controller, we can learn
successfully the task, but convergence is very slow. As a next step, we introduce the
information theoretic policy update to obtain a more principled treatment of the temper-
ature parameter, but we still disable the features used for the baseline in our approach.
This method is denoted as No Features in Fig. 1(a). While the convergence rate is now
significantly improved, ignoring the initial state-distribution constraint results in a bias
of the resulting solution and the resulting policy can not reach the quality of the pro-
posed approach with a state-dependent base line. We also compared our approach to
state of the art optimal control methods that are based on linearization of the system
dynamics, such as the AICO approach [22], but we were not able to find good policies
due to the high non-linearities in the task. Clearly, we can see that PI-REPS with a
state-dependent base line produces policies of the highest quality. An illustration of the
learned movement can be seen in Fig. 2.
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Fig. 1. (a) Comparison of iterative PI with open loop control with our extension of learning
closed-loop controller by weighted maximum likelihood, PI-REPS without the feature constraints
and the step-based PI-REPS algorithm. PI-REPS outperforms all other methods. (b) Comparison
of the step-based variant of PI-REPS with the episode-based variant.
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Fig. 2. Illustration of the estimated swing-up movement with the double link. (a) time steps
1 to 25. (b) time steps 36 to 70. Lighter colors indicate an earlier time step.

Step-based versus Episode-based Weighting Computation. We now compare the step-
based and the episode-based versions of PI-REPS. From Fig. 1(b), we observe that the
step-based version is clearly more sample-efficient, as it reduces the variance of the
estimates of the weights for later time steps. However, it is also computationally more
demanding, since we need to compute the weights for every time step. The episode-
based version with 2000 samples reaches the performance of the step-based version
with 400 samples. Hence, if generating samples from the model is cheap, the episode-
based version can also be used efficiently.

Exploration in PI-REPS. Exploration is determined by two parameters, the exploration
rate Σ0 of the initial policy and the KL-bound ε. For large values of ε, PI-REPS con-
verges quickly to the target distribution and stops exploring too soon. In contrast, too
small values of ε result in too conservative policy updates. This behavior can be clearly
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Fig. 3. Exploration in PI-REPS. (a) The value of ε determines the convergence and the quality of
the obtained policy. For large ε, changes in the policy are large, resulting in faster convergence, but
too little exploration. For too small ε, convergence is slow. (b) Evaluation of the initial exploration
rate. If we just use the variance of the uncontrolled process for exploration from the beginning,
we get very slow convergence. However, PI-REPS allows for using different sampling policies
which are updated by policy search.

seen in Fig. 3(a). We identified an optimal value of ε to be 0.9 this value was used in all
other experiments.

A second factor that determines exploration is Σ0. If we would fully rely on the
noise of the uncontrolled process for exploration, the policy search procedure would
take a long time. Therefore, we start with a highly stochastic policy and slowly move
to the target distribution by the information theoretic policy updates. From Fig. 3(b),
we can clearly see that only using the noise of the system is very inefficient, but higher
values of the initial variance lead to a compelling performance.

Influence of the Control Noise. In this experiment we evaluated our approach with
respect to the control noise Σu of the system. Note that, by changing the control noise,
we also inherently change the reward function in the path integral framework. Fig. 4 (a)
shows the performance for different control noise values. As we can see, good policies
can be found for all noise levels, while the costs are decreased with higher noise levels
due to the smaller control costs.

Model-Based Reinforcement Learning. While the focus on this paper is to derive an
efficient stochastic optimal control method that is based on path integral, we can also
directly apply our method to model-based reinforcement learning if we combine the
PI-REPS policy updates with a probabilistic model learning technique. In this case, the
trajectories generated by the real robot are only used to update the model. From the
model, a large number of virtual samples are generated to perform the policy updates.
As a proof of concept, we used a simple time-dependent linear model with Gaussian
noise, i.e., Pt(xt+1|xt,ut) = N (xt+1|Atxt + Btut + at,Σt).

We estimated such a model for each time step by performing maximum likelihood
on the transition samples at each time step. As the model is time-varying, it can also
capture non-linear dynamics. We started the algorithm with 25 initial trajectories and
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Fig. 4. (a) Evaluation for different values of the control noise. PI-REPS could learn high-quality
policies even in the existence of a large amount of noise. The difference in the obtained reward is
because the reward depends on the noise variance. (b) Experiment with model-based reinforce-
ment learning. We learned time-varying linear models at each time step. A good swing-up policy
could be learned already after 300 episodes.

subsequently collected 5 trajectories in each iteration. From the learned models, we
generated 1000 trajectories for the policy updates. Fig. 4(b) shows these results. We ob-
serve that a high-quality policy can be learned after 300 episodes, which is remarkable
if compared to state of the art policy search approaches [4,18]. Yet, the performance of
the final policy is affected by the simplicity of the learned model in comparison to the
policy found on the real model of the robot.

4.2 Quad-Link Swing-Up
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Fig. 5. Learning curve for the quad-link. An in-
creasing number of samples always increases the
performance.

To conclude this experiment section, we
used a quad-link pendulum swing-up
task. We used the same physical proper-
ties, i.e., link length of 1m and a mass
of 1kg, the same reward function as well
as the same number of time steps as in
the double link experiment. Given the in-
creased complexity and increased weight
of the whole robot, we increased the
maximum torques to 20Nm. We evalu-
ated the episode-based version of our al-
gorithm with a different number of sam-
ples.

The results can be seen in Figure 5.
We can see that, due to the increased di-
mensionality of the problem, more sam-
ples are needed to solve the task. However, in contrast to competing methods, PI-REPS
is still able to learn high quality policies for this complex task. An illustration of the
swing-up movement can be seen in Fig. 6.
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Fig. 6. Illustration of the estimated swing-up movement with the quad link. (a) time steps 1 to 35.
(b) time steps 36 to 70. Lighter colors indicate an earlier time step.

5 Conclusions

In this paper we presented PI-REPS, the first approach for PI control that can be used
to learn state-feedback policies in an efficient manner. PI-REPS has several benefits to
previous PI methods. It allows for a principled treatment of the adaptation of the sam-
pling policy by the information theoretic policy updates. This type of update specifies
the temperature of the soft-max distribution. In previous approaches, this temperature
had to be chosen heuristically, resulting, as our experiments show, in a poor quality of
the estimated policy.

The PI-REPS policy update is based on a weighted maximum likelihood estimate.
This is a general approach, not limited to the time varying linear policies that we con-
sidered in this paper. Using more complex models such as mixture models, Gaussian
processes or neural networks seems to be a promising research direction. We will also
investigate the use of more sophisticated model-learning techniques to improve the
sample-efficiency in terms of real robot interactions.
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Appendix: Dual function for PI-REPS

We derive the dual function. For notation simplicity, we use pτx0
for p(τ ,x0), φx0

for
φ(x0), qτx0

for q(τ ,x0) and Sτ for S(τ ,x0). The Lagrangian is

L =

∫
τ ,x0

pτx0

(
Sτ − log pτx0

− λ− φᵀx0
θ − η log pτx0

qτx0

)
dτdx0 + λ+ φ̂ᵀ0θ + ηε

=

∫
τ ,x0

pτx0

(
Sτ − (η + 1) log pτx0 + η log qτx0 − λ− φᵀx0

θ
)
dτdx0

+ λ+ φ̂ᵀ0θ + ηε , (12)

where θ, η and λ appear due to the constraints of the features, the KL-bound and the
normalization, respectively. Taking derivative and solving for pτx0

gives

∂L
∂pτx0

= Sτ − (η + 1) (log pτx0
+ 1)− λ− φᵀx0

θ + η log qτx0
= 0

log pτx0 =
η log qτx0

η + 1
+
Sτ − φᵀx0

θ

η + 1
+
−λ− (η + 1)

η + 1

pτx0 = Z−1qτx0

η
η+1 exp

(
Sτ − φᵀx0

θ

η + 1

)
, Z = exp

(
λ+ (η + 1)

η + 1

)
. (13)

From the normalization constraint

exp

(
λ+ (η + 1)

η + 1

)
=

∫
τ ,x0

qτx0

η
η+1 exp

(
Sτ − φᵀx0

θ

η + 1

)
dτdx0. (14)

Plugging (13) into (12) and simplifying we arrive to the following dual function

g(θ, η) = (η + 1) + λ+ φ̂ᵀ0θ + ηε. (15)

Reinserting (14) in (15)

g(θ, η) = (η + 1) + λ+ φ̂ᵀ0θ + ηε = (η + 1)

[
(η + 1) + λ

η + 1

]
+ φ̂ᵀ0θ + ηε

= (η + 1) log

(∫
τ ,x0

qτx0

η
η+1 exp

(
Sτ − φᵀx0

θ

η + 1

)
dτdx0

)
+ φ̂ᵀ0θ + ηε.

Replacing the integral by a sum over sample trajectories generated by q yields

g(θ, η) = (η + 1) log

(
1

N

∑
i

q[i]τx0

−1
η+1 exp

(
S
[i]
τ − θᵀφ[i]

x0

η + 1

))
+ φ̂ᵀ0θ + ηε.

The dual function can be evaluated from the state trajectory samples. The distribution
q
[i]
τx0 can be computed using the current policy and the model, i.e. 8,

q[i]τx0
= µ(x0)

T−1∏
t=0

∫
ut

Pt(xt+1|xt,ut)πt(ut|xt)dut. (16)

8 In the case of Gaussian policies such as we consider here, the integral in (16) can be computed
analytically.
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