
Predicting Object Interactions from Contact Distributions

Oliver Kroemer1 and Jan Peters1,2

Abstract— Contacts between objects play an important role
in manipulation tasks. Depending on the locations of contacts,
different manipulations or interactions can be performed with
the object. By observing the contacts between two objects, a
robot can learn to detect potential interactions between them.

Rather than defining a set of features for modeling the
contact distributions, we propose a kernel-based approach. The
contact points are first modeled using a Gaussian distribution.
The similarity between these distributions is computed using
a kernel function. The contact distributions are then classified
using kernel logistic regression. The proposed approach was
used to predict stable grasps of an elongated object, as well as
to construct towers out of assorted toy blocks.

I. INTRODUCTION

Manipulation tasks almost always involve direct physical
contact between two or more objects. These contacts can
be between different objects in the robot’s environment,
or between an object and the robot. Depending on the
locations of the contacts, different types of interactions and
manipulations can occur. For example, a contact on the side
of an object may allow for pushing and sliding the object,
while a contact on the bottom can be used for lifting or
supporting the object. In order to successfully perform a
manipulation task, a robot must be able to determine the
potential interactions between objects and utilize them to
accomplish the task’s goal.

Utilizing contact information in an efficient manner is
however not a trivial task. Analytical approaches tend to
require accurate models of the objects, and rely on simpli-
fied contact models [4]. In an effort to make robots more
autonomous, learning approaches have become more widely
adopted in the field of robot manipulation [14], [15], [25].
However, representing contacts between objects often relies
on hand-crafted features for the given task.

In this paper, we propose an example-based learning
approach to detect interactions between objects from their
contact distributions. We pose the problem of detecting
interactions as a binary classification problem, wherein the
robot has to predict whether or not a certain interaction is
occurring based on the geometry and relative poses of the
objects. The robot first computes which regions of the objects
are in contact with each other. The resulting cloud of contact
points is subsequently modeled as a Gaussian distribution.
A Bhattacharyya kernel function [11] can then be used to
compute the similarities between the contact distributions
and, thus, classify them using kernel logistic regression. In

1Oliver Kroemer and Jan Peters are with the Intelligent Autonomous
Systems group at the Technische Universitaet Darmstadt, Germany.
2 Jan Peters is also with the Max Planck Institute for Intelligent Systems.
{kroemer,peters}@ias.tu-darmstadt.de

Fig. 1. The Darias robot performing a block stacking task.

this manner, the robot uses the similarity between the current
contact distribution and previous distributions in order to
classify the potential interaction. The details of the approach
are explained in Section II.

The proposed approach was implemented on the real robot
shown in Fig. 1. In the first experiment, the robot was given
the task of predicting which grasps allow it to steadily pick
up an elongated object. The second experiment required the
robot to stack assorted blocks. The details of the experiments
are given in Section III.

II. LEARNING FROM CONTACT DISTRIBUTIONS

In this section, we first outline related work in interaction
detection. In Sections II-B to II-D, we explain how contacts
between objects are detected and used to create contact distri-
butions. In Sections II-E to II-H, we provide a kernel function
for computing the similarity between contact distributions
and explain how it is used to classify the distributions using
kernel logistic regression.

A. Related Work

Learning symbolic representations of geometric relations
between objects, e.g. object A is ON object B, is an important

3-Fingered Grasp 4-Fingered Grasp
Fig. 2. The two types of grasps that were used during the lifting experiment.
The three-fingered grasp uses the tips of the thumb, middle, and index
fingers in order to pinch the object. The ring and little finger are not touching
the box. The four-fingered grasp additionally uses the back of the ring finger
on the top of the box in order to provide additional support.

skill for performing complex manipulation tasks. Rosman
and Ramamoorthy [21] proposed the use of a contact network
to learn the spatial relations between objects. Contact points
were detected using a support vector machine to separate the
point clouds of the objects. The vectors between the objects’
contact points were then computed and used to classify
relations such as on and adjacent using a k-nearest neighbors
classifier. Kulick et al. use an active learning approach to
efficiently learn a symbolic representation of the relations
between objects [19]. Using features such as the heights of
objects and the relative positions between objects, they train
a Gaussian process classifier to learn in which geometric
states the predicate is true.

Classifying interactions between objects is also closely
related to learning affordances [9]. If an object allows a
robot to perform an action with it, than the object is said to
“afford” that action. Affordances have been widely studied in
robotics [23], [16], [20], and especially in the field of robot
grasp synthesis [4]. Recently, several papers have proposed
template-based approaches for detecting where an object can
be grasped [10], [8], [18]. These approaches predict where
to grasp an object based on the local shape of the object
relative to the hand. The approach presented by Detry et al.
[8] learns both the bounding box of points to consider when
comparing grasps as well as a dictionary of graspable parts.

Contact information can also be represented in the form
of tactile sensor readings. Bekiroglu et al. [1] proposed
learning to predict stable grasps of objects using kernel
logistic regression. Their approach used a product of three
separate kernels based on the position of the hand relative to
the object, the approach direction of the hand, and moment
features of the tactile sensor arrays’ readings. In the work
of Dang et al. [7], the locations of the sensed contact points
are defined relative to the palm, and modeled using a bag-
of-words representation. A support vector machine is then
trained to classify stable and unstable grasps.

The features used by learning algorithms can also be
designed to capture specific aspects of the contacts between

Failed Lift Successful Lift
Fig. 3. Examples of failed and successful lifts. A lift was considered a
failure if the object was still touching the table at the end of the trial.

objects. In [25], a classifier was trained on simulated data
to predict interactions, such as support and location con-
trol, between pairs of objects. The classifier was provided
with 93 features, such as the total contact patch area, and
the vector between the closest contact point and the other
object. Automatic relevance determination was then used to
effectively select a subset of these features. Jiang et al. [14]
addressed the problem of learning to place objects in a scene.
The placement of an object was represented by a set of 145
features, including features for modeling supporting contacts
and the caging of objects. A support vector machine with a
shared sparsity structure was then used to classify good and
bad placements of objects.

B. Contact Points

In order to determine the contacts between objects, we
first need a suitable representation of the object and its
geometry. Given an object Oi, where i specifies the index
of the object, we define its geometry as a point cloud
with ni points at positions pij and corresponding normals
uij for j 2 {1, . . . , ni}. Point clouds are flexible object
representations that are widely used in robotics [22]. The
normals of the points are straightforward to compute using
the covariance of nearby points and the viewing direction.

The point cloud defines the surface of the object and,
hence, also where contacts can potentially be made with
another object. In order to obtain a set of contact points,
each point in the point cloud is classified as either being
in contact with the other object or not. In our experiments,
we used logistic regression to classify the points, although
other methods for detecting contacts are also applicable. The
probability of a point pic being in contact with the object
Oj is given by

p(contact|pic,uic, Oj) =

⇣
1 + exp

⇣
�

T
⇢

⌘⌘�1
,

where � is a vector of feature functions and ⇢ is a vector
of corresponding weights. We used three features, including

a density estimation

�1(pic, Oj) =

X

k

exp

�
��
pic � pjk

��2

�2

!

and a surface normal density estimation

�2(pic,uic, Oj) =

X

k

(u

T
icujk) exp

�
��
pic � pjk

��2

�2

!

where � is the length scale of the density. We also include
a bias term �3 = 1.

These three features are well-suited for detecting arbitrary
contacts between two objects. Some interactions however re-
quire specific types of contacts, e.g., cutting requires contact
with a sharp edge. The set of features can be easily extended
for more specific types of contacts.

Computing a set of weights ⇢ that maximizes the likeli-
hood of the training data is a convex optimization problem,
and can be solved using iterative reweighted least squares,
as explained in [2]. A point is classified as a contact point
if the probability of contact is greater than 0.5.

C. Object Centers
In addition to the shape of the object, we also define a set

of object centers for each object. Object centers are used to
define interaction-relevant coordinate frames for the object.
Each center cik, where k is the index of the center for object
Oi, is associated with a position xik and at least one axis
aik. For example, the position of an object’s center of gravity
is given by the mean point of its mass, and an axis pointing
down in the direction of gravity. For an articulated object,
such as a hand winch or door handle, the position and axis of
rotation of the revolute joint defines another center. Although
an object may have many centers, usually only one center
is used for predicting an interaction. In this paper, we only
consider a single object center ci, and leave automatically
selecting the relevant center to future work.

Once the contact points have been found, they need to be
defined with respect to the center’s coordinate frame. If the
axes of the center already defines three orthogonal axes a

x
i ,

a

y
i , and a

z
i this step is trivial. However, the center of gravity

or the center of a revolute joint only define a single axis
a

x
i and not a full 3D coordinate frame. In order to define

the other two axes, we first project the contact points into
a 2D plane, with the normal of the plane given by the first
axis of the center ax

i . We then compute the matrix of second
moments about the center position for the contact points, and
subsequently compute the eigenvectors of the matrix. The
second axis ay

i is defined by the eigenvector with the largest
eigenvalue, such that the mean of the contact points is in
the positive direction. Using this approach, the contact point
clouds are aligned according to the radial direction with the
largest variance. The third axis is simply given by the cross
product of the first two a

z
i = a

x
i ⇥ a

y
i .

The positions of the ñi contact points in the object center’s
coordinate frame are denoted as ˜

pij with corresponding
normals ˜

uij for j 2 {1, . . . , ñi}.

D. Computing Contact Distributions

Having computed a set of contact points, we now want
to compare this set of contacts to previously observed ones.
Rather than comparing points individually, we first model
the set of contact points as a distribution. In particular, we
model them as a 6D Gaussian distribution, where the first
three dimensions correspond to the positions of points, and
the last three model the normals. In the lifting experiment
in Section III, we also investigate replacing the normals of
each point with an estimate of the force. However, the forces
are in most cases not known, especially when the interaction
is between two objects and not with the robot.

Given a set of contacts, we now define a distribution over
contact points as a Gaussian distribution. The mean vector
µi and variance ⌃i of the distribution are given as

µi =
1

ñi

ñiX

k=1

˜

pik

˜

uik

�
,

⌃i =
1

ñi

ñiX

k=1

✓
˜

pik

˜

uik

�
� µi

◆✓
˜

pik

˜

uik

�
� µi

◆T

.

This model provides a compact representation of the mean
contact position and normal orientation, as well as the
correlations between the parameters around this mean.

E. Kernel Between Contact Distributions

Having converted the contact points into a contact distri-
bution, we can now use a kernel to compute the similarity
between distributions. We use the Bhattacharyya kernel [11]
which is given by

k((µi,⌃i), (µj ,⌃j)) =

ˆp
N (x|µi,⌃i)

q
N (x|µj ,⌃j)dx.

The computation of the kernel is given in [12], and we
include it again here for completeness. The kernel function
is computed as

k((µi,⌃i), (µj ,⌃j)) = C exp (�M/4) ,

where the values of C and M are given by

C = 0.5�d/2
ˆ|⌃|

1/2
|⌃i|�1/2 |⌃j |�1/2 ,

M = µ

T
i ⌃

�1
i µi + µ

T
j ⌃

�1
j µj � ˆ

µ

T
ˆ⌃ˆ

µ.

The vector ˆ

µ is given by ˆ

µ = ⌃�1
i µi + ⌃�1

j µj , and
the matrix ˆ⌃ is computed as ˆ⌃ = (⌃�1

i + ⌃�1
j)

�1. The
parameter d = 6 is the dimensionality of the Gaussians. The
kernel function computes a value from zero to one, where
a value of one is achieved if the contact distributions are
identical. As the overlap between the distributions decreases,
the kernel function tends to zero.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a

te

Lifting

MeanOnly
Pos
Force+Pos

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a

te

Lifting

HandRelative
Normal+Pos

Fig. 4. The expected error rates for the lifting task. The error bars indicate one standard deviation. An error rate of 1 indicates that none of the test
samples were correctly classified, and an error rate of 0 is achieved when the classifier evaluates all of the samples correctly.

F. Extension to multiple Gaussians
Although we focus on representing contact distributions

using single Gaussians, the proposed framework is straight-
forward to extend to multiple Gaussians. By representing
the contact distribution as a mixture of Gaussians, the model
can capture more details of the distribution. The resulting
kernel can therefore distinguish between different contact
distributions more easily.

However, the Bhattacharyya kernel is not suitable for
comparing Gaussian mixture models. Instead, given that the
contact distribution of object Oi has the form

fi(x) =
HiX

h=1

⌫ihN (x|µih,⌃ih),

where ⌫i are the mixture components of the Hi Gaussians,
one can compute the kernel function

k(fi(x), fj(x)) =

´
fi(x)fj(x)dxq´

fi(x)fi(x)dx
q´

fj(x)fj(x)dx
,

in closed-form. This kernel function also has a value of 1

when the contact distributions are the same, and tends to
zero as the overlap decreases. The kernel is based on the
expected likelihood kernel [12] and is closely related to the
Cauchy-Schwarz divergence [13].

G. Interaction-specific contact similarity
Although the contact distribution is defined in a 6D

space, not all of the dimensions will be equally relevant for
predicting a given interaction. For example, when pushing
open a door, the horizontal distance from the axis of rotation
is more relevant than the vertical position along the axis.
As a result, two contacts are more similar if they are offset
vertically rather than horizontally from each other.

We can model this additional similarity by adding
interaction-specific Gaussian noise N (0, ˜⌃) to the contact
points. Thus, each contact point is represented as a Gaussian
distribution N ([

˜

p

T
ik ˜

u

T
ik]

T , ˜⌃) instead of just a single

point. If the offset between two contact points corresponds to
a direction with a larger variance, then their distributions will
overlap more and they will be considered as more similar.
In practice, the interaction-specific covariance matrix ˜⌃ is
added to the standard covariance matrices ⌃i and ⌃j before
computing the kernel value. The experiment in Section III-
B shows that the robot can use this additional similarity
information to increase the sample efficiency of the learning
algorithm.

H. Classifying Contact Distributions

Having defined a kernel between contact distributions, we
can now use a wide range of kernel methods from machine
learning [24]. In order to classify a contact distribution,
we use kernel logistic regression. Kernel logistic regression
uses the similarity to previously observed distributions, with
known labels, to classify new contact distribution. The prob-
ability that a contact distribution N (x|µi,⌃i) allows for a
certain interaction I is given by

p(I|µi,⌃i) = (1 + exp (↵))�1 ,

where

↵ = ✓0 +
mX

j=1

✓jk((µi,⌃i), (µ
0
j ,⌃

0
j)),

and we have m previous examples of contact distributions
N (x|µ0

j ,⌃
0
j). The weight parameters ✓ can be learned using

iterative reweighted least squares. Contact distributions that
are not similar to any previous distributions will have a
probability defined by ✓0. As kernel logistic regression is a
probabilistic classifier, it can model a contact distribution that
only sometimes allows for the interaction. Previous contact
distributions that allowed for the interaction will generally
have more negative weights, which will result in a probability
closer to one.

Positive Example Negative Example
Fig. 5. Point cloud examples of a stable and an unstable stacking of blocks

III. EXPERIMENTS

The proposed approach was implemented on a real robot,
as shown in Fig. 1. The robot consists of two Kuka
lightweight robot arms, each equipped with a DLR five-
fingered hand [6], and a kinect. The robot was evaluated
on two tasks: picking up an elongated object, and stacking
assorted toy blocks.

A. Picking up Elongated Objects
In the first experiment, we applied the framework to

the problem of predicting whether a given grasp allows an
elongated object to be steadily lifted.

Experimental Setup: The robot performed 60 randomly
selected grasps along the length of a spaghetti box. The first
half of the grasps were performed with a three-fingered grasp
and the other 30 were executed with a four-fingered grasp,
as shown in Fig. 2. The robot subsequently tried to lift the
box 13 cm above the table. The picking up of the box was
considered successful if the object was no longer in contact
with the table, and a failure otherwise, as shown in Fig. 3.
Before lifting the box, the robot recorded the state of the
scene and computed the contact distribution. Based on this
information, the robot had to predict whether or not the lift
would be successful. In order to detect contact points, we
labeled ten points in one scene to train the contact classifier.
The contact distribution is defined relative to the center of
gravity.

In addition to evaluating the method explained in Sec-
tion II, referred to here as NORMAL+POS, we also eval-
uated several benchmark approaches. The first benchmark
approach, MEANONLY, performs the classification using
only the mean contact µi. The POS approach uses only
the position distribution of the contact points and not the
normals. As a result, the contact distribution is only 3D.
Although the fingers do not have tactile sensors, forces can
be roughly approximated using the joint torque sensors of the
fingers and the relative positions of the contact points. The
FORCE+POS approach is the same as NORMAL+POS, except
that the normals ui have been replaced by force estimates.
The final method HANDRELATIVE uses the positions and
estimated forces of the contact points, but defines the contact
distribution relative to the hand rather than the object center.

The performance of the various methods were tested for
different numbers for training samples. In each evaluation,
ten grasps were selected as test samples. From the remaining

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Nr.Training Samples

E
rr

o
r

R
a

te

Block Stacking

Additional Covariance
Standard Covariance

Fig. 6. The expected error rate for the block stacking task. The red
line indicates the performance when using the standard covariance matrix.
The blue line shows the performance when adding the interaction-specific
covariance matrix. The error bars indicate one standard deviation.

grasp samples, a subset of samples were selected as training
data. The classifier was then trained on the training data and
used to classify the test samples. The error rate is given
by the percentage of correctly classified grasps in the test
set. This process was repeated 250 times for each classifier
and each number of training samples. The results of the
evaluation are shown in Fig. 4.

Discussion: Using only the mean contact or the distri-
bution relative to the hand resulted in poor performance.
The task was especially challenging for the HANDRELATIVE
approach, as the object has the same shape along its length.
Despite this challenge, the approach still obtained an error
rate of 25.04%.

Using only the position of the contact points relative to the
object center resulted in an error rate of 18.36%, which is
only marginally better than the performance of HANDRELA-
TIVE. In comparison, the NORMAL+POS and the FORCE+POS
achieved error rates of 4.88% and 5.28% respectively. The
contact normals clearly capture a considerable amount of
information, as they allow side contacts to be differentiated
from top contacts.

Both NORMAL+POS and FORCE+POS performed well on
the task, and learned to accurately predict steady lifts.
However, both approaches also have their limitations. The
NORMAL+POS approach cannot differentiate between the
robot gently placing its fingers on the box and the fingers
applying forces at the contacts. This approach can therefore
sometimes only predict whether an interaction is possible,
given the contacts, but not if the interaction is being per-
formed. The FORCE+POS approach can differentiate between
these two scenarios, and using it together with tactile sensing
is a promising direction for future research. However, as the
forces between objects will often not be directly observed,
the NORMAL+POS approach is generally more applicable.

Fig. 7. An example scene with three objects, wherein the green and blue
objects are supporting the triangular red block.

B. Stacking Objects

In the second experiment, the robot was given the task of
classifying whether one object was supporting another. The
robot then used the trained classifier to stack assorted toy
blocks.

Classifying Stable Block Placements: The robot was pro-
vided with 60 example scenes, each containing two interact-
ing toy blocks, such as the ones shown in Fig. 5. For the 30

negative examples, physically impossible static scenes were
created by hand. The models of the blocks were acquired
using a turn table setup and a kinect. The object center is
again defined by the center of gravity. To train the contact
point classifier, ten points were hand labelled in one scene.
The points of the object were classified as contacts based
on the features described in Section II-B. Using additional
features, such as the position and orientation of the points
relative to the object’s center, were also tested, but had no
significant effects on the outcome of the experiment.

The performance of the contact point classifier was evalu-
ated in the same manner as for the previous experiments. A
set of ten test samples were randomly selected and removed
from the pool of 60 samples. A subset of the remaining
samples were then used to train the classifier. The classifier
was subsequently applied to the ten test samples, and the
error rate was recorded. The error rate is 1 if all ten samples
were incorrectly classified, and 0 if all of them were correctly
classified. The test samples were subsequently put back into
the pool of samples. This process was repeated 250 times
for each number of training samples.

In addition to the standard approach, we also evaluated
adding an interaction-specific covariance matrix ˜⌃, as ex-
plained in Section II-G. The elements of the diagonal matrix
were recomputed for each trial using a basic hill-climbing
approach to minimize the leave-one-out cross-validation er-
ror rate on the training set.

The results of this experiment are shown in Fig. 6. Starting
with error rates close to 50%, the classifiers’ performances
gradually improves as more samples are provided. Given
50 samples, the standard classifier achieved an expected
error rate of 5.0%, and could accurately predict when the
object was being supported. Using the additional interaction-
specific covariance matrix, the classifier achieved an ex-
pected error rate of 0.4% for 50 samples, and only required
20 samples to achieve an expected error rate of 3.84%. The
sample efficiency of the algorithm can therefore be increased

Fig. 8. Two examples of block towers constructed by the robot.

by incorporating the interaction-specific covariance. In many
of the trials, the covariance matrix ˜⌃ indicated that the
vertical position of the supporting contacts was less relevant
than the horizontal position. The experiment demonstrates
the classifier’s ability to generalize between different object
shapes.

Generalization to Multiple Objects: In order to demon-
strate the classifier’s ability to generalize to multiple objects,
it was applied to the scene of three objects shown in Fig. 7.
In this scene, the top object is being supported by both of
the lower objects. When the classifier is applied to the top
block and only one of the bottom blocks, the interaction is
classified as not supporting. However, we can also combine
the blue and green point clouds of the bottom objects in
order to create one compound object. When applying the
classifier to the top object and this compound object, the top
object is labeled as being supported by the bottom object.
Thus, as one would expect, the classifier detects that the top
is being supported by both objects jointly, and by neither
one separately. The classifier was tested on two more similar
scenes of three blocks, with the same results.

Building Block Towers: In the final part of the experiment,
the real robot used the classifier from the first part to perform
block stacking. The interaction-specific covariance matrix
was not used in this experiment. The robot was provided with
a small wooden board, on which to stack the blocks. In order
to avoid all of the blocks being placed directly on the board,
the placing of the blocks was limited to a single strip along
the middle of the board. For every block, the robot observed
the current scene using the kinect and used the resulting point
cloud as the supporting object in the interaction. As the focus
is not on the planning aspects of the problem, the sequence
of blocks was predefined.

In order to determine a suitable placement for the current
block, the robot sampled different positions in the scene.
For each sample, the contact points were estimated and the
probability of the block being supported was computed. The
robot then attempted to place the block at the position with
the highest probability.

Randomly sampling positions in the scene led to poor
performance. One of the main challenges for the robot was
the noisy partial point cloud of the current scene. The kinect
usually only captured the top and front of the current block
stack, but not the back or sides. The lack of reliable points on

the sides of objects resulted in unforeseen collisions between
blocks. This problem could be alleviated by obtaining more
views of the scene, completing the point cloud based on
symmetries [3], [17], or applying a penalty for placing the
block into occluded regions.

In order to reduce the number of accidental collisions,
we also implemented a sampling approach that mimics the
movement of the block when it is being put down. The robot
sampled 20 horizontal positions at 7.5mm increments across
the width of the board. For each horizontal position, the robot
sampled vertical placements at 5mm increments in a top-
down manner until contact was detected between the block
and the stack.

In order to evaluate the proposed approach, the robot
was given the task of creating five towers consisting of
five blocks each. Using the improved sampling approach,
the robot successfully placed 96% of the blocks without
knocking any blocks down. Only one block was misplaced
by a few millimeters and fell down. The robustness of the
system could be further improved by also considering the
probability of success of neighboring positions [5].

The robot currently ignores the interactions between
blocks further down in the stack. As a result the robot may
select a block placement that causes a supporting block to
fall down. One potential solution to this problem would be
to recheck the interactions between objects further down the
stack. For each interaction, the objects higher up in the stack
would then be treated as a single compound object, with a
corresponding object center. This approach would however
require the robot to keep a model of the current scene’s
geometry.

The results of the experiment show that the robot was able
to construct multiple block towers, such as the ones shown
in Fig. 8,using the proposed approach. A video of the robot
stacking blocks is avaliable at: http://youtu.be/6S5eJgE28sg

IV. CONCLUSIONS

In this paper, we presented a kernel-based approach to
learning object interactions from contact distributions. The
proposed approach is based on modeling the distribution of
contact points as a Gaussian distribution. The Bhattacharyya
kernel is then used to compute the similarity between the
contact distributions. In the experiments, we used kernel
logistic regression to predict stable grasps of objects, as well
as suitable placements of objects. Using the learned classifier,
the robot was able to build small towers out of assorted
blocks.

V. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme under grant agreements 610878 (3rdHand), 600716
(CoDyCo), and 610967 (TACMAN).

REFERENCES

[1] Yasemin Bekiroglu, Renaud Detry, and Danica Kragic. Learning tactile
characterizations of object- and pose-specific grasps. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2011.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2006.

[3] J. Bohg, M. Johnson-Roberson, B. León, J. Felip, X. Gratal,
N. Bergström, D. Kragic, and A. Morales. Mind the gap - robotic
grasping under incomplete observation. In proceedings of Interna-
tional Conference on Robotics and Automation, pages 686–693, 2011.

[4] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp
synthesis - a survey. IEEE Transactions on Robotics, accepted.

[5] A. Boularias, O. Kroemer, and J. Peters. Learning robot grasping from
3d images with markov random fields. In IEEE/RSJ International
Conference on Intelligent Robot Systems (IROS), 2011.

[6] Zhaopeng Chen, Neal Y. Lii, Thomas Wimboeck, Shaowei Fan,
Minghe Jin, Christoph Borst, and Hong Liu. Experimental study on
impedance control for the five-finger dexterous robot hand dlr-hit ii.
In IROS, pages 5867–5874. IEEE, 2010.

[7] Hao Dang and Peter K. Allen. Learning grasp stability. In ICRA,
pages 2392–2397. IEEE, 2012.

[8] Renaud Detry, Carl Henrik Ek, Marianna Madry, Justus Piater, and
Danica Kragic. Generalizing grasps across partly similar objects. In
IEEE International Conference on Robotics and Automation, 2012.

[9] James J. Gibson. The Ecological Approach To Visual Perception.
Lawrence Erlbaum Associates, new edition edition, September 1986.

[10] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour,
and S. Schaal. Learning of grasp selection based on shape-templates.
Autonomous Robots, 2013.

[11] Tony Jebara and Risi Kondor. Bhattacharyya expected likelihood
kernels. In COLT, volume 2777 of Lecture Notes in Computer Science,
pages 57–71. Springer, 2003.

[12] Tony Jebara, Risi Kondor, and Andrew Howard. Probability product
kernels. J. Mach. Learn. Res., 5:819–844, December 2004.

[13] Robert Jenssen, Jose C. Principe, Deniz Erdogmus, and Torbjorn
Eltoft. The cauchy-schwarz divergence and parzen windowing: Con-
nections to graph theory and mercer kernels. Journal of the Franklin
Institute, 343(6):614–629, 2006.

[14] Yun Jiang, Marcus Lim, Changxi Zheng, and Ashutosh Saxena. Learn-
ing to place new objects in a scene. I. J. Robotic Res., 31(9):1021–
1043, 2012.

[15] Marek Sewer Kopicki, Sebastian Zurek, Rustam Stolkin, Thomas
Morwald, and Jeremy L. Wyatt. Learning to predict how rigid objects
behave under simple manipulation. In ICRA, pages 5722–5729. IEEE,
2011.

[16] Hema Koppula and Ashutosh Saxena. Anticipating human activities
using object affordances for reactive robotic response. In RSS, 2013.

[17] O. Kroemer, H. Ben Amor, M. Ewerton, and J. Peters. Point cloud
completion using symmetries and extrusions. In Proceedings of the
International Conference on Humanoid Robots (HUMANOIDS), 2012.

[18] O. Kroemer, E. Ugur, E. Oztop, and J. Peters. A kernel-based approach
to direct action perception. In International Conference on Robotics
and Automation (ICRA), 2012.

[19] Johannes Kulick, Tobias Lang, Marc Toussaint, and Manuel Lopes.
Active Learning for Teaching a Robot Grounded Relational Symbols.
In International Joint Conference on Artificial Intelligence, Beijing,
China, 2013.

[20] L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Mod-
eling affordances using bayesian networks. In Intelligent Robots and
Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
pages 4102–4107, Oct 2007.

[21] Benjamin Rosman and Subramanian Ramamoorthy. Learning spatial
relationships between objects. I. J. Robotic Res., 30(11):1328–1342,
2011.

[22] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Library
(PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[23] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G. Ucoluk. To
Afford or Not to Afford: A New Formalization of Affordances Toward
Affordance-Based Robot Control. Adaptive Behavior, 15(4):447–472,
December 2007.

[24] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond.
The MIT Press, 1st edition, December 2001.

[25] K. Sjoo and P. Jensfelt. Learning spatial relations from functional
simulation. In Intelligent Robots and Systems (IROS), pages 1513–
1519, Sept 2011.

