
Latent Space Policy Search for Robotics

Kevin Sebastian Luck1, Gerhard Neumann1, Erik Berger2, Jan Peters1,4 and Heni Ben Amor3

Abstract— Learning motor skills for robots is a hard
task. In particular, a high number of degrees-of-freedom
in the robot can pose serious challenges to existing re-
inforcement learning methods, since it leads to a high-
dimensional search space. However, complex robots are
often intrinsically redundant systems and, therefore, can
be controlled using a latent manifold of much smaller
dimensionality. In this paper, we present a novel policy
search method that performs efficient reinforcement learn-
ing by uncovering the low-dimensional latent space of
actuator redundancies. In contrast to previous attempts
at combining reinforcement learning and dimensionality
reduction, our approach does not perform dimensionality
reduction as a preprocessing step but naturally combines
it with policy search. Our evaluations show that the new
approach outperforms existing algorithms for learning
motor skills with high-dimensional robots.

I. INTRODUCTION

Creating autonomous robots that can adapt to the current
task by interacting with their environment is an impor-
tant vision of artificial intelligence. In recent years, many
successful applications of reinforcement learning (RL)
to complex robot tasks have been reported, including
autonomous helicopter flight [1], robot table-tennis [2],
or quadruped locomotion [3]. One of the most suc-
cessful methods for learning such motor tasks is policy
search [4].

Policy search tries to directly uncover the parameters
of a given policy representation that yield high rewards.
In this paper we focus on policy search for robots with
a high number of degrees-of-freedom (DOF). Typically,
the number of parameters of our control policy heavily
depends on the number of DOFs of the robot. Hence,
we generally need a large number of evaluations to
learn acceptable policies. However, evaluating hundred
thousands of different policies on a real robot is often
infeasible due to wear and tear, the required logistics,
or space and time constraints. At the same time, many

1Kevin S. Luck, Gerhard Neuman and Jan Peters are with the
Department of Computer Science, Technische Universität Darmstadt,
64289 Darmstadt, Germany
{luck, geri, peters}@ias.tu-darmstadt.de

2Erik Berger is with the Department of Mathematics and Com-
puter Science, Technische Universität Bergakademie Freiberg, 09599
Freiberg, Germany
Erik.Berger@informatik.tu-freiberg.de

3Heni Ben Amor is with the Institute for Robotics and Intelligent
Machines, Georgia Institute of Technology, GA 30332, USA
hbenamor@cc.gatech.edu

4Jan Peters is with the Max Planck Institute for Intelligent Systems,
72076 Tübingen, Germany

Fig. 1: A NAO robot learns to lift up one leg and
stay balanced using a novel latent space policy search
method. The co-articulation of the joints, needed for
successful execution of the motor skill, is represented
in the low-dimensional latent space.

robot control tasks, such as motor skills, are highly
redundant in the controlled DOFs. Typically, the intrinsic
dimensionality of such movements is much smaller than
the actual controlled number of DOFs. Hence, robot
learning can be performed much more efficiently if we
can determine the lower-dimensional latent space of the
movement we want to learn.

In this paper we present an efficient policy search
algorithm for learning policies in low-dimensional latent
spaces. The learning algorithm produces control sig-
nals for high-dimensional robot systems by estimating
policies in a latent space with a significantly lower
number of dimensions. The latent space encodes cor-
relations between the controlled DOFs of the robot.
The parameters of the policy as well as the projection
parameters of the latent space are efficiently estimated
from samples during the policy search iterations. The
key insight to our algorithm is that policy search as
well as dimensionality reduction can be integrated in an
expectation-maximization (EM) framework. As a result,

we can formulate a coherent algorithmic approach that
naturally combines policy search and dimensionality
reduction.

In contrast to previous attempts for combining re-
inforcement learning and dimensionality reduction for
robotic applications, our approach does not perform di-
mensionality reduction as a preprocessing step. Instead,
the parameters of the latent space are adapted based on
the reward signal from the environment.

II. RelatedWork
Policy search has attracted considerable attention in the
robot learning community. An excellent overview of the
topic and detailed descriptions of various state-of-the-art
algorithms can be found in [5] and [4].

Previous combinations of dimensionality reduction
and policy search, typically use a clear separation be-
tween the reinforcement learning algorithm and the di-
mensionality reduction step. In [6], data from a simulator
was used in a preprocessing step to identify a possible
low-dimensional latent space of policies using Reduced
Rank Regression. Learning on the real robot was then
restricted to the extracted latent space. Similarly, Bitzer
et al. [7] used user-provided training data to learn a
low-dimensional subspace using linear and non-linear
dimensionality reduction for robot learning. Using di-
mensionality reduction as a preprocessing step, or as an
independent process that can be executed after several
iterations of reinforcement learning, may lead to serious
limitations. First, extracting the latent space as a pre-
process requires a significantly large training set of
(approximate) solutions, prior simulations, or human
demonstrations. Even if such data is available, it can
be counterproductive to use it, since the reinforcement
learning algorithm cannot change the parameters of the
latent space in these approaches. For example, when
using human demonstrations, e.g., recorded joint con-
figurations, to identify the latent space, the extracted
latent space might not be appropriate for controlling the
robot as we neglect the correspondence problem [8],
i.e., there is no one-to-one mapping of the human
joints to the robot joints. Hence, we need to adapt the
projection of the latent space during the reinforcement
learning process. Using dimensionality reduction as an
independent process also leads to a decreased learning
efficiency, since it neglects reward information when
identifying subspaces.

III. Policy Search
In the following section, we will introduce the general
problem statement for reinforcement learning and di-
mensionality reduction and introduce the notation that
will be used throughout the paper. For a more detailed
description of theses topics, the reader is referred to [9]
and [10].

A. Problem Statement

Reinforcement learning methods can be used to au-
tonomously learn robot control strategies through the
interaction with an environment. Given the current state
st ∈ S a robot executes an action at ∈ A, transitions
into the state st+1 and receives a reward rt(st, at). The
action selection process is governed by the control policy
π(at |st, t), which is specified as conditional probability
distribution over the actions given the current state st.
Generally, RL algorithms try to determine an optimal
policy which maximizes the expected reward.

In this paper, we will focus on policy search methods.
Policy search approaches typically use a parametrized
stochastic policy represented by a πθ (at |st, t) with param-
eters θ. A typical representation of the policy in robotics
is to use a Gaussian distribution as policy where the
mean depends linearly on an observed feature vector φ
of the task, e.g., the location of an object to grasp. The
goal of learning is to optimize the expected return of the
policy with parameters θ with

J (θ) =

∫
T

pθ (τ) R (τ) dτ, (1)

where the expectation integrates over all possible trajec-
tories τ in the set T. Each trajectory τ = [s1:T+1, a1:T]
is specified by a sequence of length T of states and
actions. The return R (τ) of a trajectory is defined as the
accumulated immediate rewards rt, i.e.,

R (τ) =

T∑
t=1

rt (st, at) + rT+1(sT+1), (2)

where rT+1 denotes the final reward for reaching state
sT+1. Note that in many robot applications, the reward
function and the policy are explicitly modelled to be time
dependent. Due to the Markov property, the trajectory
distribution pθ(τ) can be written as

pθ (τ) = p(s1)
T∏

t=1

p (st+1|st, at) πθ (at |st, t) . (3)

Reinforcement learning algorithms try to determine pol-
icy parameters θ that maximize Equation 1.

B. Expectation Maximization Approaches to Policy
Search

In contrast to traditional approaches to reinforcement
learning, EM-based methods formalize the policy search
problem as inference problem with latent variables.
They transform the rewards into an improper probability
distribution such that the reward can be interpreted as
(unnormalized) probability of a binary reward event. In
our discussion, we will assume that the rewards have
already been transformed to such a improper probability
distribution, i.e., the rewards are non-negative. As in

the standard EM-algorithm, we can now optimize a
lower bound, that is in this case a lower bound on
the expected return, instead of optimizing the original
objective. According to Kober and Peters [11], the lower
bound of the expected return (1) is given by

Lθold (θ) =

∫
T

pθold (τ) R (τ) log pθ (τ) dτ

= IEpθold (τ)

 T∑
t=1

Qπ (st, at, t) log πθ∗ (at |st, t)

 , (4)

where Qπ is defined as the expected reward to come for
time step t, when the robot is in state st and execute
action at,

Qπ (s, a, t) = IE

 T∑
t̃=t

rt̃ (st̃, at̃) |st = s, at = a

 . (5)

In practice, Qπ (s, a, t) is estimated by a single rollout,

i.e, Qπ
(
s[i]

t , a
[i]
t , t

)
≈

T∑̃
t=t

r[i]
t̃ , where i denotes the index of

the episode.
An important advantage of this approach is that the

policy update is formulated as a weighted maximum
likelihood (ML) estimate for the parameters θ, where
the reward to come Qπ (s, a, t) is used as weight for
the samples. Due to the weighted ML update, there
is no need for a user-specified learning rate which is
often a critical factor for achieving good performance in
policy gradient algorithms [12]. The policy is typically
modelled as linear policy with Gaussian noise. In the
PoWER [11] algorithm, this Gaussian noise is added to
the parameter vector of the policy, i.e.,

a = (M + E)φ. (6)

Mφ is the mean of the policy and Eφ denotes a
Gaussian noise term that is either isotropic or anisotrop-
ically distributed. In our experiments, we will use the
more commonly used isotropic version of the noise. In
contrast to the standard formulation of PoWER [11],
we use matrix-variate normal distributions [13] for the
exploration noise E ∼ Nd,p

(
0, σ2I

)
, where 0 has d rows

and p columns. We will use the notation Nd,p (·, ·) for
such matrix-variate normal distributions and N (·, ·) for
multi-variate normal distributions.

In the remainder of this paper, we will write the
stochastic policy πθ (at |st, t) as pθ (at |st, t) to ensure con-
sistent notation.

C. Using Structured Policies with Latent Variables

Another important advantage of weighted ML updates,
is that we can use structured policy representations that
again include latent variables z. For example, mixture
models [14] or low-dimensional factor models can be
used. In our specific case, the latent variable defines

the exploration of the policy in a lower dimensional
latent space. This low-dimensional exploration z is then
projected in to the high-dimensional original space by
a projection matrix. In order to infer such a model
with latent variables, we can again use the expectation
maximization algorithm. This time we infer a structured
policy from the weighted data points. More specifically
we use the marginalization rule [15] to introduce a
hidden variable z to our policy by specifying that
pθ (at |st, t) =

∫
Z

pθ (at, z|st, t) dz. This step leads to a new
lower bound given by

IEpθold (τ)

 T∑
t=1

Qπ (st, at, t) log
∫
Z

pθ (at, z|st, t) dz
 ≥

IEpθold (τ)

 T∑
t=1

Qπ (st, at, t) IEq(z|at ,st)
[
log pθ (at, z|st, t)

] ,(7)

where the distribution q(z|at, st) =
pθold (at ,z|st ,t)
pθold (at |st ,t)

is given
by the posterior of the latent variables given the old
policy parameters θold. In this lower bound, the EM-
algorithm is applied twice. First, to derive the pol-
icy update by weighted maximum likelihood estimates.
Second, we use EM to update the joint distribution
pθ (at, z|st, t) instead of the marginal.

While this lower bound can be used for any latent
variable model, we will discuss our specific case of
estimating projection parameters in more detail in the
following section.

IV. The PePPCEr Algorithm

In this section, we will describe the “Policy Search with
Probabilistic Principle Component Exploration” Algo-
rithm (PePPCEr) for policy search in low-dimensional
latent spaces. We will first start with a short recap
of Probabilistic PCA, explain the relevant probability
distributions for the PePPCEr algorithm and derive the
EM update equations.

A. Revisiting Probabilistic PCA

Probabilistic Principal Component Analysis (PPCA) is
the probabilistic formulation of the PCA algorithm for
performing linear dimensionality reduction. PPCA re-
lates a d-dimensional data point x ∈ Rd to a low-
dimensional latent variable z ∈ Rn through a linear
Gaussian model

x = Wz + µ + ε (8)

where the latent variable z ∈ Rn is Gaussian distributed
according to p (z) = N (0, I). The transformation matrix
W ∈ Rd×n maps each low-dimensional vector z to the
high dimensional space. The matrix W spans a low-
dimensional subspace and µ ∈ Rd is the mean of

the high-dimensional distribution. A high dimensional
isotropic noise ε ∈ Rd with zero mean and σ2I variance
is added to this projection. The parameters of this
model are given by µ, σ2 and W and can efficiently be
estimated using an EM algorithm (see [10] for details).
However, PPCA is a unsupervised learning method
while policy search is supervised.

B. Deriving the Update Equations for PePPCEr

Building on the insights from PPCA, we can decompose
a stochastic policy into a low-dimensional distribution
and projection parameters for generating the required
high-dimensional action. More specifically, we can write

a = W
(
ZTφ

)
+ Mφ + Eφ, (9)

where W is a projection matrix. The terms Mφ and Eφ
are again the mean and the Gaussian noise term. The
term ZTφ with Z ∼ Np,n (0, I) generates an exploration
noise in a low-dimensional latent space, which is then
projected into the high-dimensional space of actions
via W. Due to the projection from the latent space
to the original high dimensional state, the uncorrelated
explorative action from the latent space becomes a cor-
related action in the high dimensional space. Hence, the
projection matrix W can be understood as a matrix that
defines synergies in the action space that are used for
correlated exploration. Both, the mean M of the policy
and the projection matrix W are learned by the policy
search algorithm. Given the model in Equation 9, we
can derive the expectation of our probability distribution
p (a) in a straight-forward fashion

IE [a] = IE
[
W

(
ZTφ

)]︸ ︷︷ ︸
0

+Mφ + IE
[
Eφ

]︸ ︷︷ ︸
0

= Mφ.
(10)

Similarly, we can also use the properties of matrix-
variate normal distributions [13] to get the covariance

cov (a) = IE
[
(a − IE [a]) (a − IE [a])T

]
= IE

[
WZTφφTZWT

]
+ IE

[
EφφTET

]
= tr

(
φφT

) (
WWT + σ2I

)
,

(11)

where tr (·) denotes the trace of a matrix. From Equa-
tion 10 and Equation 11 it follows that the prior distri-
bution over actions is

p (a) = N
(
Mφ, tr

(
φφT

) (
WWT + σ2I

))
. (12)

Now, in order to apply EM, we have to determine
the posterior distribution p (Z|a) over matrices Z. The
posterior distribution can be simplified by treating ZTφ
as a latent variable. Since the result of this product is a
vector, we can use Bayes theorem for Gaussian variables
[15, p.93] to derive the posterior distribution p

(
ZTφ|a

)
.

Given both distributions

p
(
ZTφ

)
= N

(
0, tr

(
φφT

)
I
)

(13)

and

p
(
a|ZTφ

)
= N

(
W

(
ZTφ

)
+ Mφ, σ2tr

(
φφT

)
I
)
, (14)

the posterior distribution can be written as

pθold

(
ZTφ|a

)
= N

(
CWT (a −Mφ) ,Cσ2tr

(
φφT

))
,
(15)

where C =
(
σ2I + WTW

)−1
. Given this posterior dis-

tribution, we can now determine the equations of the
expectation step

IE pθold (ZTφ|a)
[
ZTφ

]
= CWT (a −Mφ) , (16)

IE pθold (ZTφ|a)
[
ZTφ

(
ZTφ

)T
]

= Cσ2tr
(
φφT

)
(17)

+IE pθold (ZTφ|a)
[
ZTφ

]
IE pθold (ZTφ|a)

[
ZTφ

]T
.

1. Maximization Step for M
We use a maximum likelihood estimate to identify the
value of M in each iteration. To this end, we calculate
the derivative of the log-likelihood function w.r.t. M,

∂ ln p (a)
∂M

=
(
D−1

(
aφT −MφφT

))
, (18)

where D = tr
(
φφT

) (
WWT + σ2I

)
= DT. After inserting

this result into the EM policy search framework and set
the derivative to zero, we get

0 = IEpθold (τ)

 T∑
t=1

∂ ln p (at) Qπ
t

∂M

 (19)

⇔M = IEpθold (τ)

 T∑
t=1

atφ
TQπ

t

tr
(
φφT

) 
IEpθold (τ)

 T∑
t=1

φφTQπ
t

tr
(
φφT

) 

−1

such that M maximizes the log-likelihood function
ln p (a).
2. Maximization Step for W
For optimizing W we have to use the new lower bound
given in Equation 7 and set the derivative of this term
w.r.t W to zero. Accordingly the derivative can be
written as

∂ ln p
(
a,ZTφ

)
∂W

= −
(
σ2tr

(
φφT

))−1(
−a

(
ZTφ

)T
+ WZTφ

(
ZTφ

)T
+ Mφ

(
ZTφ

)T
)

(20)

from which follows that the optimal value of W that
maximizes the log-likelihood is given by

W = IEpθold (τ)

 T∑
t=1

(at −Mφ) IE pθold (ZTφ|a)
[
ZTφ

]T
Qπ

t

tr
(
φφT

)
IEpθold (τ)


T∑

t=1

IE pθold (ZTφ|at)
[
ZTφ

(
ZTφ

)T
]

Qπ
t

tr
(
φφT

)


−1

.

(21)

3. Maximization Step for σ2

Similarly to the estimation of W, we can also derivate
the log-likelihood of ln p

(
a,ZTφ

)
with respect to σ2 in

order to identify a new estimate of σ2 with

∂ ln p
(
a,ZTφ

)
∂σ2 = −

d
2σ2 +

(
2
(
σ2

)2
tr

(
φφT

))−1

(
a −WZTφ −Mφ

)T (
a −WZTφ −Mφ

)
. (22)

Setting the above derivative to zero leads to the follow-
ing maximum-likelihood estimate of the variance:

σ2 =
1
d

IEpθold (τ)

 T∑
t=1

(
tr

(
φφT

))−1

(
(at −Mφ)T (at −Mφ)

−2 (at −Mφ)T WIE pθold (ZTφ|at)
[
ZTφ

]
+tr

(
IE pθold (ZTφ|at)

[
ZTφφTZ

]
WTW

))
Qπ

t

]
IEpθold (τ)

 T∑
t=1

Qπ
t

−1

. (23)

C. Complete Algorithm

The resulting algorithm that implements all of the above
steps can be found in Alg. 1. The initial values for the
parameters σ2,W and M can either be randomly chosen
or initialized using a PPCA on a set of demonstrations.
Additionally, the algorithm requires the number of latent
dimensions n as input. After convergence, a policy is
given by a weight matrix M which is multiplied by the
feature vector φ (s, t) to receive an action for a given
state and time.

V. Experiments

The PePPCEr Algorithm has been evaluated on a simu-
lated and a real-world robot task. In this section, we will
describe the experimental setup of these evaluations and
present the achieved results in comparison to PoWER
and the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [16] algorithm.

A. Learning Inverse Kinematics

In our first experiment, we will focus on learning inverse
kinematics. A range of methods exist for analytically
or numerically solving the inverse kinematics problem.
However, various researchers have also looked at inverse
kinematics from a machine learning point of view [17].
In our experiment, we use a simulated robot with
d hinge-joints and d + 1 segments. The goal of the
simulated robot is to track the position of a sphere
that is moving on a circle. Setting d to values higher
than two results in a redundant system with more DOF

Input: Initialized parameters σ2
0,W0 and M0 and the

dimensionality n of the low dimensional
manifold. The function φ (st, t) represents the
feature vector for the policy.

repeat

Sampling:
for h=1:H do # Sample the H rollouts

for t=1:T do
ah

t = WiZTφ + Miφ + Eφ
with Z ∼ Np,n (0, I) and E ∼ Nd,p

(
0, σ2

i I
)

Execute action ah
t

Observe and store reward rt

(
sh

t , ah
t

)
Calculate weights:

Qπ (s, a, t) = IE
[

T∑̃
t=t

rt̃ (st̃, at̃) |st = s, at = a
]

Expectation:
foreach ah

t do
Compute IE pθold (ZTφ|ah

t)
[
ZTφ

]
with (16).

Compute IE pθold (ZTφ|ah
t)

[
ZTφ

(
ZTφ

)T
]

with (17).

Maximization:
Compute Mi+1 with (19).
Compute Wi+1 with (21).
Compute σ2

i+1 with (23).
until Mi ≈Mi+1

Output: Linear weights M for the feature vector φ.

Algorithm 1: Policy Search with Probabilistic Prin-
ciple Component Exploration in the Action Space
(PePPCEr)

than required to accomplish the task. To learn inverse
kinematics, we set the reward function to

rt(st, at) = e−D, (24)

where D is the distance of the end-effector to the
target, when action at is executed. Then, we use PePPCEr
to determine a suitable policy for the task. During the
optimization process, PePPCEr uncovers the redundancies
of the system by determining the low-dimensional latent
space of joint angle configurations that lead to touching
the target. The latent space models the co-articulation
of different links. An example result of a learned policy
can be found in Fig. 2. As can be seen in the figure, a
20 linked robot arm successfully tracks the target along
a circular path.

We ran the explained setup with different specifi-
cations of policy search algorithms resulting in the
graph depicted in Fig. 3. The graph depicts the sum

Fig. 2: A tentacle-like robot with 20 links tracks a target
along a circular path.

of distances of the end-effector to the target positions.
For a balance evaluation, we compared to two differ-
ent implementations of the PoWER algorithm. In one
implementation the σ2 was static, while in the other
implementation an automatic adaptation of a diagonal
covariance matrix was performed. This feature was also
implemented in the PePPCEr algorithm, which results in
a slightly different update equation for σ2. In each itera-
tion 30 samples were drawn and executed on a simulated
20-linked robot. As features we used 19 time-dependent
Gaussians, so we had to estimate 380 parameters for 50
time steps. We repeated each experiment 10 times and
calculated the mean (bold lines) and standard deviation
of the results (light colors around the mean). The figure
shows that PePPCEr outperforms CMA-ES and PoWER.
In particular in the early iterations both policy search
methods perform comparatively well. At the same time,
we can see that both PoWER implementations start to
stagnate at around 50 iterations. PePPCEr continues to
reduce the distance to the targets.

Fig. 3: Comparison between PePPCEr, PoWER and
CMA-ES on the inverse kinematics task with a 20-
linked robot. In each iteration we executed 30 different
joint configurations on the simulated robot. For the static
PoWER we set σ = 15. For the dynamic PoWER and
PePPCEr we computed the diagonal covariance matrix.

In the above experiment, the dimensionality of the

1 2 3 4 5 6 7 8 9 10 11 12
0

10

20

30

40

50

60

Number of Latent Dimensions

S
u

m
.

D
is

ta
n

c
e
s

Fig. 4: The mean sum of distances and the standard
deviation between the 450th and 500th iteration for an
12-linked robot. Five solutions were learned by PePPCEr
for different values of the dimensionality n of the latent
space.

latent space was set to n = 5. In order to evaluate
the effect of this parameter on the results, we repeated
the evaluation of PePPCEr with varying values for n in
an inverse kinematics task for a 12-linked robot, as
can be seen in Fig. 4. In the depicted graph, we can
see a bump in the average distance at around 5 and 9
dimensions. This is an interesting phenomenon of latent
space policy search: too small a value for n restricts the
search space, too high a value for n diminishes the effect
of dimensionality reduction. In our specific example, the
best value for n seems to be 4 or 5.

B. Learning to Stand on One Leg

We also performed a learning task on a real robot.
More specifically, we used PePPCEr to learn policies for
standing on one leg. The task of standing on one leg is
a synergistic motor skill that requires the co-articulation
of different body parts for successful execution. It is
often used in biomechanical studies on synergies and
low-dimensional control in humans, such as in [18]. In
our experiment, we set the episodic reward of the robot
proportional to the height of the right leg after execution
of the policy. Furthermore, we have to consider in our
reward function, that the head and the right foot of the
robot should not move a lot. Hence, the reward function
can be written as

R(h, rf , lf) = exp {α · h + β · rf− γ · lf − λMAX} , (25)

where α, β, γ ∈ R+, h is the height of the head, rf the
height of the right foot and lf the height of the left foot
in the final position. The constant λMAX is the maximal
possible value of the first part of the sum. The height of
the head is responsible for a low reward if the robot falls

Po
lic

y
 1

Po
lic

y
 2

Fig. 5: Two different policies for standing on one leg
learned using latent space policy search. Only 100
samples were needed to learn policy 1.

during learning. As features, time-dependent Gaussians
were used in this experiment.Actions were represented
by the change in the 25 robot joint angles between two
consecutive time steps.

The goal in robot learning is to learn from few trials.
We therefore restricted the maximum number of samples
(executions on the robot) to 600 samples. For automation
and repeatability purposes, learning was performed in
a physics-based simulator. However, we want to stress
that, given the relatively small number of trials needed
by PePPCEr to learn a policy, we can also perform
learning directly on the real robot. Fig. 5 shows two
learned policies acquired using PePPCEr. Learning started
from random initializations and did not require any
demonstrations. Policy 1 was learned using a sample
size of 20 samples and 5 iterations, i.e., 100 execution
on the robot in total. We can see, that it results in a
smooth and stable motor skill. Policy 2 required 600
evaluations in total and allows the robot to lift the leg
even higher.

VI. CONCLUSIONS

In this paper we presented a novel policy search algo-
rithm for robotics applications. The PePPCEr algorithm
determines the correlations between different joints of
the robot and uses the information for fast and efficient
reinforcement learning. The presented method combines
policy search and dimensionality reduction in a natural
way and has been derived from basic principles. Ap-
plications on a simulated and a real robot indicate that
the approach can be employed to learn new motor skills
for complex, redundant robots using a relatively small
number of trials on the robot. In our future work we
want to combine the introduced approach with imitation
learning, in order to start in a good region of the search
space. Additionally, we want to investigate methods for
identifying the dimensionality of the current task.

Acknowledgment

The research leading to these results has received
funding from the European Union under grant agreement
#270327 (CompLACS).

References
[1] A. Y. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse,

E. Berger, and E. Liang, “Autonomous inverted helicopter flight
via reinforcement learning,” in Proceedings of the International
Symposium on Experimental Robotics, 2004, pp. 363–372.

[2] K. Muelling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,”
International Journal of Robotics Research, no. 3, pp. 263–279,
2013.

[3] J. Zico Kolter and A. Y. Ng, “The stanford littledog: A learning
and rapid replanning approach to quadruped locomotion,” Int. J.
Rob. Res., vol. 30, no. 2, pp. 150–174, Feb. 2011.

[4] J. Kober and J. Peters, “Reinforcement learning in robotics: a
survey,” in Reinforcement Learning. Springer Berlin Heidelberg,
2012, pp. 579–610.

[5] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Foundations and Trends in Robotics, vol. 2,
no. 12, pp. 1–142, 2013.

[6] J. Z. Kolter and A. Y. Ng, “Learning omnidirectional path
following using dimensionality reduction,” in in Proceedings of
Robotics: Science and Systems, 2007.

[7] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimension-
ality reduction to exploit constraints in reinforcement learning,”
in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-
national Conference on, Oct 2010, pp. 3219–3225.

[8] C. L. Nehaniv and K. Dautenhahn, “Imitation in animals and
artifacts,” K. Dautenhahn and C. L. Nehaniv, Eds. Cambridge,
MA, USA: MIT Press, 2002, ch. The Correspondence Problem,
pp. 41–61.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. MIT Press, 1998.

[10] M. E. Tipping and C. M. Bishop, “Probabilistic principal com-
ponent analysis,” Journal of the Royal Statistical Society, Series
B, vol. 61, pp. 611–622, 1999.

[11] J. Kober and J. Peters, “Policy search for motor primitives in
robotics,” Machine Learning, vol. 84, no. 1-2, pp. 171–203, 2011.

[12] J. Peters and S. Schaal, “Reinforcement learning of motor skills
with policy gradients,” Neural networks, vol. 21, no. 4, pp. 682–
697, 2008.

[13] A. K. Gupta and D. K. Nagar, Matrix variate distributions. CRC
Press, 2000, vol. 104.

[14] C. Daniel, G. Neumann, and J. Peters, “Learning concurrent
motor skills in versatile solution spaces,” in Intelligent Robots
and Systems (IROS), 2012 IEEE/RSJ International Conference
on, Oct 2012, pp. 3591–3597.

[15] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and
machine learning. Springer New York, 2006, vol. 1.

[16] N. Hansen, S. Muller, and P. Koumoutsakos, “Reducing the time
complexity of the derandomized evolution strategy with covari-
ance matrix adaptation (CMA-ES).” Evolutionary Computation,
vol. 11, no. 1, pp. 1–18, 2003.

[17] K. Grochow, S. L. Martin, A. Hertzmann, and Z. Popović, “Style-
based inverse kinematics,” ACM Trans. Graph., vol. 23, no. 3,
pp. 522–531, Aug. 2004.

[18] G. Torres-Oviedo and L. H. Ting, “Subject-specific muscle
synergies in human balance control are consistent across different
biomechanical contexts,” Journal of neurophysiology, vol. 103,
no. 6, pp. 3084–3098, 2010.

