
A Probabilistic Approach to Robot Trajectory Generation

Alexandros Paraschos1 and Gerhard Neumann1 and Jan Peters1,2

Abstract— Motor Primitives (MPs) are a promising approach
for the data-driven acquisition as well as for the modular and
re-usable generation of movements. However, a modular control
architecture with MPs is only effective if the MPs support
co-activation as well as continuously blending the activation
from one MP to the next. In addition, we need efficient
mechanisms to adapt a MP to the current situation. Common
approaches to movement primitives lack such capabilities or
their implementation is based on heuristics. We present a
probabilistic movement primitive approach that overcomes the
limitations of existing approaches. We encode a primitive as a
probability distribution over trajectories. The representation as
distribution has several beneficial properties. It allows encoding
a time-varying variance profile. Most importantly, it allows
performing new operations — a product of distributions for
the co-activation of MPs conditioning for generalizing the MP
to different desired targets. We derive a feedback controller
that reproduces a given trajectory distribution in closed form.
We compare our approach to the existing state-of-the art and
present real robot results for learning from demonstration.

I. INTRODUCTION

Movement primitives (MP) [1], [2], [3] are considered a
state-of-the-art-approach for learning robot movement gen-
eration. They have been used successfully to solve many
complex tasks, including the ‘Ball-in-the-Cup’ game [4],
Ball-Throwing [5], Pancake-Flipping [6] and bipedal gait
generation [7]. The original motivation for using MPs is to
compose complex behavior out of simpler building blocks
of movement, or movement primitives. To this end, paral-
lel activation of MPs in a modular control architecture is
highly desirable. Parallel activation can drastically increase
the expressibility of the modular architecture, and it allows
for continuously blending the activation from one MP to
the next. Moreover, to get reusable building blocks, we
need to be able to modulate a MP, i.e., a MP needs to
be able to generalize to different desired target states, via-
points or execution speeds. Additionally, a MP representation
should allow for learning from demonstrations and trial and
error, be applicable for stroke-based as well as periodic
movements and the policy of the MP should be able to
represent optimal behavior in the given environment. While
most of these properties are implemented by one or more MP
representations [1], [2], [8], a unified framework is missing
that combines all these properties in a principled way without
relying on heuristics.

In this paper, we concentrate on trajectory-based move-
ment representations. Such representations use time- or

1 Intelligent Autonomous Systems lab, Technische Universitat Darmstadt,
Germany {paraschos,neumann}@ias.tu-darmstadt.de

2 Robot Learning Group, Max-Planck Institute for Intelligent Systems,
Tuebingen, Germany mail@jan-peters.net

Fig. 1. The KUKA light-weight arm playing Astrojax using ProMPs.

phase-dependent policies [1], [6], [9]. For example, the
widely used dynamic movement primitive (DMP) approach
[1] uses a phase signal to implement execution speed adap-
tation for the movement. DMPs are based on second-order
dynamical systems, which are composed of a linear spring-
damper system and a learnable non-linear forcing function.
Integrating the dynamic system results in the desired tra-
jectory, which is subsequently followed by feedback control
laws. The DMP framework is well-established in robotics
as they are straightforward to obtain from imitation [1] and
reinforcement learning [10], can be used for both rhythmic
and stroke-based movements, the movement can be general-
ized to different final-positions, and the movement speed can
be adjusted by a temporal scaling parameter. The original
DMP framework has been extended in [3] to generalize
also to different final velocities and in [6] to use a time-
varying spring-damper system which effectively modulates
the stiffness of the executed movement.

However, there are a few desirable properties for a MP
representation that are not fulfilled by current trajectory-
based MP representations. Most importantly, multiple MPs
for the same degrees of freedom (DoF) cannot be activated
simultaneously without further considerations on prioritized
control and partial cancellation of the movement. For ex-
ample, a DMP generates the acceleration of the desired
trajectory and it is unclear how to combine two such desired
accelerations into a meaningful movement. Furthermore,
a DMP cannot encode optimal behaviour in the presence
of stochasticity, as following a single trajectory is always
sub-optimal for stochastic systems [11]. Stochastic systems
require to encode the variance of the resulting trajectories as
we need to control the accuracy of the movement at relevant
time points. DMPs can be efficiently used to imitate a single

trajectory, however, how to generalize the shape of a DMP
from multiple demonstrations is an open problem. Typically,
the generalization to new final positions or velocities is based
on heuristics and cannot be directly obtained by imitation
learning. While some of the limitations of DMPs have been
fixed by some extensions [8], [3], [5], such extensions are
typically based on heuristics or only fix single limitations of
the DMPs. For example, multiple MPs can be combined [8],
but it is unclear how this combination affects the resulting
motion.

In this paper, we introduce a probabilistic approach to
robot trajectory generation that we call Probabilistic Move-
ment Primitives (ProMP). ProMPs represent a movement
primitive as a distribution over trajectories. Trajectory distri-
butions can be easily multiplied which yields the ‘intersec-
tion’ of two distribution. This operation allows for a simulta-
neous activation of several primitives or a smooth switching
from one activated primitive to the next. We can also condi-
tion our trajectory distribution to reach a desired position or
velocity at any point in time as long as the position lies within
the distribution. The trajectory distribution adapts to the new
desired position while simultaneously trying to stay close to
the demonstrations, i.e., the generalization to new desired
targets is also learned from demonstration. Furthermore,
the use of trajectory distributions allows us to represent a
time-varying variance profile of the trajectories, and, hence,
to encode optimal behaviors for stochastic systems [11].
Similarly to the DMP approach, our MPs can be easily
obtained from imitation, can be used for both point-to-
point and rhythmic movements, and the execution speed can
be adapted by replacing time by a phase variable. While
trajectory distributions support all of our desired properties
for a MP representation, they would be of little use if we
cannot use them to control a robot. We will first discuss how
trajectory distributions can be learned and manipulated and
subsequently show how to obtain a feedback control policy
that follows the given trajectory distribution. Finally, we
present several illustrative comparisons to the predominantly
used DMP approach and we evaluate our approach on
simulated and real robot scenarios. We investigate the use
of ProMPs in a simulated table tennis application and we
demonstrate how an anthropomorphic robot can play the
game ‘Astrojax’.

II. PROBABILISTIC TRAJECTORY REPRESENTATION

In this section, we present our probabilistic representation
of MPs. After explaining the benefits of trajectory distri-
butions and how they can be modelled, we explain how
we can perform new probabilistic operations on our MP
representation, i.e., conditioning, combination, and blending
of MPs.

A. Representation of a Single Trajectory

Our movement representation is based on a distribution
p(τ |θ) over trajectories, where θ represents the parameter
vector of this distribution. Similar to the DMPs approach, we
will model the MPs for each joint independently. A single

trajectory τ = {qt}t=1...T is represented by a sequence of
time points, where qt represents the joint angle at time point
t. As we are seeking a compact trajectory representation, we
use a linear basis-function model

yt =

[
qt
q̇t

]
=

[
ψTt

ψ̇
T

t

]
w +

[
εq
εq̇

]
, (1)

for representing a single trajectory. The weight vector w
compactly represents the trajectory τ . The vector ψt rep-
resents the basis functions at time point t and εq, εq̇ zero-
mean Gaussian i.i.d observation noise. The probability of
observing a trajectory given the weight vector w is given by
p(τ |w) =

∏T
t=1 p(yt|w), where

p(yt|w) = N
(
y
∣∣∣ΨT

t w,Σy

)
, (2)

with Ψt = [ψt, ψ̇t] and Σy contains the variances σ2
q for

the position and velocities σ2
q̇ on its diagonal.

B. Representation of the Trajectory Distribution

As the weight vector w represents a single trajectory, we
can abstract a distribution over trajectories as a distribution
p(w|θ), over the weight vector w, which is parametrized by
θ. The probability of observing a trajectory becomes

p(τ |θ) =

ˆ
p(τ |w)p(w|θ)dw, (3)

where we integrate out w. The parameters θ can be ob-
tained by maximum likelihood estimates, e.g., using the
expectation maximization (EM) algorithm [12]. We model
the distribution over the weights as a Gaussian p(w;θ) ∼
N (w|µw,Σw), where θ is given by the mean µw and
covariance matrix Σw. Hence, the trajectory distribution
p(τ |w) is also given by a Gaussian. The mean µt and
covariance Σt at time point t are given by

µt =

[
µt,q
µt,q̇

]
=

[
ψTt

ψ̇
T

t

]
µw, (4)

Σt =

[
σ2
t,qq σ2

t,qq̇

σ2
t,qq̇ σ2

t,q̇q̇

]
=

[
ψTt Σwψt ψTt Σwψ̇t

ψ̇
T

t Σwψt ψ̇
T

t Σwψ̇t

]
(5)

and are obtained by integrating out the weights w. The
concept of trajectory distributions is also illustrated in Figure
2.

C. Phase Signal

A movement primitive typically needs to be executed at
different speeds, e.g., when playing table tennis, we need
to execute the strokes at different speeds to modulate the
strength of the shot. Therefore, we need to temporally scale
the movement primitive when playing table tennis, as we
need to execute the strokes at different speeds in order to
modulate the strength of the hit. As demonstrations from
human tutors do not have generally the same durations,
temporal scaling also allows learning from multiple demon-
strations. We decouple Equations (4) and (5) from time t
by introducing a phase variable zt which is a monotonic

time [s]
0 0.3 0.7 1

(a) Trajectory Distribution

time [s]

q
[ra

d]

0 0.3 0.7 1
-1

0

1

(b) Demonstrations

time [s]
0 0.3 0.7 1

(c) Single Trajectory

Fig. 2. (a) Trajectory distribution learned by the ProMP approach. Trajectories created by the stochastic feedback controller of the ProMP are plotted in
blue. The ProMP can exactly reproduce the demonstrated trajectory distribution (shown in red below the blue shaded area). (b) Five out of 20 demonstrations
(red lines) created by an stochastic optimal control algorithm for a via-point task. The resulting trajectories show a lot of variability due to the noise in
the system. The red shaded area denotes two times the standard deviation of the demonstration. (c) Trajectory distribution created by following a DMP
twenty times. The DMP is trained on the mean trajectory of the same demonstrations. While the DMP can follow the mean of the demonstrations, it can
not adapt its variance. As a consequence, the accuracy at the via-points is worse as for the ProMPs, while the control actions are higher in non-relevant
areas of the trajectory.

function of time. The speed profile żtof the phase determines
the execution speed of the of the movement. We arbitrarily
define the phase to be z0 = 0 at the beginning and zT = 1 at
the end of the movement. The basis functions now depend
on the phase instead of the time, such that ψt = ψ(zt)
and the corresponding derivative of the basis becomes ψ̇t =
ψ′(zt)żt.

D. Basis Functions

We want to use our representation for stroke based and
periodic movements. As for the DMPs we use normalized
Gaussian basis functions ψi for stroke based movements,
where

ψi(zt) =
φi(z)∑
i φi(z)

, φi(z) = exp

(
− (zt − ci)2

2h

)
. (6)

The center of the ith basis is denoted by ci, and the basis
width by h. We distribute the centers uniformly in the phase
space, i.e., ci ∈ [0, 1]. For encoding periodic movements, we
use normalized Von-Mises basis functions,

ψi(zt) =
φi(z)∑
i φi(z)

, φi(z) = exp (h cos(2π(zt − ci))) ,
(7)

which are periodic in the phase.

E. Generalizing by Conditioning

Generalization of MPs is a necessary requirement for a
variety of applications. For example, in table tennis the visual
information of the ball position is used to modify the position
of the hitting point. We support generalization in the ProMPs
framework by conditioning the learned distribution p(w)
over the weights w. Let us denote q∗t and q̇∗t as the desired
angle and angular velocity respectively at time point t. We
perform conditioning by

p
(
w|[q∗t , q̇∗t]T

)
∝ p

(
[q∗t , q̇

∗
t]T |w

)
p(w|θ) =

N

([
q∗t
q̇∗t

] ∣∣∣ [ψTt w
ψ̇
T

t w

]
,

[
σ∗q 0
0 σ∗q̇

])
N (w|µw,Σw) , (8)

where σ∗q denotes the desired accuracy on the angle q∗t and
σ∗q̇ on the velocity. The new probability distribution over the

weights p(w|q∗t , q̇∗t) = N (w|µnew
w ,Σnew

w) can be computed
analytically,

µ[new]
w = µw + Σw

[
ψTt

ψ̇
T

t

]
Σ′

[q∗t
q̇∗t

]
−

[
ψTt

ψ̇
T

t

]T
µw

, (9)

Σ[new]
w = Σw −Σw

[
ψTt

ψ̇
T

t

]
Σ′

[
ψTt

ψ̇
T

t

]T
Σw, (10)

where Σ′ is given by

Σ′ =

[σ∗q 0
0 σ∗q̇

]
+

[
ψTt

ψ̇
T

t

]T
Σw

[
ψTt

ψ̇
T

t

]−1 , (11)

and µ[new]
w denote the new mean, Σ[new]

w the new covariance of
the weight vectorw. In Figure 4 we compare our approach to
DMPs for different goal positions. We observe that the DMPs
approach is able to reach the target positions and velocities,
but it fails to preserve the shape of the trajectory obtained
by the demonstrations. As a consequence, in tasks in which
the timing of the primitive is important, the use of DMPs
leads to inferior performance.

F. Combination and Blending

While humans are able to seemingly blend and combine
movements, MPs approaches rarely have this capability. Our
probabilistic representations allows us to combine and blend
a set of different primitives into a single one. We co-activate
multiple primitives simultaneously by taking the product of
distributions,

pnew(τ) ∝
∏
i

pi(τ)α
[i]

, (12)

where primitive i is activated with the factor α[i]. The
concurrent co-activation results in the ‘intersection’ of all
distributions, which could be seen as the overlapping re-
gion of all distributions. For example, if two trajectory
distributions are used to solve two different tasks but have
an overlapping solution in the joint space, the product of
both distributions will result in a primitive that solves a
combination of the two tasks. Additionally, we may not only
want to combine primitives, but rather transition smoothly

q
[ra

d]

3 4 6 8

0.5

0.8 Sample Trajectories
Trajectory Mean

time [s]

q
[ra

d]

0 2 4 6
0.55

0.7

0.85
Demonstration
Start of Period

time [s]

dz
 [1

/s
]

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 80
5 Speed Profile

(a) Temporal Modulation

q
[ra

d]

time [s]
0 0.3 0.7 1

-2

-1

0

1

2

3
Demonstration 1
Demonstration 2
Combination

0 0.3 0.7 1
 0

0.5
α1
α2

(b) Combination

q
[ra

d]

0 0.3 0.7 1
-2

-1

0

1

2

3
Demonstration 1
Demonstration 2
Blending

0 0.3 0.7 1
0

1
α1
α2

(c) Blending

Fig. 3. (a) (top) Demonstration of a rhythmic movement obtained via kinesthetic teach-in. The beginning of each period is indicated by a red cross.
(middle) Learned movements of the ProMP approach, where we already adapted the speed profile of the phase variable z. The blue line and blue shaded
area shows the mean and standard deviation of the reproduction. The lines in grey show the generated trajectories from the ProMPs. While the trajectory
distribution is periodic, the single trajectories show the demonstrated variability. (bottom) The speed profile of the phase variable. (b) Combination (green)
of two movement primitives (red and blue). Each of the original primitives had to reach two different via-points (indicated by ’x’). In the combination,
both primitives are active, and hence, all four via-points are reached by the green primitive. (c) Blending (green) of movement primitives. In the beginning,
the red movement primitive is active. At t = 0.5s, we smoothly switch the activation to the blue primitive and the red primitive is ignored.

form one primitive to another, also denoted as blending
between two movements. Continuous blending is achieved
by

pnew(τ) ∝
∏
t

∏
i

pi(yt)
α

[i]
t , (13)

where the activations α[i]
t are time-varying. The new dis-

tribution is a product of Gaussian distributions and can be
computed analytically. The updated mean and covariance are
given as

Σ
[new]
t =

(∑
i

(
Σ

[i]
t /α

[i]
t

)−1)−1
, (14)

µ
[new]
t =

(
Σ

[new]
t

)−1(∑
i

(
Σ

[i]
t /α

[i]
t

)−1
µ

[i]
t

)
. (15)

The mean µt and covariance matrix Σt are used to determine
the gains of the stochastic feedback controller that we will
derive in Section III.

III. DERIVATION OF THE CORRESPONDING CONTROLLER

To use the resulting trajectory distributions, we need a
control law. We derive a stochastic feedback controller that
exactly reproduces the desired trajectory distribution p(τ |θ).
To do so, we use a model-based approach in which an
approximate forward model is used for predicting the dis-
tribution at the next time step. Given the desired distribution
and the model, the control signals at each time step are
obtained in closed form.

A. Controller Architecture

We model the underlying system by a second order linear
dynamical system as it enables us to derive a closed form
solution of the feedback controller. Such a linear model
is also used to represent the robot’s dynamics in DMPs
approach. It is a valid model given the assumption that the
inverse dynamics model is sufficiently precise for controlling
the robot [9], [13]. The state of the linear system is given

by the joint angle qt and velocity q̇t and the control output
ut = q̈t by the desired acceleration. For a given duration
δt between two subsequent time-steps, the next state of the
dynamical system is given by

qt+δt = qt + q̇t δt, (16)
q̇t+δt = q̇t + ut δt. (17)

We generate the controller output by a feedback control law,

ut =Ptqt +Dtq̇t + kt + εu, (18)

where Pt and Dt denote the time-varying position and
velocity gains, kt denotes the feed-forward component and
the controller noise εu ∼ N (0, σu/δt) is assumed to be zero
mean i.i.d. Gaussian. To allow a subsequent transition to
continuous time systems, we use a control noise that behaves
like a Wiener process [14]. Its variance grows linearly with
the time step δt. We substitute Equation (18) in (17) to obtain
a new transition probability for the velocity,

q̇t+δt = Pt δt qt + (1 +Dt δt) q̇t + (kt + εt) δt. (19)

We use our model to compute the distribution of the state
of the system at the next time step t+ δt, analytically. From
Equations (16) and (19), given the distribution p([qt, q̇t]

T)
of the current time step, we obtain

p

([
qt+δt
q̇t+δt

])
=

ˆ
p

([
qt+δt
q̇t+δt

] ∣∣∣ [qt
q̇t

])
p

([
qt+δt
q̇t+δt

])
dqt dq̇t

=

ˆ
N
([
qt+δt
q̇t+δt

]∣∣∣ [m1 (qt, q̇t)
m2 (qt, q̇t)

]
,

[
0 0
0 σu

])
N
([
qt
q̇t

] ∣∣∣ [µt,q
µt,q̇

]
,

[
Σt,qq Σt,qq̇
ΣTt,qq̇ Σt,q̇q̇

])
dqt dq̇t, (20)

where

m1 (qt, q̇t) = qt + q̇t δt, (21)
m2 (qt, q̇t) = Pt δt qt + (1 +Dt δt) q̇t + kt δt. (22)

time [s]

q
[ra

d]

0 0.3 0.7 1
-0.5

0

1

2

(a) Optimal Control

time [s]
0 0.3 0.7 1

(b) ProMPs

time [s]
0 0.3 0.7 1

(c) DMPs

Fig. 4. (a) Demonstrations created by an optimal control algorithm for different target positions. (b) Reproduced generalization to the target states by
ProMPs. The ProMPs can reached the target states while keeping the demonstrated shape of the trajectory. (c) Generalization with the DMPs by adapting
the goal attractor. While the DMPs can reach the target states, the similarity with the demonstrations is lost.

The integral from Equation (20) can be computed analyti-
cally and yields a Gaussian distribution with mean[

µt+δt,q
µt+δt,q̇

]
=

[
µt,q + µt,q̇ δt

Pt δtµt,q + (1 +Dt δt)µt,q̇ + kt δt

]
, (23)

and the elements of the covariance matrix

σ2
t+δt,q = σt,q + 2σt,qq̇ δt +O

(
δt2
)
, (24)

σ2
t+δt,qq̇ = Pt δtσt,q + (1 +Dt δt)σt,qq̇

+ σt,q̇ δt +O
(
δt2
)

= σt+δt,q̇q, (25)

σ2
t+δt,q̇ = Pt δt (σt,q̇ + σt,qq̇) + σt,q̇+

Dt δt (σt,q̇ + σt,qq̇) + σ2
u δt +O

(
δt2
)
, (26)

where O(δt2) contains the second order terms in δt. The
stochastic control law that we specified in Equation (18) is
fully determined at each control step by the feed-forward
component kt, the feedback gains Pt and Dt, and the noise
variance σu. In this paper, we assume that the noise variance
σ2
u of the controller is given. In the following sections, we

show the analytical computations for all of these terms.

B. Derivation of the Feedback Gains
We derive our controller parameters by matching the

predicted distribution from our model, see Equation (20),
with the desired distribution at t + δt. We observe that
both distributions are Gaussian, thus it is sufficient to match
the first two moments of both distributions. We begin our
derivations by computing the feedback gains. We equalize
Equations (25) and (26) and we rearrange the terms to
formulate difference of σ2

t+δt,i − σ2
t,i for i ∈ {q, qq̇}. We

transit to a continuous time formulation by dividing by δt
and taking the limit δt→ 0, which results in

σ̇2
t,qq̇ = Pt σ

2
t,q +Dt σ

2
t,qq̇ + σ2

t,q̇, (27)

σ̇2
t,q̇ = Pt

(
σ2
t,q̇ + σ2

t,qq̇

)
+Dt

(
σ2
t,q̇ + σ2

t,qq̇

)
+ σ2

u (28)

the derivatives of σ2
t,qq̇ and σ2

t,q̇ , where all the second order
terms O(δt2) disappear. All the right-hand side terms of
Equation (28), except from the gains Pt and Dt, can be
computed analytically from Equation (5). Additionally, the
left-hand side terms can also be computed analytically

σ̇t,qq̇ =
(
ψTt σwψ̇t

)′
= ψ̇

T

t σwψ̇t +ψTt σwψ̈t, (29)

σ̇t,q̇ =
(
ψ̇
T

t σwψ̇t

)′
= 2ψ̇

T

t σwψ̈t, (30)

Fig. 5. The table tennis setup. On the left, the BioRob arm is mounted on
linear axis, the ball position denoted by ‘blob-1’ and the ball prediction.
On the opponent’s side is the robot’s target for this simulation. In our
experiments, we use 15 different combinations of ball initial positions and
robot’s targets covering most of the table.

in a similar fashion. Therefore, we solve the equation system
defined by Equations (25) and (26) on Pt, Dt by substitution,
and we obtain

Pt =
σ̇2
t,qq̇ − σ2

t,q̇ −Dtσ
2
t,qq̇

σ2
t,q

(31)

Dt =
σ̇2
t,q̇ − σ2

u −
(
σ̇2
t,qq̇ − σ2

t,q̇

) (
σ2
t,q̇ + σ2

t,qq̇

)
σ2
t,q

(
1− σ2

t,qq̇σ
2
t,q

)(
σ2
t,q̇ + σ2

t,qq̇

) (32)

where all of the terms can be computed analytically.

C. Derivation of the Feed-Forward Controls

Similarly, we obtain the closed-from solution for the feed-
forward control signal kt. We equalize the mean of the
velocity of the predictive distribution from Equation (23) and
the desired distribution, from Equation (4) at the next time
step. Rearranging, dividing by δt, and taking the limit of
δt→ 0 yields

µ̇t,q̇ = Ptµt,q +Dtµt,q̇ + kt, (33)

which we solve for the feed-forward control signal

kt = µ̇t,q̇ − Ptµt,q −Dtµt,q̇ (34)

= ψ̈
T

t µw − Ptψ
T
t µw −Dtψ̇

T

t µw, (35)

where all terms can be computed analytically.

Fig. 7. The KUKA light-weight arm using the toy ’Astrojax’. The robot holds on of the balls in his fingers and starts with releasing the ball connected
to the other end of the string. He subsequently reproduces the demonstrated rhythmic movement showing the same human-like variability in its movement
pattern.

Fig. 8. The robot learned from demonstration how to hit one of two targets (indicated by the white and orange table tennis balls) while avoiding the
other. The figure shows the combination of both movement primitives. By activating both primitives, the robot hit the white ball and subsequently the
orange ball.

0

0.05

0.1

0.15

0.2

D
is

ta
nc

e
to

 ta
rg

et
 (m

)

DMPs
ProMPs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

S
uc

ce
ss

 R
at

e

Fig. 6. (top) The distance between the ball position when landed on
the opponents field and the actual targeted point in meters, for the DMP
and the ProMP approaches. We tested 15 different combinations of ball
initial states and robot’s targets, and we average the data over 20 samples.
The bars denote the mean error and the error-bars one standard deviation.
(bottom) The success rate for each combination. If the distance between the
landed position and the target position is less than 0.4 meters is counted as
a success. The performance of ProMPs is superior in all the experiments
leading generally to smaller errors with an increased success rate.

IV. EXPERIMENTAL EVALUATION

We evaluated our approach on one realistically simulated
task and on two real-robot tasks. For the simulated task,
we use a 6-DoF BioRob arm, mounted on 2-DoF linear
axis, while for the real-robot tasks we use a 7-DoF KUKA
anthropomorphic, light-weight arm, which is equipped with
a 5-finger, 15 DoF hand made by DLR. In both cases, we
use an inverse dynamics model to control the robot, where
the ProMPs directly controlled the desired acceleration of the
joints. The robot is illustrated in Figure 1. For the simulated
experiment, we used the ProMPs for playing table tennis.
The trajectories used for training were from an analytical

player [15]. In the first real-robot experiment, we demon-
strated rhythmic trajectories for the toy ‘Astrojax’ [16] by
kinesthetic teach-in. In the second experiment, we generated
demonstrations for hitting a ball with a table tennis racket.
We generated two different types of movements for hitting
the ball at different positions. We were able to combine both
movements such that the robot could hit the two balls in
sequence with a single primitive.

A. Table Tennis

In this experiment, we use a physically realistic model of a
table tennis setup. We use a BioRob 5-DoF arm [17] mounted
on two linear axis, with an additional shoulder joint, depicted
at Figure 5. We control the robot with inverse dynamics
control, however, the readings of the current positions have
a lag of one time step to simulate the system realistically.
As a result, the desired and actual trajectories do not match
exactly, thus, making the robot more sensitive to jerky
movements.

At the start of each episode, the ball is set to different pre-
specified positions and velocities, targeting the robot. Then,
the ball is simulated with second-order Euler integration.
The robot has to return the ball to a specific target area
at the opponents field. For our experiment, we gathered
trajectories for 15 different combinations of initial ball states
and robot targets, generated from an analytical player. We
trained the ProMPs approach with the whole data-set and
created one primitive. In our experiment, the ball state is set
at the beginning and the ProMP is conditioned to the hitting
position of the analytical player. A delay before the start of
the execution of the primitive is provided by the simulation.

In order to make the task more realistic, we assume that
the ball state is estimated, instead of being directly observed,
with zero-mean i.i.d. Gaussian noise. The estimation of the

ball increases the task difficulty significantly as it also affects
the delay before the execution of the primitive. We display
our results on Figure 6, and we compare our approach to
DMPs. We train the DMP with the one demonstration, and
we modify the goal position and velocity according to the
built-in generalization approach. The DMP approach has
inferior performance when executed in a noisy environment,
as the generalization capabilities of the DMP destroy the
shape of the demonstrated trajectory, as shown in Figures 4.

B. Playing Astrojax

‘Astrojax’ is a toy consisting of three balls on a string. Two
balls are fixed at either end of the string and one ball is free to
slide along the string. Roughly, ‘Astrojax’ is a game between
‘YoYo’ and juggling. A wide variety of tricks can be per-
formed on it. We demonstrated a rhythmic movement to the
robot which created a ’basic orbit’ pattern. We subsequently
used the ProMPs to learn the movement where we used 30
Von-Mises basis functions for each joint. The robot could
reproduce the behavior and recreated the same pattern, which
is illustrated in Figure 7. As the demonstrations exhibited
a lot of variability, the robot produced periodic movements
which showed the same type of variability. The demonstrated
and the learned movements for one DoF is shown in Figure
3(a). In contrast, the DMP approach would repeat always
exactly the same movement, rendering the behavior of the
robot less human-like.

C. Ball Hitting Combination Task

In this task, the robot had to hit different targets with a
table tennis racket. We initially demonstrated two distinct
movements for hitting the ball at two different locations.
The distance of the target locations to the robot was chosen
differently, such that, the time of contact with the first target
was before the time of contact with the second target. For
each target location, we demonstrated five trajectories. After
learning the primitives, the robot could hit each of the target
locations independently, with the corresponding primitive.
We subsequently activated both primitives simultaneously to
get the combination of both primitives. The robot hit both
targets with one stroke. The resulting movement of the robot
is illustrated in Figure 8.

V. CONCLUSION

Movement primitives are a promising approach for learn-
ing, modulating, and re-using movements in a modular
control architecture. To effectively take advantage of such
a control architecture, the MPs need to support simultaneous
activation, match the quality of the encoded behavior from
the demonstrations, be able to adapt to different desired target
positions, and efficiently learn by imitation. In this paper, we
introduced a probabilistic approach to movement primitives,
which meets all these requirements. We parametrize the
desired trajectory distribution of the primitive. The trajectory
distribution can be obtained from demonstrations and simul-
taneously defines a feedback controller, which is used for
movement execution. Our probabilistic formulation allows

for new operations on movement primitives, including condi-
tioning and combination of primitives. The resulting method
works well on three benchmark tasks with simulated and
real robots. Future work will focus on using the ProMPs in
a modular control architecture and improving upon imitation
learning by reinforcement learning.

ACKNOWLEDGEMENTS

The authors want to thank for the support of the European
Union projects # FP7-ICT-270327 (Complacs) and # FP7-
ICT-2011-9 (CoDyCo).

REFERENCES

[1] A. J. Ijspeert and S. Schaal, “Learning Attractor Landscapes for Learn-
ing Motor Primitives,” in Advances in Neural Information Processing
Systems 15, ser. (NIPS). Cambridge, MA: MIT Press, 2003.

[2] S. M. Khansari-Zadeh and A. Billard, “Learning Stable Non-Linear
Dynamical Systems with Gaussian Mixture Models,” IEEE Transac-
tion on Robotics, 2011.

[3] J. Kober, K. Mülling, O. Kroemer, C. Lampert, B. Schölkopf, and
J. Peters, “Movement Templates for Learning of Hitting and Batting,”
in International Conference on Robotics and Automation (ICRA),
2010.

[4] J. Kober and J. Peters, “Policy Search for Motor Primitives in
Robotics,” Machine Learning, pp. 1–33, 2010.

[5] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-Specific Gen-
eralization of Discrete and Periodic Dynamic Movement Primitives,”
Trans. Rob., no. 5, Oct. 2010.

[6] P. Kormushev, S. Calinon, and D. Caldwell, “Robot Motor Skill Co-
ordination with EM-based Reinforcement Learning,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2010.

[7] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of biped
locomotion,” Robotics and Autonomous Systems, 2004.

[8] L. Rozo, S. Calinon, D. G. Caldwell, P. Jimenez, and C. Torras,
“Learning Collaborative Impedance-Based Robot Behaviors,” in AAAI
Conference on Artificial Intelligence, 2013.

[9] L. Sciavicco and B. Siciliano, Modelling and Control of Robot
Manipulators, 2nd ed. Springer, 2005.

[10] J. Peters and S. Schaal, “Reinforcement Learning of Motor Skills with
Policy Gradients,” Neural Networks, no. 4, pp. 682–97, 2008.

[11] E. Todorov and M. Jordan, “Optimal Feedback Control as a Theory
of Motor Coordination,” Nature Neuroscience, vol. 5, pp. 1226–1235,
2002.

[12] A. Lazaric and M. Ghavamzadeh, “Bayesian Multi-Task Reinforce-
ment Learning,” in Proceedings of the 27th International Conference
on Machine Learning (ICML), 2010.

[13] J. Peters, M. Mistry, F. E. Udwadia, J. Nakanishi, and S. Schaal,
“A Unifying Methodology for Robot Control with Redundant DOFs,”
Autonomous Robots, no. 1, pp. 1–12, 2008.

[14] H. Stark and J. W. Woods, Probability and Random Processes with
Applications to Signal Processing (3rd Edition), 3rd ed., Aug. 2001.

[15] K. Mülling, J. Kober, and J. Peters, “A Biomimetic Approach to Robot
Table Tennis,” Max-Planck-Gesellschaft. Piscataway, NJ, USA: IEEE,
10 2010, pp. 1921–1926.

[16] Wikipedia, “Astrojax,” 2013, [Online; accessed 1-Feb-2013]. [Online].
Available: http://en.wikipedia.org/wiki/Astrojax

[17] S. Klug, T. Lens, O. von Stryk, B. Möhl, and A. Karguth, “Biolog-
ically inspired robot manipulator for new applications in automation
engineering,” in Proceedings of Robotik 2008, ser. VDI-Berichte, no.
2012. Munich, Germany: VDI Wissensforum GmbH, June 11-12
2008.

