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Abstract
Learning control has become an appealing alterna-
tive to the derivation of control laws based on clas-
sic control theory. However, a major shortcoming
of learning control is the lack of performance
guarantees which prevents its application in many
real-world scenarios. As a step in this direction,
we provide a stability analysis tool for controllers
acting on dynamics represented by Gaussian pro-
cesses (GPs). We consider arbitrary Markovian
control policies and system dynamics given as
(i) the mean of a GP, and (ii) the full GP distribu-
tion. For the first case, our tool finds a state space
region, where the closed-loop system is provably
stable. In the second case, it is well known that
infinite horizon stability guarantees cannot ex-
ist. Instead, our tool analyzes finite time stability.
Empirical evaluations on simulated benchmark
problems support our theoretical results.

1. Introduction
Learning control based on Gaussian process (GP) forward
models has become an established approach in the machine
learning and control theory communities. Many successful
applications impressively demonstrate the efficiency of this
approach (Deisenroth et al., 2015; Engel et al., 2006; Pan
& Theodorou, 2014; Kocijan et al., 2004; Klenske et al.,
2013; Maciejowski & Yang, 2013; Nguyen-Tuong & Peters,
2011). In contrast to classic control theory methods, learn-
ing control does not presuppose a detailed understanding of
the underlying dynamics but tries to infer the required infor-
mation from data. Thus, only very little expert knowledge
about the system dynamics is required and fewer assump-
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Figure 1. We present a tool to analyze stability for a given con-
troller and Gaussian process (GP) dynamics model. Our tool
analytically derives a stability region where convergence to the
goal is guaranteed. Thus, we can provide stability guarantees for
many of the existing GP based learning control approaches.

tions, such as a parametric form and parameter estimates,
must be made. Employing GPs as forward models for learn-
ing control is particularly appealing since GPs incorporate
uncertainty about the system dynamics.

Unfortunately, performance guarantees do rarely exist for
system dynamics and policies learned from data. An impor-
tant type of performance guarantee is (asymptotic) stability.
A stability region in the state space ensures, that all trajec-
tories starting in this region converge to the target. Classic
control theory offers a rich variety of stability analysis, e.g.,
for linear, nonlinear, and stochastic systems (Khalil, 2014;
Skogestad & Postlethwaite, 2005; Kushner, 1967; Khasmin-
skii & Milstein, 2011). However, to our best knowledge, no
stability guarantees exist for GP based control. Thus, in con-
trast to classic control theory, there is no means to assess the
effect of a controller on closed-loop structures with GP for-
ward models. This major shortcoming prevents application
of learned controllers in many real-world scenarios.

As a contribution to overcome this drawback, we present a
tool to check the stability of learned policies for GP closed-
loop control systems. Two types of dynamics are considered
in this paper: dynamics given as (i) the mean of a GP, and
(ii) the full GP distribution. While the first case results in
a deterministic system, uncertainty is present in the second
case. The notions of stability from deterministic analysis do
not apply here. Especially when uncertainty is unbounded,
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e.g., Gaussian state distribution, analysis over an infinite
time horizon will typically result that any point is unstable
(Steinhardt & Tedrake, 2012). To obtain meaningful results
in case (ii), we follow the path to analyze stability for a finite
time horizon (Steinhardt & Tedrake, 2012; Kushner, 1966).
Unfortunately, even for finite time horizons, propagating
state distributions through a GP is analytically intractable.
Therefore, we present a novel approach based on numerical
quadrature to approximate GP predictions when the input is
a distribution. For stability guarantees, we rely on quadra-
ture error analysis. In contrast to commonly employed
approaches, our method handles complex non-Gaussian dis-
tributions with multiple modes. Based on this method, our
tool finds a starting state region, s. t. after a given, finite time
the goal is reached with a desired probability.

We believe that this paper is one of the first steps towards the-
oretical stability analysis for control of probabilistic models
learned from data. The presented tool can provide stability
guarantees for many existing learning control approaches
based on GPs. The paper will be organized as follows: first,
we briefly review related work and introduce the problem
to be addressed. Section 2 provides necessary background
for the stability analysis. In sections 3 and 4, a tool to check
stability of closed-loop control with a GP system model
is introduced. Section 5 provides empirical evaluations on
benchmark control tasks. A conclusion is given in Section 6.

1.1. Related Work

To date, only very few special cases of system dynamics and
policies learned from data have been analyzed with respect
to stability. For example, (Perkins & Barto, 2003; Nakan-
ishi et al., 2002) analyze the scenario of an agent switching
between given safe controllers. In (Kim & Ng, 2005), sta-
bility is monitored while learning control for the special
case of a linear controller and linear dynamics. To our best
knowledge, stability analysis for probabilistic models, such
as GPs, and arbitrary policies has not been addressed so far.

In classic control theory, the first formal analysis of closed-
loop dynamics dates back to the 19th century (Routh, 1877;
Hurwitz, 1895; Lyapunov, 1992). Lyapunov’s approach
allows to analyze stability for nonlinear systems ẋ = f(x).
It studies the system behavior around equilibrium points,
i.e., points, where all derivatives ẋ of the state vanish and the
system comes to a hold. An equilibrium point xe is stable , if
for every ε > 0 there exists δ > 0 such that ‖x(t)−xe‖ < ε
for every solution x(t) of the differential equation with
‖x(t0)− xe‖ < δ. The equilibrium point is asymptotically
stable, if it is stable and δ can be chosen such that ‖x(t)−
xe‖ → 0 as t → ∞, cf. (Khalil, 2014). Stability of xe
follows directly from the existence of a Lyapunov function.
While this approach applies even to nonlinear dynamics, it
is not constructive and no general method exists.

fπ
x

−

xd u

Figure 2. A closed-loop control structure with controller π and the
system dynamics f . We study stability for two types of dynamics:
(i) the mean of the GP and (ii) the full GP predictive distribution.

For consideration of uncertainty in the dynamics, stochastic
differential equations (SDEs) have been introduced (Ado-
mian, 1983). SDEs are differential equations where some
terms are stochastic processes. In the presence of uncer-
tainty, xe is stable in probability, if for every ε > 0 and
p > 0, there exists δ > 0 such that P{‖x(t)−xe‖ > ε} < p
for t > t0 and solutions x(t) with ‖x(t0) − xe‖ < δ. Fur-
thermore, xe is asymptotically stable in probability, if it is
stable in probability and P{‖x(t) − xe‖ > ε} → 0 for a
suitable δ, cf. (Khasminskii & Milstein, 2011). Stability fol-
lows from the existence of a supermartingale, a stochastic
Lyapunov function analogue. However, supermartingales
exist only under noise constraints. Relaxing the supermartin-
gale criterion allows for stability statements for a finite time
horizon, cf. (Kushner, 1966; Steinhardt & Tedrake, 2012).

1.2. Problem Statement

The goal of this paper is to provide a tool to analyze stability
of a closed-loop structure when the dynamics model is given
as a GP, see Figure 1. As inputs, our tool expects a control
policy and a GP dynamics model. It checks the stability of
the corresponding closed-loop structure and returns a stabil-
ity region. Trajectories starting in this region are guaranteed
to converge to the target (in probability). Subsequently, we
discuss the different components of the tool in more detail.

We consider controllers, which depend only on the current
state and are differentiable with respect to the state. The
dynamics model is given as a GP with squared exponential
covariance function. Our analysis generalizes to many other
kernel choices, but this will not be discussed in this paper.
We consider a discrete-time system x(t+1) = f(x(t),u(t))
with x(t) ∈ RD, u(t) ∈ RF , t = 1, 2, . . . and a controller
π : RD → RF , whose objective is to move the system to a
desired state xd, see Figure 2. In this paper, we study two
possible cases for the dynamics f : (i) the mean of a GP
and (ii) the full GP predictive distribution. Note, that in the
second case, distributions have to be propagated through the
GP resulting in non-Gaussian state distributions.

2. Preliminaries
In this section, we introduce basic concepts for the proposed
stability analysis. First, we briefly discuss Gaussian process
regression, as GPs are employed to describe the considered
dynamics. Second, numerical quadrature is introduced, as it
is crucial for the proposed uncertainty propagation method.
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2.1. Gaussian Process Regression

Given noisy observations D = {(zi, yi = f(zi) + ε) |
1 ≤ i ≤ N}, where ε ∼ N (0, σ2

n), the prior on f is
N (0,K(Z,Z) + σ2

nI). The covariance matrix K(Z,Z) is
defined by the squared exponential kernel

k(z,w) = σ2
f exp

(
−1/2(z −w)

ᵀ
Λ−1(z −w)

)
,

with signal variance σ2
f and squared lengthscales Λ =

diag(l21, . . . , l
2
D+F ) for all input dimensions. Given a query

point z∗, the conditional probability of f(z∗) is

f(z∗) | D ∼ N
(
k(z∗, Z)β, k(z∗, z∗)−

k(z∗, Z)(K(Z,Z) + σ2
nI)−1k(Z, z∗)

)
(1)

with β = (K(Z,Z) + σ2
nI)−1y. The hyperparameters

σ2
n, σ

2
f ,Λ are estimated by maximizing the log marginal

likelihood of the data (Rasmussen & Williams, 2005).

In this paper, f models system dynamics. It takes state-
action pairs z=(x,u)

ᵀ and outputs successor states f(x,u).
As these outputs are multivariate, we train conditionally
independent GPs for each output dimension. We write σ2

n,m,
σ2
f,m,Λm for the GP hyperparameters in output dimension
m and km for the corresponding covariance function.

2.2. Numerical Quadrature

Numerical quadrature approximates the value of an integral∫ b

a

f(x)dx ≈
p∑
i=1

wif(ξi)

given a finite number p of function evaluations. A widely
used class of quadrature rules are interpolatory quadrature
rules, which integrate all polynomials up to a certain degree
exactly. In this paper, we employ Gaussian quadrature rules,
where the evaluation points ξ1, . . . , ξp are chosen to be the
roots of certain polynomials from orthogonal polynomial
families. They achieve the highest accuracy possible for
univariate interpolatory formulæ (Süli & Mayers, 2003).
For multivariate integrals, the quadrature problem is sig-
nificantly harder. While many formulæ for the univariate
case can straightforwardly be generalized to multivariate
integrals, they often suffer from the curse of dimension-
ality. However, quadrature methods that scale better and
are feasible for up to 20 dimensions have been developed.
See (Skrainka & Judd, 2011) for an overview.

3. Stability of GP Mean Dynamics
In this section, we provide a tool to check the stability of
a closed-loop control structure with a given differentiable
Markovian control policy π and GP mean dynamics. We
attempt to find a region of starting points in the state space,
such that trajectories starting in this region are guaranteed
to converge to the desired point xd. To obtain this result,

: elements of S−
: elements of S+

reference point xd

stability region Xc
span 〈S+〉xd

Figure 3. Basic idea of Algorithm 1 to construct a stability region:
for a finite set of states S, employ upper bound from Lemma 1 to
check whether the successor state is closer to xd, obtaining sets
S+ and S−. Return metric ball of maximal radius that fits into the
span 〈S+〉xd as stability region Xc. For x(0)∈ Xc, the controlled
system never leaves Xc and converges to xd as t → ∞.

we analyze the sensitivity of the GP predictive mean to
variations in the input space and derive upper bounds for
the distance of the predictions at two different points. This
analysis can be used to find a region around xd, where the
next state is closer to xd than the point before. It follows
straightforwardly, that the full metric ball of maximal radius
which lies completely inside this region is a stability region.

In the following, we will briefly review the notion of stability
employed for the analysis, derive an algorithm to find a
stability region and, subsequently, prove its correctness.

3.1. Stability Notion

If the system dynamics f is given by the mean of a GP, the
resulting closed-loop structure is deterministic. To assess
the quality of a controller π, which aims to stabilize the
system at the reference point xd, we propose an algorithm
to find a stability region of the closed-loop system.

DEFINITION 1. The reference point xd is stable, if for every
ε > 0 there exists δ > 0, such that ‖x(t) − xd‖ < ε for
t = 1, 2, . . . and ‖x(0) − xd‖ < δ. If xd is stable and there
exists a δ > 0 such that ‖x(t) − xd‖ → 0 for t → ∞,
‖x(0) − xd‖ < δ, xd is asymptotically stable. A subset Xc

of the state space is a stability region, if ‖x(t) − xd‖ → 0
as t→∞ for all x(0) ∈ Xc.

This definition matches Lyapunov’s stability notion, cf.
(Khalil, 2014). The algorithm below checks asymptotical
stability of xd by constructing a stability region Xc.

3.2. Algorithm Sketch

We derive an algorithm, that can find a stability region of a
closed-loop control structure with GP mean dynamics. To
find a stability region, we analyze how the distance between
the current state and the target evolves. The basic idea of
the algorithm involves positively invariant sets, i.e., sets that
once entered, the system will never leave again (Blanchini,
1999). More precisely, we aim to find all x, such that

‖x(t+1) − xd‖ < γ ‖x(t) − xd‖ (2)
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Algorithm 1 Stability region Xc for GP mean dynamics
1: Construct grid S, S+ ← ∅, Xc ← ∅
2: for x(0) ∈ S do
3: Compute upper bound C ≥ ‖x(1) − xd‖
4: if C < γ ‖x(0) − xd‖ then S+ ← S+ ∪ {x} fi
5: od
6: if 〈S+〉xd exists then
7: Fit metric ball B(xd) ⊆ 〈S+〉xd

8: Xc ← B(xd) fi
9: return Xc

for x(t) = x and a fixed γ < 1. Assume there is a region
containing xd, where Eq. (2) holds. For all states in this
region, the distance to the target point decreases in one time
step. If it is possible to fit a full metric ball centered at the
target point xd in this region, then all trajectories starting
in the ball will never leave it. In addition, the distance of
the current state to the reference point will decrease in every
step by at least factor γ. Thus, it follows from the exis-
tence of such a ball, that the target point is asymptotically
stable. However, finding a region in closed form, where
Eq. (2) holds, is usually intractable. Instead, we follow an
algorithmic approach to construct a stability region.

The proposed algorithm finds a region, where Eq. (2) holds,
if one exists. It employs an upper bound for ‖x(t+1) −
xd‖, that depends only on x(t). With this upper bound
we can check, whether Eq. (2) holds for a (finite) set of
points. However, to find a state space region where Eq. (2)
holds, this upper bound must allow for generalization from
discrete points. More precisely, we need an upper bound of
‖x(t+1) − xd‖ that depends on x(t) smoothly, thus having
bounded gradients, and can be handled conveniently. We
employ an upper bound derived from sensitivity analysis of
the GP mean to variations in the input space. This bound
depends on x(t) in a way that can be exploited to compute a
finite set of points S, e.g., a grid, that is sufficient to consider
as follows: For any grid point, we check if Eq. (2) holds,
obtaining the set S+ with the grid points, that fulfill Eq. (2)
and the rest in S−. Let 〈S+〉xd be the polygon spanned
by the connected component of S+ containing xd. We can
choose S such that Eq. (2) holds for all points in 〈S+〉xd , see
Figure 3. Algorithm 1 gives an overview, Sec. 3.3 provides
technical details and proves correctness of the approach.

3.3. Correctness of the Algorithm

In this section, we elaborate on the computation steps of
Algorithm 1 and prove that the returned state space region
Xc is a stability region of the closed-loop system in the
sense of Definition 1. Fundamental to Algorithm 1 is the
upper bound for ‖x(t+1) − xd‖, which can be obtained as
follows. We denote x̂ := (x,π(x))

ᵀ and recall that f(x̂)
is the GP predictive mean at x̂, see Eq. 1.

LEMMA 1. Let x̂, x̂d ∈ RD+F and B ∈ RD×D be a pos-
itive definite matrix. The distance of GP predictive means
f(x̂) and f(x̂d) in the metrics induced by B is bounded by

‖f(x̂)− f(x̂d)‖2B ≤ (x̂− x̂d)
ᵀ
M(x,xd,π)(x̂− x̂d)

with a symmetric matrix M . This matrix can be constructed
explicitly and depends on x,xd and the policy π.

Proof. This statement is obviously true for x = xd, so let
x 6= xd. Evaluating ‖f(x̂)− f(x̂d)‖2B as

D∑
m,m′=1

N∑
i,k=1

bmm′(km(x̂, x̂i)− km(x̂d, x̂i))

(km′(x̂, x̂k)− km′(x̂d, x̂k))βm,iβm′,k (3)

we realize the need for an upper bound of km(x̂, x̂i) −
km(x̂d, x̂i). We integrate the gradient field of km along a
curve τ from x̂d to x̂. As this path integral does not depend
on the particular curve τ , we may choose τ = τD+F . . . τ 1

as the curve along the edges of the hypercube defined by x̂d

and x̂, i.e., τ jp(t) = x̂p if p ≤ j − 1, τ jp(r) = x̂dp + r(x̂p −
x̂dp) with r ∈ [0; 1] if p = j, and τ jp(t) = x̂dp otherwise.
This definition yields

km(x̂, x̂i)− km(x̂d, x̂i)=

D+F∑
j=1

x̂j∫
x̂d

j

∂km(χ, x̂i)

∂χj

∣∣∣∣∣∣∣
χ=τ j

dχj (4)

and we compute the partial derivatives as

∂km(x̂, x̂
d
)/∂x̂j = −l−2j (x̂j − x̂dj )km(x̂, x̂d) (5)

in all state-action space dimensions 1 ≤ j ≤ D + F .

We rewrite the sum in Eq. (3) by substituting equations (4)
and (5). To find an upper bound for this sum, we estimate the
occurring integrals by the length of the integration interval
times an upper or lower mean value (obtained, e.g., via
Riemannian upper and lower sum) according to the sign of
the respective summand. Sorting the summands by products
of integration interval lengths (x̂j − x̂dj )(x̂p− x̂dj ), this sum
can be rewritten as quadratic form. The entries of M can be
chosen to form a symmetric matrix by making Mpj = Mjp

half of the coefficient of (x̂j − x̂dj )(x̂p − x̂dp).

For any point in the state action space, we can find an up-
per bound for the distance of its prediction and the target
point. Note that this distance estimated by Lemma 1 de-
pends heavily on the eigenvalues of M(x,xd,π). This fact
is exploited to compute a grid S, which constitutes the first
step of Algorithm 1. As M is constructed as a symmet-
ric matrix, the eigenvalue problem is well conditioned, i.e.,
when M is perturbed, the change in the eigenvalues of M
is at most as large as the perturbation.
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LEMMA 2. Let x, z ∈ RD and M(x,xd, π), B be as
defined in Lemma 1. If ‖f(x̂) − f(x̂d)‖B < c‖x − xd‖
for c < 1, there exist ∆j such that ‖f(ẑ) − f(x̂d)‖B <
c‖z − xd‖, for all z with |ẑj − x̂j | < ∆j , 1 ≤ j ≤ D+ F .

Proof. Solving for the eigenvalues of M(x,xd,π), the set
Qx :={v ∈ RD+F |(v − x̂d)

ᵀ
M(x,xd,π)(v− x̂d) < a}

can be determined. It is symmetric to the axes defined by
the eigenvectors ofM(x,xd,π) and meets them at±a−1

√
λ.

For z=x+∆ we want to ensure z∈Qz , if x ∈ Qx. Thus,
we estimate how much the eigenvalues ofM(z,xd,π) differ
from those of M(x,xd,π). As M(x,xd,π) is symmetric,
the eigenvalue problem has condition κ(λ,M(x,xd,π))=1
for any eigenvalue λ. Thus, |∂λ/∂x̂j| ≤ ‖∂M(x,xd,π)/∂x̂j‖ .
Computing ‖∂M(x,xd,π)/∂x̂j‖ or upper bounds for this ex-
pression allows solving for all ∆j .

We are now able to compute a grid S, such that it is sufficient
to check Eq. (2) for all grid points to retrieve a (continuous)
stability region. While the grid width may become small,
there is a lower bound for it. As the GP falls back to zero far
away from training data, the entries of M are bounded and,
being continuous, Lipschitz. Thus, a lower bound exists.

THEOREM 1. The region Xc returned by Algorithm 1 is a
stability region. All trajectories starting in Xc move closer
to the desired point xd in each step. Convergence to xd is
guaranteed for all points in Xc as t→∞.

Proof. We exploit Lemma 2 to compute a grid S as the first
step in Algorithm 1. Employing Lemma 1, the algorithm
checks for all points in S, whether Eq. (2) holds, obtaining
the sets S+ and S−, respectively. Lemma 2 ensures that
Eq. (2) also holds for all points inside the polygon 〈S+〉xd .
For every point in 〈S+〉xd , the next state is closer to the tar-
get point xd. Fitting a full metric ball B(xd) in 〈S+〉xd we
recover an invariant set Xc. More precisely, the trajectories
starting in Xc move closer to xd with every time step.

4. Stochastic Stability of GP Dynamics
In this section, we study closed-loop systems with dynamics
given as a full GP distribution. For any query point x(t) a
GP predicts the next state x(t+1) to be normally distributed.
If, however, x(t) is not a point, but a distribution, the integral

p(x(t+1)) =

∫
RD

p(x(t+1) | x(t))p(x(t))dx(t) (6)

determines the next state distribution. Note that p(x(t+1) |
x(t)) is Gaussian with respect to x(t+1). The next state
distribution p(x(t+1)), however, is not Gaussian, even
if p(x(t)) is. Generally, p(x(t+1)) is analytically in-
tractable and only approximations, e.g., via moment match-
ing (Quiñonero-Candela et al., 2003) or linearization (Ko &

Fox, 2008), can be computed. These methods suffer from
severe inaccuracies in many cases and, thus, are unsuitable
for stability analysis. In this paper, we propose numerical
quadrature to approximate p(x(t+1)), instead. This tech-
nique yields significantly better results, e.g., it can handle
distributions with multiple modes. In addition, error anal-
ysis is readily available (Wasowicz, 2006; Masjed-Jamei,
2014) and can be employed to derive stability guarantees.

In the following, we will discuss finite time stochastic sta-
bility, introduce an algorithm to find a stability region based
on numerical quadrature, and prove its correctness.

4.1. Stability Notion

Consider a deterministic system, that is locally, but not
globally, asymptotically stable. Adding noise to the system
may render the target point unstable. Especially when noise
is unbounded (e.g., Gaussian), all trajectories will eventually
leave any ball around the target point with probability 1. For
this reason, in the study of SDEs, other stability notions
than Lyapunov’s are common. In particular, bounding the
probability to drift away from the target over a finite time T
is desirable, as in the following definition (Kushner, 1966).

DEFINITION 2. Let Q1, Q2 be subsets of the state space
X , with Q2 open and Q1 ⊂ Q2 ⊂ X . The system is finite
time stable with respect to Q1, Q2, 1 − λ, T , if x(0) ∈ Q1

implies P{x(t) ∈ Q2} ≥ 1− λ for all t ≤ T .

However, we are interested in finding a set Qs of initial
conditions, such that the goal Q is reached within time T
with a desired probability, cf. (Steinhardt & Tedrake, 2012).

DEFINITION 3. The set Qs is a stability region with respect
to the target region Q, time horizon T , success probability
1 − λ, if P{x(T ) ∈ Q} ≥ 1 − λ holds for all x(0) ∈ Qs
with λ > 0 and the target region Q ⊂ X .

This definition focuses on reaching a target Q after time
T , whereas Definition 2 bounds the exit probability from a
regionQ2 within time 0 ≤ t ≤ T . The methods proposed in
this paper can be employed to analyze stability in the sense
of both definitions. In the following, we will present an
algorithm to find a stability region according to Definition 3.

4.2. Algorithm Sketch

We will now discuss how to find a stability region as in
Definition 3 for a closed-loop system with GP dynamics.
To analyze system behavior, the capability to compute next
state distributions is crucial. As discussed previously, Eq. (6)
is analytically intractable and approximation methods must
be employed. We propose numerical quadrature to approxi-
mately propagate distributions . We will show that numeri-
cal quadrature approximates state distributions as Gaussian
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Algorithm 2 Stability region for GP dynamics
Input: T , target regionQ, approximation err. tolerance etol
Output: stability region Xc

1: Construct grid S; S+ ← ∅
2: Compute quadrature w, ξ, such that ‖εT ‖C(X) < etol
3: for x ∈ S do
4: p(x(1))← f(x,π(x)); x(T ) ← α(T )φ
5: Pmin{x(T ) ∈ Q} ← α(T )m− vol(Q)‖εT ‖C(X)

6: if Pmin{x(T )∈Q}>1−λ then S+←S+ t{x} fi
7: od
8: return Xc ← 〈S+〉

mixture models. Fortunately, computation of multi-step-
ahead predictions becomes convenient and fast even for
long time horizons. However, relying on approximations of
the state distribution is not sufficient for stability guarantees.
The error introduced by approximation and error propaga-
tion must be bounded to recover reliable statements on the
probability for x(T ) to be in a set Q. This error bound εt(x)
at time t can be obtained following one of the available
quadrature error analyses, e.g., (Masjed-Jamei, 2014).

With numerical quadrature and quadrature error analysis, we
can compute a lower bound for the success probability, i.e.,
the probability for x(T ) to be in the target set Q. A priori,
this enables checking success probabilities for a finite set
of points. Fortunately, as in the case of GP mean dynamics,
the statement can be generalized to continuous regions. Our
algorithm constructs a grid in the state space and computes
success probabilities for all grid points. We prove that a
stability region can be inferred from these grid point results.

In the following, we elaborate on numerical quadrature as
approximate inference method and, studying quadrature
error propagation, prove the correctness of the proposed
approach. The presented tool is outlined in Algorithm 2.

4.2.1. NUMERICAL QUADRATURE

In most applications, especially when the states have phys-
ical interpretations, the state space is bounded. For this
reason, we assume X = [a1, b1]× · · · × [aD, bD] and solve

F [p(x(t))] :=

∫
X

p(x(t+1) | x(t))p(x(t))dx(t). (7)

We propose Gaussian product integration, which extends
univariate Gaussian quadrature to a multivariate rule using a
product grid X of evaluation points and positive weights wn
for all nodes ξn ∈ X. Integral (7) is then approximated by

F [p(x(t))]≈
∑
ξn∈X

wnp(x
(t+1)| x(t)= ξn)p(x(t) = ξn), (8)

resulting in a weighted sum of Gaussian distributions. The
approximate state distribution at time t+ 1 can be given by

p(x(t+1)) ≈ φᵀα(t+1) (9)

with α(t+1)
n := wnp(x

(t) = ξn), φn(x) := p(x(t+1) = x |
x(t) = ξn). Note that the Gaussian basis functions φn(x)
do not change over time, so the state distribution at time
t is represented by the weight vector α(t). To propagate
any distribution multiple steps through the GP, the basis
functions φn must be calculated only once and the task
reduces to sequential updates of the weight vector α. As
p(x(t)) ≈ φᵀα(t), the weight vector α(t+1) is given by

α(t+1) = diag(w)Φα(t) = (diag(w)Φ)tα(1)

with the matrix Φ, Φi j = φj(ξ
i) with 1 ≤ i, j ≤ n, which

contains the basis function values at all grid points.

Our algorithm aims to find a stability region Qs, i.e., a re-
gion where the success probability is at least 1 − λ for a
given time horizon T , target region Q, and λ>0. Comput-
ing m=

∫
Q
φ(x)dx, the probability for x(T ) to be in Q is

approximatelymᵀα(T ).

4.3. Correctness of the Algorithm

We will now show that the region returned by Algorithm 2 is
a stability region as in Definition 3. In Section 4.2.1 we pro-
posed numerical quadrature to approximate GP predictions
when the input is a distribution. However, to obtain stabil-
ity guarantees it is not sufficient to consider approximate
solutions. For a lower bound on the success probability,
additional knowledge about the approximation error and
how it is propagated through the dynamics GP is essential.

When approximate inference steps are cascaded for multi-
step-ahead predictions, errors are introduced and propagated
through the dynamics. Typically, error propagation forti-
fies initial errors with every time step. The difference of
approximation and true distribution after a finite time is
bounded. Fortunately, numerical quadrature allows to con-
trol this error bound by refining the used quadrature rule.

LEMMA 3. Let x(0) ∈ X and εT be the pointwise approxi-
mation error εT (x) = p(x(T ) = x)− φ(x)

ᵀ
α(T ) at time

T . There exists an upper bound for ‖εT ‖C(X) that can be
controlled by the choice of quadrature rule.

Proof. The statement obviously holds for T=0 and for T=1,
as p(x(1)) is Gaussian and computed exactly. If T≥2, an
error is introduced as p(x(t)) cannot be computed analyti-
cally for t≥2. Employing numerical quadrature to compute
p(x(2)), we obtain p(x(2)) = φᵀα(2) + ε2 with our ap-
proximation φᵀα(2) and the unknown initial quadrature
error ε2(x). However, error analysis as in (Masjed-Jamei,
2014) gives us a bound for ‖ε2‖C(X) := maxx∈X |ε2(x)|.
When propagating further, an unknown, bounded error term
and an approximation term must be handled. For the ap-
proximation term, we get F [φᵀα(t)] = φᵀα(t+1) + εᵀα(t)
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Figure 4. Stability regions for GP mean dynamics on the two
benchmark tasks. This figure shows empirically obtained stability
regions in gray, points that did not converge in red. The ellipsoid
indicates the stability region returned by our algorithm.

with quadrature error bounds ε = (εi(x))i for the inte-
grals (7), when setting p(x(t)) = φi. The error term εt(x)
is propagated to F [εt] with maxx∈X |F [εt]| ≤ C‖εt‖C(X)

and C = maxx∈X
∫
p(x(t+1) | x(t))dx(t). Finally, the er-

ror at time T is bounded by ‖εT ‖C(X) ≤ ‖ε‖
ᵀ
α(T−1) +∑T−2

t=2 Ct‖ε‖ᵀα(t) + Ct−1‖ε2‖, where ε and ε2 can be
made arbitrarily small by refining the quadrature rule.

Lemma 3 theoretically enables stability guarantees for finite
time horizons T . However, as with any approximation of
the distribution (7), this error bound grows exponentially
with T , while quadrature error decreases polynomially with
function evaluations. This drawback limits real-word appli-
cation of Lemma 3 to small T , but we found that typically,
approximation behaves far better than the worst-case bound.

For any starting point, we can now compute the approximate
state distribution at time T and a lower bound on the success
probability, i.e., the probability for x(T ) to be in the target
region Q. It remains to show that it is sufficient to compute
the success probability for a discrete set of starting states and
generalize to the underlying continuous state space region.

LEMMA 4. Let x, z ∈ RD be starting states and T ∈ N. If
P{x(T ) ∈ Q} ≥ 1− λ, there exist ∆j such that P{z(T ) ∈
Q} ≥ 1− λ for all z with |zj − xj | < ∆j , 1 ≤ j ≤ D.

Proof. Firstly, we note that the absolute error bound does
not depend on the starting state. The state distribution
p(x(1)) is the GP prediction at the query point x(0). Thus,
for T = 1 the claim follows from Lemma 2. When t ≥ 2,
only an approximation of the state distribution is known.
The mixture model weights at time t = 2 depend only on
the values of p(x(1)) at the set of evaluation points X. Thus,
the lemma follows for T = 2. If t > 2, the difference of the
approximate distributions for the starting points x and z is

φᵀ(α(t)
x −α(t)

z ) = φᵀ(diag(w)Φ)t−2(α(2)
x −α(2)

z ).

Thus, the difference in approximate probability mass is
linear in (α

(t)
x −α(t)

z ). This fact concludes the proof.
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Figure 5. Multi-step-ahead prediction when the input is a distribu-
tion. This figure shows the results obtained with our numerical
quadrature (NQ) approach in gray and moment matching (MM) in
red (a) and the reference Monte Carlo (MC) sampling result (b).

THEOREM 2. The region Xc returned by Algorithm 2 is a
stability region in the sense of Definition 3. For all starting
points x(0) ∈ Xc the probability mass in the target region
Q at time T is at least 1− λ.

Proof. For the first step in Algorithm 2 we exploit Lemma 4
to construct a grid S. For S, stability follows for the region
around the grid points S+ with success probability ≥1−λ.
Secondly, employing Lemma 3 we determine a quadrature
rule that ensures the pointwise error at time T to be at most
etol. Finally, we compute approximate success probabilities
for all grid points, as in Sec. 4.2.1. Subtracting the maxi-
mum error mass etol vol(Q) in target regionQ, we obtain all
grid points S+, which have success probability ≥1−λ.

5. Empirical Evaluation
In this section, we evaluate the previously obtained theoreti-
cal stability results on two benchmark tasks: mountain car
and inverted pendulum. Moreover, the performance of the
proposed uncertainty propagation is compared to the state-
of-the-art moment matching approach and Monte Carlo
sampling. First, we briefly introduce the two test-beds.

Mountain Car A car with limited engine power has to
reach a desired point in the mountainscape (Sutton & Barto,
1998). The state space has two dimensions: position and
velocity of the car. We analyze stability of a PD-controller
π((x, ẋ)

ᵀ
) = Kpx+Kdẋ. The gains are chosen as Kp =

25 andKd = 1 and the control signal is limited to umax = 4.
The GP dynamics model was trained on 250 data points from
trajectories with random starting points and control gains.

Inverted Pendulum The goal is to bring the pendulum to
an upright position with limited torque (see (Doya, 2000))
and balance it there. The system state has two dimensions:
pendulum angle and velocity. We evaluate stability of a
PD-controller with Kp = 6, Kd = 3 and control limit
umax = 1.2. The dynamics GP was trained on 200 points
from rollouts with random starting points and control gains.
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Figure 6. Stability regions for dynamics given as GP full distri-
bution and time horizon of 100s. The mountain car ((a) and (b))
and inverted pendulum ((c) and (d)) results were obtained with the
proposed numerical quadrature (NQ) and Monte Carlo (MC).

5.1. Stability of GP Predictive Mean Dynamics

To evaluate the presented theory on stability of the closed-
loop system with GP mean dynamics, a stability region is
determined as described in Section 3. We compare this
region to the true stability region, empirically obtained as
follows. A grid on the state space is defined and rollouts
from every grid point are computed. After a sufficiently long
time (1000s), we check whether the state has converged to
the target point. Thus, we empirically determine a region of
starting points, where the system converges to the desired
state. Figure 4 shows the obtained regions for the mountain
car and pendulum system. In both cases the theoretically
obtained stability region is a subset of the empirically deter-
mined region. This effect is due to our analysis yielding a
full metric ball centered around the target point, although the
full stability region is not necessarily convex. Also, trajecto-
ries which first move away from the target point, but finally
converge to it, are not considered in the presented theory.
Instead, all trajectories starting in the theoretically obtained
stability region move towards the target point contractively.

5.2. Numerical Quadrature Uncertainty Propagation

The key to stability analysis for closed-loop systems with
dynamics given as full GP distribution is the prediction at
uncertain inputs. We compare the performance of the pre-
sented approximate inference to the state-of-the-art moment
matching (MM) method and Monte Carlo (MC). Consider
the following scenario: in the mountain car domain, we
position the car on the right slope with some positive veloc-
ity. Furthermore, we introduce small Gaussian uncertainty

about the starting state. We employ a constant control signal,
that is too small to bring the car up directly. We compute
rollouts, propagating state distributions through the GP with
(i) the presented numerical quadrature (NQ), (ii) MM as in
(Deisenroth, 2010), and (iii) MC. The resulting distributions
for a time horizon of 1.2s are shown in Figure 5. The MM
approximation differs significantly from MC and NQ results,
concentrating most of the probability mass, where the MC
approximation has very low probability density. The NQ
result closely matches the distribution obtained with MC.

5.3. Stability of Gaussian Process Dynamics

Employing numerical quadrature, we determine stability
regions for the two test-beds and a time horizon of 100s.As
Figure 6 shows, the obtained stability regions match the em-
pirical MC results. The error bound from Lemma 3 demands
for extremely fine quadrature rules. For long time horizons,
as in our experiments, this requirement is computationally
infeasible. However, we found that the real-world results
are substantially better than this worst-case bound. We also
experienced computation time (≈ 120s) for NQ to be a
fraction of the time required for long time MC predictions.
Of course, this will not hold for systems with many state
dimensions and our particular setup of product quadrature
rules, as these rules suffer from the curse of dimensionality.
However, there are various approaches to overcome this
drawback of NQ (Heiss & Winschel, 2008; Novak & Ritter,
1996; Xiao & Gimbutas, 2010; Ryu & Boyd, 2015) and our
analysis holds for arbitrary quadrature rules.

6. Conclusion
In this paper, we have analyzed stability of controllers, that
act on Gaussian process forward models. We have derived a
tool to find stability regions for two possible types of sys-
tem dynamics: (i) the mean and (ii) the full GP predictive
distribution. In the first case, we have constructed a stability
region, i.e., trajectories starting inside this region are guar-
anteed to converge to the target point and stay there for all
times. The theoretical result has been compared to the empir-
ically obtained stability region on two benchmark problems.
In the second case, a novel approach based on numerical
quadrature has been introduced to approximately propagate
uncertainties through a GP. In contrast to other state-of-the-
art methods, our approach can model complex distributions
with multiple modes. Evaluation results closely match the
true distribution approximated by extensive sampling. The
introduced approximate inference method has been used to
derive finite-time stability guarantees based on quadrature
error analysis. Empirical Monte Carlo results confirm our
theoretical results on the two benchmark problems. Overall,
the proposed methods can provide stability guarantees for
many existing learning control approaches based on GPs.
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