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Abstract

Tactile sensing is a fundamental component of object manipulation and tool handling skills. With robots
entering unstructured environments, tactile feedback also becomes an important ability for robot manip-
ulation and use of tools.

In this work, we explore how a robot can learn to use tactile sensing in object manipulation tasks.
We first address the problem of in-hand object localization and adapt three pose estimation algorithms
from computer vision. Second, we employ dynamic motor primitives to learn robot movements from
human demonstrations and record desired tactile signal trajectories. Then, we add tactile feedback to
the control loop and apply relative entropy policy search to learn the parameters of the tactile coupling.
Additionally, we show how the learning of tactile feedback can be performed more efficiently by reduc-
ing the dimensionality of the tactile information through spectral clustering and principal component
analysis. We build a robot hand equipped with tactile sensors and implement our approach on a real
robot, which learns to perform a scraping task with a spatula in an altered environment.
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1 Introduction

Manipulation of objects and use of tools are among the most impressive abilities of humans. The sense
of touch plays a crucial role in these tasks. Moreover, impairment of the tactile sensibility leads to a
significant loss of manipulation skills as tactile information is needed for performing the sensorimotor
control [JF09]. Thus, in order to be able to use tools and assist humans in unstructured environments, it
is important for robots to make use of tactile feedback. When visual information is unavailable, especially
due to the in-hand occlusion, tactile information also provides additional cues about the object state, such
as its position and orientation. Some of the object properties, e.g. its material or internal physical state,
are often only accessible through the use of tactile perception [CSPB11].

Human manipulation control is based on the prediction of sensory information and reactions to de-
viations from these predictions [JF09]. Human hands contain four types of tactile afferent neurons:
fast-adapting (FA-I, FA-II) and slow-adapting (SA-I, SA-II). The fast-adapting afferents react to the high-
frequency changes of skin deformation, e.g. during an initial contact of an object with the hand or
contact of an object inside the hand with another object. During a manipulation task, the fast-adapting
afferents convey changes of the task phase. The slow-adapting afferents are sensitive to low-frequency
stimuli and provide cues about the object position and static forces acting on it.

In this work, we use two tactile matrix arrays attached to a parallel gripper in order to acquire tactile
information of grasped objects. We divide the process of using this information for manipulation into
several steps. First, we localize the object inside the hand, which is important for a correct interpretation
of the tactile signal during a manipulation task. Second, we learn a robot movement and collect tactile
information associated with this movement. In particular, we employ dynamic motor primitives (DMPs)
[INS02] for learning a movement from human demonstration by kinesthetic teach-in. The tactile in-
formation is encoded as a desired tactile trajectory and tactile feedback is added to the system through
perceptual coupling [KMP08]. Third, the parameters of tactile feedback are learned with the relative
entropy policy search (REPS) reinforcement learning algorithm [PMA10]. We face the problem of high
dimensionality of the tactile data and therefore perform dimensionality reduction with spectral cluster-
ing [Lux07] and principal component analysis [Jol86]. We evaluate our method by performing a gentle
scraping task using a spatula as shown in Figure 1.1. Tactile feedback is used to adapt to the changes of
task conditions.

1.1 Related work

Although tactile sensing has been an object of study for a long time, there has been little work on its use
for manipulation tasks. A range of works has focused on recognizing various object properties. Object
materials could be classified more accurately in [KLP11] by learning a lower-dimensional representation
of the tactile data with the help of visual information. Additionally to material properties, Chitta et al.
[CSPB11] used tactile matrix arrays attached to robot fingers to derive high-frequency tactile features
for determining internal states of an object, such as detection of movements and presence of a liquid
inside a container. A number of works was concerned with using tactile information for slip detection of
objects inside the robot hand, e.g. [ZL12], [TKI+04] and [Mel00]. The information about slip conditions
was used for optimizing grasps and adjusting gripping force.

Low-resolution tactile matrix arrays have been used for object identification by Schneider et al.
[SSS+09]. A histogram codebook of appearances of different object parts was created for identifying
objects based on similar part appearances. In this work, we use local features of object parts, such as
intensity patches of tactile images, for the in-hand localization. Touch based perception has been studied
by Petrovskaya et al. [PKTN07]. The authors created 3D object models and used readings of a touch
sensor for Bayesian estimation of the object pose. They used the pose information for manipulating a
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Figure 1.1: Robot performing a gentle scraping task using tactile feedback.

box and operating a door handle. In our work, besides localization, we focus on the actual dynamic
tactile feedback during the task execution.

Before incorporating tactile feedback, we employ imitation learning for initializing robot movements.
Imitation learning and DMPs have been extensively used in the past for performing complex movement
tasks such as table tennis [MKP10], T-ball batting [PS06], grasping [KDPP10], etc. The introduction
of perceptual feedback by coupling of external sensor variables to control has led to improved task
performance in difficult setups, e.g. in a ball-in-a-cup task [KMP08]. In contrast to defining reward as
a deviation from a static goal, such as the distance between a ball and a cup, we look at the deviation
from a desired sensory trajectory. Matching of demonstrated and robot movement trajectories through
reinforcement learning has shown robustness to changes of task conditions [EPDP13]. In our work, we
perform matching to the desired tactile trajectory and use deviations from it to correct robot movements.
The idea is also reflected in associative skill memories [PKRS12] that proposed to record stereotypical
sensor signals along with the movements and use them to compute deviations from the desired behavior.
However, in contrast to predefined feedback parameters, we learn optimal parameters through trial and
error by applying reinforcement learning.

1.2 Structure of the thesis

The thesis is organized as follows. In Chapter 2, we describe three localization algorithms for the in-
hand pose estimation. In Chapter 3, we introduce our approach for adding tactile feedback to DMPs,
dimensionality reduction of tactile data and optimization of feedback parameters. In Chapter 4, we
present results collected during robot experiments.
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2 In-Hand Localization

In this section we describe three pose estimation algorithms for localizing objects inside the robot hand:
probabilistic hierarchical object representation, iterative closest point and voting scheme. Pose estima-
tion consists of two phases. In the first phase, a model of an object is learned from the collected tactile
data. In the second phase, pose inference is performed with the help of the learned model to estimate
the object pose from the new observations. Although originally developed for visual data, the presented
algorithms can be used for tactile images acquired from tactile matrix arrays by performing grasps of an
object. In this work, we use low-resolution tactile sensors, which imposes an additional challenge for
the localization. Figure 2.1 shows an example of a tactile image of a screwdriver handle (left) and a
tactile matrix array (right). In all localization algorithms, we use intensity value vectors of tactile image
patches as features of the object appearance.

2.1 Probabilistic Hierarchical Object Representation

Part-based object models have been extensively used to represent objects in 2D (i.e. [FGMR10],
[MRY11]) and 3D (i.e. [SSSL09], [STFW06]). Probabilistic hierarchical object representation (PHOR) is
an approach developed by Detry et al. [DPP09] for creating a part-based hierarchical model of an object.
The model is created iteratively beginning with primitive appearance features and propagating relative
pose information to higher levels of the hierarchy. The inference is performed by using nonparametric
belief propagation (NBP) [SII+10]. In the following, the process is described in detail.

2.1.1 Model building

An object model is a Markov tree, in which each node corresponds to a specific part of an object. The
edges of the tree encode relative transformations between parent nodes and their children. They are
represented as nonparametric probability distributions of possible transformation values and are denoted
as compatibility potentials. The bottom of the tree consists of primitive features that correspond to local
appearances of the smallest object parts. The higher-level nodes in the hierarchy represent meta-features,
i.e. object parts that are created by grouping the lower-level features. The root of the tree or the top
feature represents the whole object.

The model is created iteratively in a bottom-up approach. Given a set of tactile observations, they
are grouped to form bigger object parts. Spatial relationships between individual parts are preserved
by encoding relative transformations in compatibility potentials on the edges of the hierarchy. The pose
of each feature is defined as a probability distribution in the space of positions and orientations. The
density function is defined in a nonparametric way by using kernel density estimation (KDE) [Sil86]
with Gaussian kernels. We use the MATLAB implementation by Ihler 1 for performing KDE calculations.

Figure 2.2 illustrates an example of a hierarchy created from tactile observations of 50 grasps of a
hammer handle. Each point at the bottom represents a single observation, i.e. presence of a tactile value
greater than a specified threshold. The local appearance of each point consists of the intensity values
of the surrounding tactile image patch. We instantiate or learn the model from a set of observations of
the object in a single scene. This means that the pose of the object stays the same in all observations.
Each observation should have its specific position and orientation as well as a distinctive appearance
descriptor. In order to reduce the number of possible appearances, a codebook approach is used. In
particular, the k-means clustering algorithm [For65] is employed to create a codebook of appearances,

1 http://www.ics.uci.edu/~ihler/code/kde.html
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Figure 2.1: Tactile image of a screwdriver handle (left) acquired from a tactile matrix array (right).

where each appearance descriptor falls into a suitable cluster. Cluster centers are saved as a part of the
model. After clustering the appearance features of observations, we compute pose distributions inside
the clusters by incorporating position and orientation of each observation inside a cluster as a particle
for KDE. As a result, we create primitive features or leafs of the hierarchical model tree with density
functions or observation potentials φ(X i). In the next step, the primitive features are randomly grouped
into pairs. A new parent node or meta-feature is created for each pair. The pose of the parent is defined
as the average of the poses of its children. For computing the average we sample from each children’s
distribution and use averages of all sample pairs as particles for the new parent density. The values of
relative transformation from child to parent are used for constructing density function of compatibility
potential ψ(X i, X j) between them, where X i is the pose of the child and X j of the parent. After the new
level of hierarchy has been constructed, the resulting meta-features are again grouped into pairs to create
the next level. The algorithm terminates when there is only one meta-feature left, which represents
the whole object. Individual poses of the meta-features are only needed for computing compatibility
potentials and are specific to the scene. Therefore, they are discarded after the hierarchy has been
constructed.

The orientation and position of the top feature depends on the choice of observation poses at the
bottom of the hierarchy and can vary for different sets of observations. Therefore, after the model
construction, we additionally save a correcting transformation from the pose of the top feature to a
desired pose that we define manually, e.g. at the end of the tool handle. The inference on the model, as
described in the next section, will return a pose to which we have to apply this transformation in order
to find the desired pose.

2.1.2 Pose inference

The hierarchy as described in the previous section encodes distributions of relative transformations be-
tween different object parts. To infer the pose of the object from a new set of observation, observations
are converted to primitive features and poses of higher level meta-features are iteratively computed with
the help of compatibility potentials. That is, poses of the parents are computed based on the poses of
their children. To propagate pose information from the bottom to the top of the hierarchy, we use NBP
algorithm to send pose messages inside the hierarchy. In the following, the algorithm is described in
more detail.

In the first step of the inference phase, we assign observations to clusters based on the distance of
their appearance features to the cluster centers. The observation potentials φ(X i) are then computed
based on the pose distributions inside the clusters. Each child computes a message for its parent that
contains its estimation of the parent’s pose. The parent’s pose is estimated by sampling transformation
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Figure 2.2: An example of a hierarchy 3x3 tactile image patches as appearance features, created from
tactile observations of a hammer handle.

values from compatibility potential ψ(X i, X j) and applying them to the current pose estimation of the
child, whereas the pose estimations of the child is based on the messages from its own children. The
message from node i to j is computed as follows:

mi j(X j) =

∫

ψi j(X i, X j)φ(X i)
∏

k∈N(i)\ j

mki(X i) dX i,

where ψi j(X i, X j) is the compatibility potential, φ(X i) is the observation potential that is only defined
for primitive features and is omitted for meta-features, mki are incoming messages. Computation of
integral of the density product is in many cases intractable. Therefore, importance sampling is used
for calculating density products [ISFW03]. The integral is computed in two steps. First, a local belief
estimate is calculated with importance sampling:

βts(X t) = φ(X t)
∏

i∈N(i)\s

mi t(X t).

Here, again, φ(X t) is only relevant for the primitive features. Then, the integral

mi j(X j) =

∫

ψi j(X i, X j)βts(X t) dX i

is approximated by applying transformations sampled from compatibility potential to the samples of
the local belief estimate. Interestingly, the information can not only be propagated upwards but also
downwards from parents to the children. Hence, this approach can also estimate poses of occluded parts
of the object if we have an estimate of the pose of their parents.

The 2D pose of an object on the tactile image plane is defined on R2× SO(1) space. In particular, the
position is defined as a 2D-Vector and the orientation as an angle of rotation of the object. The parent
pose is defined as the average of its children:

(λp,θp) = (λc1+λc2,θc1+ θc2)/2,
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where λ is the position and θ is the rotation angle.
The transformation of compatibility potential is the difference between child and parent values:

(λψ,θψ) = (λc −λp,θc − θp).

Compatibility potentials are created by sampling particles from this transformation as described above.
In the pose inference, the pose estimation is computed by inverting the transformation:

(λp,θp) = (λc −λψ,θc − θψ).

For correcting the pose of the top feature we add the correcting transformation, as described in the
previous section.

2.2 Iterative Closest Point

Iterative closest point (ICP) is a general purpose algorithm for finding a transformation that minimizes
the total distance between two point clouds. It has been used to register 3D shapes, such as curves
and surfaces ([BM92] and [Zha94]), object modeling and image registration [CM92]. We perform pose
estimation by minimizing the distance between the point cloud created from tactile observations during
the model building phase to a cloud built from observations during the pose inference phase. In the
following, the localization approach with ICP is described in detail.

2.2.1 Model building

In the model building phase, tactile observations are transformed to a point cloud by placing a point
whenever there is a tactile value greater than a specified threshold. For that, we assume a 2D plane
with origin of coordinates at the object location and vertical axes pointing in the object direction. Object
position and direction are task dependent and specified manually. Subsequently, we transform each
grasp image to this plane and save point coordinates of the observations.

Additionally to the point coordinates, we save appearance vector of the local patch that is centered
around this point, e.g. intensity values of the tactile image. Appearance provides additional information
about tactile readings, which is otherwise lost after thresholding the tactile image intensity while creating
the point cloud. The final model consists of the point coordinates with the associated appearance vectors.

2.2.2 Pose inference

Given a previously created model and a set of new tactile observations converted to a point cloud, we
can run ICP for estimating the object pose by aligning both point clouds. The general outline of ICP is:

1. Initialize the total transformation Ttotal with identity rotation matrix and zero translation vector.

2. For each point in the inference point cloud, find the closest point in the model point cloud, i.e. its
nearest neighbor.

3. Find the rigid transformation T , i.e. the rotation matrix and the translation vector, that minimizes
the distances between nearest neighbors. This can be done with the help of the single value
decomposition (SVD) [BM92] as will be explained later.

4. Transform the inference point cloud.

5. Add T to the total transformation Ttotal .

9
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Figure 2.3: Aligning new tactile observations (red) to a model point cloud (blue) of a hammer handle.
Local 3x3 patches are used as appearance features.

6. If the distance between two clouds is less than a specified threshold finish the algorithm and return
T . Otherwise, continue with step 2.

Our distance measure combines the distance between point coordinates in the Cartesian space and the
distance between appearance vectors associated with these points. In particular, we concatenate position
vector and weighted appearance vector:

[ posi t ion_v ector, w · appearance_v ector ].

By adjusting the weight w we can give more or less influence to the appearance compared to the spatial
configuration of the object. In our experiments, we set w = 0.001.

Given two matrices A and B that contain the corresponding coordinates of N aligned points of the
inference cloud ai and the model cloud bi, the rigid transformation between the points consists of a
rotation matrix R and a translation vector t. It is computed by minimizing the square distance error
between corresponding vectors:

er ror =
1

2

N
∑

i=1



Rai + t − bi





2
.

To compute R and t we use the SVD as described in [BM92]. First, we compute centroids or average
points of both clouds:

cA =
1

N

N
∑

i=1

ai,

cB =
1

N

N
∑

i=1

bi.

Both point clouds are then translated to the origin by subtracting their centroids from all points. Then,
we compute the SVD of the covariance matrix BA> and use the resulting matrices U , S, V to compute the
transformation:

R= UV>,
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t = cB − RcA.

New rotation R and translation t are then added to the total transformation:

Rtotal = R · Rtotal ,

t total = R · t total + t.

The angle of rotation can be estimated as

θ = atan2
�

R21, R11
�

.

Figure 2.3 shows an example of alignment of two point clouds of a hammer handle. Additionally, it
illustrates local 3x3 patches of the points as features of the local appearance. Blue points correspond to
a model point cloud with a large number of observations. Pose inference is performed by aligning red
points with less observations to the model point cloud.

A disadvantage of the ICP method is that it often converges to a local optimum, especially due to a
low number of points in one of the clouds. For example, in Figure 2.3 we see only one of the possible
alignments of the red point cloud to the blue one. It is possible, that by beginning with a different starting
point the algorithm will terminate with another alignment. In contrast, the inference in the two other
algorithms is probabilistic and global convergence reduces to finding the highest mode of a distribution.

2.3 Voting Scheme

The approach of detecting objects and estimating their parameters in images by using voting schemes
originates in the Hough transform [DH72]. It was first developed for identifying lines in images by
transforming candidate line points in Hough space and then voting for possible slope and intercept
values that could go through the single points. The distinctive feature of the algorithm is that it can
detect multiple lines in the image by finding local modes of the vote distribution. Later, the algorithm
was extended for arbitrary shapes, where the object form was encoded in an R-table during the training
step [Bal81].

In this work, we take an approach similar to Glasner et al. [GGA+11]. The authors employ appearance-
based voting scheme for pose estimation of 3D objects in 2D images. The authors first create an object
model, consisting of 3D points and appearance information of patches around the points. For pose
estimation, the authors match patches of 2D images to the patches in the 3D model and collect their
positions as votes for the object pose. The votes are used for constructing a nonparametric distribution,
where they are converted to KDE particles with Gaussian kernels. The approach taken in this work will
be described in the following sections.

2.3.1 Model building

The model of an object consists of an appearance set of tactile image patches and a pose set of relative
transformations between these patches and the object frame. In the following, the pose of the object is
considered to be the position of the object inside the robot hand plane and angle between the object and
end-effector orientation of the robot. The relative position prel of a patch is the difference between the
object position pob j and the position of the patch ppatch (position of the patch center) in the hand plane
(Figure 2.4). The absolute position of the object pob j is defined manually dependent on the given task
and desired localization properties. The relative angle θrel of a patch is computed by subtracting the
strongest gradient orientation of the patch θpatch from the object angle θob j in the hand plane:

prel = pob j − ppatch,

11
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Figure 2.4: Defining a relative position prel from the absolute position of the patch ppatch and manually
defined position of the object pob j .

θrel = θob j − θpatch.

The model of an object contains appearance descriptors and corresponding relative transformations of
all patches collected during the learning phase. A single element of the model has the form

[ appearance_descriptor, prel , θrel ],

where appearance descriptor describes local appearance features of the patch, e.g. its intensity values.

2.3.2 Pose inference

For estimating the object pose from a new set of tactile observations, we calculate appearance descriptors
of each patch in the tactile image and search for its K nearest neighbors in the appearance set. Then, for
each found patch, we compute a vote for the object pose based on the relative transformation prel and
θrel in the pose set and absolute pose of the patch:

pob j = prel + ppatch,

θob j = θrel + θpatch.

We construct a nonparametric distribution of the votes with KDE. The most probable poses of the
object are found at the modes of the distribution. We use the mean-shift algorithm for iteratively finding
all modes of the distribution [Che95]. The mean-shift update rule for computing a mode estimate in the
new iteration is:

x i+1 =

∑N
j=1 k

�

v j−xi

h

�

w jv j

∑N
j=1 k

�

v j−xi

h

�

w j

,

where x i is the current mode estimate, x i+1 is the next mode estimate, N is the total number of votes, v j
is the j-th vote, w j is the weight of the j-th vote, k(·) is the kernel and h is the bandwidth parameter.

We use a multi-dimensional Gaussian kernel. The kernel estimate can be computed as follows:

k
�

v j − x i

h

�

= exp

�

−
1

2









v j − x i

h









2�
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For the angular part of the pose we replace v j − x i with the rotational difference Θ(α,β) of two angles,
i.e. the smallest angle between them.

Each vote is inversely weighted by the distance between appearance descriptors. In particular, the
weights are computed according to the distance of the patch appearance descriptor and its nearest
neighbors in the model:

w j =
1

d j + ε
,

where d j is the distance of the j-th vote, ε is a small constant that is added in order to compensate for
the cases where d j = 0, which can occur in the case of a low variation of the descriptors.
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3 Tactile-Based Manipulation

After estimating the object pose, manipulation tasks can be performed at different positions and orienta-
tions. In this section, we explain our method for incorporating tactile feedback into robot manipulation
tasks. First, we describe dynamic motor primitives (DMPs) for encoding robot movements from human
demonstration. Then, we show how tactile feedback is added to the system through perceptual coupling
and how the dimensionality of the tactile information can be reduced. Finally, we explain how policy
search can be used to learn parameters of the tactile coupling through trial and error with reinforcement
learning.

3.1 Dynamic Motor Primitives

DMPs [INS02] are non-linear dynamical systems that consist of two components: a canonical system z
and states x1, x2 of a spring-damper system with a forcing function f , which is driven by the canonical
system. We use the following formulation of the DMPs:

ẋ2 = ταx(βx(g − x1)− x2) +τa f (z),

ẋ1 = τx2,

ż =−ταzz,

where αz,αx ,βx are constant parameters, a is the amplitude modifier of the forcing function, τ is a time
parameter for tuning speed of the movement execution and g is the goal, i.e. the final position of the
movement. The value of z starts with one and approaches zero with exponential decay. The value of
the forcing function also approaches zero with decreasing z and therefore, for z→ 0 the spring-damper
system drives the position towards the goal g.

By introducing the function f (z), we add a force to the spring-damper system. Hence, by choosing a
correct f (z) we can encode arbitrary movements. The forcing function depends on the canonical system
and is formulated as

f (z) =

∑m
i=1ψi(z)wiz
∑m

i=1ψi(z)
,

ψi(z) = exp
�

−hi(z− ci)
2
�

,

where m is the number of normalized weighted Gaussian kernels with their centers distributed along the
state axis z of the canonical system. At various state values z different Gaussians ψi(z) become active
and their values are multiplied by the corresponding weights wi. The goal of the imitation learning
process is to find weights wi such that the resulting motion closely resembles the demonstration. This
can be achieved with linear regression. First of all, we define a basis function vector φ(z) and express
f (z) as the product of φ(z) and the weight vector w :

φ(z)=











ψ1(z)z
∑m

i=1ψi(z)
...

ψm(z)z
∑m

i=1ψi(z)











, f (z) = φ(z)>w .
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In order to compute the required force of the demonstrated trajectory at each sampled time point, we
rearrange the dynamical system. First, we rewrite the dynamical system, such that it has only a single
state variable:

ẍ1 = τ ẋ2, x2 = ẋ1/τ,

ẍ1 = τ
2αx(βx(g − x1)− ẋ1/τ) +τ

2a f .

The forcing function value of a single sample is

f =
1

a

�

ẍ1/τ
2−αx

�

βx(g − x1)− ẋ1/τ
�

�

.

Then, we compute the squared error of all samples as

ε =
1

2

n
∑

i=1

�

fi −φi(z)
>wi

�2
.

Linear regression gives us the desired weights as

w =
�

Φ>Φ
�−1
Φ>F,

where Φ is the basis function matrix and F is the vector of desired forces.

3.2 Perceptual coupling and tactile feedback

In order to react to different tactile stimuli, we have to modify the robot movement. For this task, we
adapt DMPs with perceptual coupling as described by Kober et al. [KMP08]. In particular, we define the
desired tactile trajectory ȳ(z) and the current tactile signal y . The desired tactile trajectory is recorded
during the demonstration of the movement, i.e. we record the current tactile image at each time point.
Tactile feedback is based on the difference between ȳ(z) and y . Prior to computing the feedback, tactile
images have to be aligned with the images from the demonstration using a pose estimation method as
described in Chapter 2.

For encoding the desired tactile trajectory ȳ(z) and reproducing it during the task execution, we take
an approach similar to Pastor et al. [PKRS12]. We model the sensory trajectory as a non-linear dynamical
system in the form of a DMP. This system is driven by the same canonical system as the motion system. In
this way, both systems for the motion and tactile trajectory are synchronized and we receive the correct
desired tactile signal at each time point.

To be able to differently react to the tactile information at different stages of the task execution, we
need varying weights of the tactile feedback that depend on the state of the canonical system. We model
these weights with normalized Gaussians distributed along the state axis. The tactile feedback term is
added to the forcing function of the DMP as

f̂ (z)=

∑m
i=1ψi(z)wiz
∑m

i=1ψi(z)
+

n
∑

j=1

 
∑k

i=1 ψ̂i(z)ŵi jz
∑k

i=1 ψ̂i(z)
( ȳ j − y j)

!

,

where n is the length of the tactile feedback vector and ( ȳ j − y j) is the difference of the j-th element of
the current tactile vector and the desired tactile vector, k is the number of Gaussian kernel functions for
the tactile feedback weights. For a better synchronization, we use the same number of kernels as in the
original forcing function and the same Gaussian functions, i.e. m= k and ψ̂i(z) =ψi(z).
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Figure 3.1: First principal component of the scraping task. Left: Trajectory of the tactile signal after
multiplying tactile images with coefficients of the first principal component. Middle: PCA
coefficients of the first tactile matrix. Right: PCA coefficients of the second tactile matrix.

3.3 Dimensionality reduction of tactile information

In the Section 3.5, we will explain how to learn weights of the tactile coupling with reinforcement
learning. However, by using each tactile element (tactel) individually, the number of weights becomes
very large. For example, the tactile vector of two 8x8 tactile image has the length n = 128. With the
number of Gaussians in the model k = 50, the number of weights that have to be learned for a single
DMP is 6400. Therefore, we perform dimensionality reduction of tactile information.

3.3.1 Principal Component Analysis

We reduce dimensionality of tactile images by applying principal component analysis (PCA) [Jol86] to
the tactile image vectors collected from multiple demonstrations of the same task. It is possible to use
kernel similarity measure of tactile images, as described in the next section, for performing kernel PCA
(KPCA) [SSM96]. However, as we have to compute principal components in real time during the action
execution, KPCA is not suitable for our task due to its high time cost.

Before applying PCA, the tactile images have to be aligned by performing in-hand localization of the
manipulated object, as described in Chapter 2. After that, we subtract the mean of the tactile image
vectors from all data elements and save the resulting vectors in a matrix X. Afterwards, single value
decomposition is used to find eigenvectors and eigenvalues of the covariance matrix of the data set. The
matrix of the resulting principal component coefficients F is used to find the matrix X̂ with principal
components values of the tactile image vectors: X̂ = XF. We use only the largest principal components
of the tactile images for the feedback. Thus, only the parts of tactile images with the biggest variance
throughout the task execution influence the feedback term. This significantly reduces the number of the
weights that have to be learned.

Figure 3.1 illustrates the first principal component of the scraping task. Tactile images in the middle
and on the right visualize the PCA coefficients. The spatula is placed vertically between two tactile matrix
arrays. While touching the table, the spatula presses with different strength against various parts of both
tactile matrices. In the visualization, we see which parts of the tactile images have positive and negative
PCA coefficients. Figure 3.1 on the left shows the trajectory of the tactile signal after multiplying it with
the coefficients of the first principal component. We observe that after contacting the table, the signal
increases drastically and then, falls again after breaking the contact with the table.
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Figure 3.2: Similarity matrix heat-map (left) and spectral clustering (right) of tactile images of the scraping
task. Clusters: red - moving towards the table, yellow - scraping along the table surface, green
- moving back to the initial position

3.3.2 Spectral Clustering

Further reduction of the number of tactile feedback weights can be achieved by dividing the action into
phases and learning only a single feedback weight for each phase. Recognition of the action phases
can be accomplished by clustering tactile images based on their similarity. Each action phase will have
similar tactile images belonging to a specific cluster. As our localization is not perfect, we often do not
have exact pixel-to-pixel correspondences through the image alignment. Therefore, we employ a kernel
similarity measure that takes into account and tolerates these inaccuracies.

Kernel descriptors, introduced by Bo et al. [BRF10], provide a way to compute low-level image patch
features based on various pixel attributes, such as gradient, color etc. The authors use attribute and
position kernels to compute similarity between two image patches. Consequently, they perform kernel
principal component analysis (KPCA) [SSM96] to extract compact image features. In our work, we use
the similarity of intensity values of the tactile images. The corresponding measure is computed as

K(P,Q) =
∑

z∈P

∑

z′∈Q

kc(c(z), c(z′))kp(z, z′),

where kc(c(z), c(z′)) = exp(−γc‖c(z)− c(z′)‖2) is an intensity kernel, kp(z, z′) = exp(−γp‖z − z′‖2) is a
position kernel, P and Q are two tactile images. By changing γc and γp we can adjust the width of the
Gaussians and hence, how much similarity tolerance we allow for the intensity values and pixel positions
accordingly. In our experiments, we set γc = 1 and γp = 2.

Clustering of tactile images based on their kernel similarity can be performed with spectral clustering
[Lux07]. We apply the normalized spectral clustering algorithm by Shi and Malik [SM00]. We assume
a fully connected similarity graph where the weight of an edge between two images X i and X j is their
similarity value. Subsequently, clustering is performed in a lower-dimensional space based on the eigen-
values of the similarity matrix. The general approach of performing spectral clustering with k clusters
includes the following steps:

• Compute a symmetric similarity matrix S ∈ Rn×n, where Si, j = K(X i, X j) with X i, X j being single
tactile images.

• Compute a diagonal degree matrix D ∈ Rn×n, where Di,i =
∑n

j=1 K(X i, X j), i.e. the total degree of
the image X i in the similarity graph as the sum of all its similarities values with other images.

• Compute a graph Laplacian matrix L= D− S.
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• Find the first k eigenvectors u1, . . . ,uk of the eigenvalue problem Lu= λDu.

• Construct a matrix U ∈ Rn×k with the eigenvectors as its columns.

• Extract rows y1, . . . ,yn ∈ Rk of the matrix U.

• Perform clustering of the vectors yi with k-means algorithm in clusters C1, . . . , Ck.

• Assign image X i to cluster C j if yi ∈ C j.

Figure 3.2 shows on the left a heat-map visualization of the kernel similarity matrix of the temporarily
sorted tactile images acquired while performing the scraping action. We can recognize three parts of the
action in the heat-map, as during these parts the tactile images are similar and therefore these portions
are painted in high-temperature colors. We also notice that the first and third motion parts have high
similarity values as well. They correspond to moving the hand in the air: in the first case towards the
table and in the second case towards the initial position. In both cases, the tactile images are analogous.
We apply spectral clustering to the similarity matrix with the number of clusters equal to three. The
resulting cluster assignments of the tactile images are depicted in Figure 3.2 on the right, where clusters
are painted in different colors. Hence, we are able to correctly divide the action into three segments.

After applying spectral clustering, we learn only a single effective weight θ js for each action phase.
The weight of each Gaussian inside a phase is then computed as

ŵi j =
θ js

ci
,

where j is the tactile vector index, s is the index of the action phase, i is the index of the Gaussian and ci
is the center of the Gaussian.

3.4 Tactile time series and complete action similarity

Besides being able to compute the similarity of single tactile images, we can also compute similarities
between complete series of tactile images. By doing so, we are able to differentiate between various
actions performed, based on the tactile signal. Although we do not employ this approach for manipula-
tion tasks in this work, it can be used for detection of action phases and comparing tactile time series in
future work.

First of all, the images have to be aligned by localizing the object inside the hand, as described in
Chapter 2. Localization can be performed only once, based on the first tactile image in the series, or
repeated for each element of the series. The disadvantage of the second approach is that during an
action execution, tactile images can be different from the images in the localization models created
from the static grip images. Hence, the localization performance will suffer from the changed setup. In
general, if the object stays in the same 2D position during a task, it suffice to localize it from a single
tactile image at the beginning.

By analyzing time series we face a problem of aligning the series in time because the same action can
be performed with different speeds. In this case, although having a similar form, the series may not have
a high similarity by directly comparing values at the same time points. We solve this problem by using
Dynamic Time Warping (DTW) [KL99] algorithm with a Gaussian kernel for computing similarity of two
tactile images as described in Section 3.3.2.

DTW is a dynamic programming algorithm. In contrast to the Euclidean measure for calculating the
time series similarity, it looks for a best alignment of two time series, that maximizes similarity (or
minimizes some cost). The algorithm proceeds iteratively by starting with the last point of both time
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series and allowing insertion (duplication) and deletion of points inside a specified window. The update
rule of the DTW value at time point i in the first series and j in the second time series is

DTW (i, j) = s(i, j) + max











DTW (i+ 1, j),

DTW (i, j+ 1),

DTW (i+ 1, j+ 1).

where s(i, j) is the similarity of the values at time point i of the first series and time point j of the second
series.

After running the algorithm, the total similarity is saved at DTW (1,1). For our problem we choose
s(i, j) = K(X i, X j), i.e. the kernel similarity of tactile images X i and X j. Before comparing the time series
it is important to normalize them [KK03]. In this work, we normalize tactile images by subtracting from
each pixel its mean across the series and dividing by its standard deviation. Such normalization leads to
the time series having a mean µ = 0 and standard deviation σ = 1, which removes offsets and scaling
factors from the time series.

3.5 Policy search for learning tactile feedback weights

In this section, we explain how the tactile feedback parameters can be optimized with reinforcement
learning. The main idea of reinforcement learning is to learn a controller, i.e. a policy of a robot, that
maximizes a given reward. In this work, we employ policy search to learn weights of the tactile feedback
controller. Let θ be a vector of tactile feedback weights. We define the policy π(θ ) as a Gaussian
distribution of the feedback weights with a mean µ and a covariance matrix Σ. At the beginning of a
single task execution, i.e. an episode, the weight vector θ is sampled from this distribution. We compute
the reward R(θ ) by integrating the total deviation of the tactile signal from the desired tactile trajectory
during an episode.

We perform optimization of the policy with episodic relative entropy policy search (REPS) [PMA10].
The advantage of this method is that, in the process of reward maximization, the loss of information
during a policy update is bounded. This means that the algorithm stays close to the data and does not
allow large changes of the policy. This approach leads to a better convergence behavior. The goal of REPS
is to maximize expected reward J(π) of a policy π subject to bounded information loss. Information loss
is defined as the Kullback-Leibler (KL) divergence between the old and new policies. By bounding the
information loss, we limit the change of the policy and hence, avoid premature convergence.

Let q(θ ) be the old policy and π(θ ) be the new policy after the policy update. Then, we can formulate
a constrained optimization problem:

max
π

J(π) =

∫

π(θ )R(θ ) dθ s. t.

∫

π(θ ) log
π(θ )
q(θ )

dθ ≤ ε,

∫

π(θ ) dθ = 1,

where J(π) is the total expected reward of using policy π(θ ). The first constraint bounds the KL-
divergence between the policies with the maximum information loss set to ε. The second constraint
ensures that π(θ ) is a proper probability distribution.
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The optimization problem can be solved with the Lagrange multipliers method. The Lagrangian is
computed as

L =

�
∫

π(θ )R(θ ) dθ

�

+η

�

ε−
∫

π(θ ) log
π(θ )
q(θ )

dθ

�

+λ

�

1−
∫

π(θ ) dθ

�

.

After computing the derivative of the Lagrangian with respect to π(θ ) and combining it with the given
constraints, we can formulate the dual problem

g(η) = ηε+η log

∫

q(θ )exp
�

R(θ )
η

�

dθ .

The integral term can be rewritten as the expected value

Eq(θ )

�

exp
�

R(θ )
η

��

=

∫

q(θ )exp
�

R(θ )
η

�

dθ ,

which can be approximated from samples with a maximum-likelihood estimate of the expected value.
The resulting dual function for N samples is:

g(η) = ηε+η log
1

N

N
∑

i=1

exp
�

R(θ i)
η

�

Furthermore, from the Lagrangian it can be derived that

π(θ )∝ q(θ )exp
�

R(θ )
η

�

.

Therefore, we can compute the new policy parameters with a weighted maximum-likelihood solution.
The weights are exp

�

R(θ )/η
�

, where rewards are scaled by η, which can be interpreted as the temper-
ature of a soft-max distribution. By decreasing η we give larger weights to the high-reward samples.
Increasing of η results in more uniform weights. The parameter η is computed according to the opti-
mization constraints by solving the dual problem.

Given a set of feedback weight vectors {θ 1, . . . ,θ N} and corresponding episode rewards, the policy
update rules for µ and Σ can be formulated as follows [DNP13]:

µ=

∑N
i=1 diθ i
∑N

i=1 di

, Σ=

∑N
i=1 di

�

θ i −µ
��

θ i −µ
�>

∑N
i=1 di

,

with weights di = exp
�

R(θ i)/η
�

.
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4 Experiments

In this section, we first describe the hardware used in our robot experiments. Afterwards, we present
experimental results of the in-hand object localization, tactile time series analysis and tactile-based ma-
nipulation.

4.1 Hardware

In this work, we aimed at building a low-cost robot gripper equipped with tactile sensors. We used two
dynamical matrix analog pressure sensors by PlugAndWear.com. The outer sides of the sensor are made
of conductive fabric and the inner layer is made of a piezo-resistive material that changes its resistance
when the fabric is pressed. The matrix has a sensitive area of 16cm x 16cm and contains 64 sensor
cells in 8 rows and 8 columns. Hence, the size of a single cell and consequently the spatial resolution is
20mm. The detectable pressure range varies from 1.8 kPa to 0.1 MPa.

The values of the sensor can be recorded by supplying one matrix column at a time with voltage and
measuring output voltage of each of 8 column elements by using pull-down resistors. The resistance of
each tactile matrix element and the resulting pressure value can be calculated as follows:

R(V ) =
Vcc − Vout

Vout/Rpd
,

P(R) = aR−b + c,

where Vcc is the input voltage, Rpd is the resistance of the pull-down resistor, Vout is the output voltage,
a, b, c are coefficients that are specific for different resistance values of the pull-down resistor. The
coefficient b is always negative, such that the measured pressure falls exponentially with the sensor
resistance.

We mounted two tactile matrix arrays to a parallel gripper. In order to improve compliance and
involve more sensor elements during an object contact, we put a 5mm foam layer underneath the sensor
array such that the fabric of the sensor stretches when pressed. Furthermore, to increase the effective
resolution of sensing we placed both sensors with a 10mm shift to each other, which is a half of the size
of a single tactile element.

In addition to the tactile sensor, we attached two accelerometers to both sides of the hand. We used
the BMA020 sensor that allows measuring acceleration in the ranges ±2g,±4g and ±8g. In order to be
able to determine the opening distance of the hand, we attached a potentiometer slider between the two
sides of the robot hand.

We connected sensors to two Arduino Mega 25601 micro-controller boards. The sensor array columns
were connected to digital outputs and rows to analog inputs with pull-down resistors. The sensor data
was read by sequentially turning on each digital output and measuring voltage on the analog inputs.
The sensor values were then written to the serial output of Arduino and could be read out by connecting
it to a computer. To process and visualize the data we used MATLAB serial communication and visual-
ization packages. The accelerometer was connected through I2C bus to Arduino. Figure 4.1 shows the
constructed gripper with its individual components.

With the given setup, the tactile data could be captured with a frequency of about 50Hz. We attached
the gripper to a light-weight KUKA arm with 7 degrees of freedom. We used SL simulation and real-time
control software package [Sch09] to run our algorithms on the robot and in simulation. Communication
of the data between SL and MATLAB was implemented in the form of a TCP server.
1 http://arduino.cc/de/Main/ArduinoBoardMega2560
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Figure 4.1: Components of the robot gripper.

4.2 In-hand localization experiments

We evaluated the performance of the pose estimation algorithms on the tactile data acquired by perform-
ing grasps of several objects: a hammer, a screwdriver, a roll of tape, a saw and a spatula. Appearance
features were extracted from intensity values of 3x3 tactile image patches.

4.2.1 Experimental setup

Before collecting the tactile data, the object was placed at a known position. In this way, we were able
to derive object position inside the hand based on the position of the end-effector. Subsequently, we
performed 40 grasps of each object from different angles and saved the tactile images along with the
poses of the object inside the hand. We applied the same gripping force in all experiments. We randomly
chose grasping angles, such that they were accessible by the robot hand.

In order to be able to map single tactels to coordinates inside the robot hand, we calibrated positions of
each element of the matrix array. For this, we used a small object (a ball) to activate one tactel at a time
and calculate position of this tactel based on a known position of the hand. After that, we performed
linear regression to find coefficients m1, b1 and m2, b2 for the coordinate equations

x = m1 · col + b1,

y = m2 · row+ b2,

where col is the column of the activated tactel and row is its row. After calibration, we noticed that the
spacing of tactels varied between both sensors. The tactels of the first sensor were distributed at 2.12cm
distance in x direction and 2.00cm distance in y direction. The second sensor was smaller and tactels
had 1.89cm and 1.91cm distances between each other in x and y directions accordingly.

4.2.2 Results and discussion

The localization performance was evaluated by running leave-one-out cross-validation. That is, before
performing pose inference on the hold-out grasp, we instantiated the model with the 39 other grasps.
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PHOR Voting Scheme ICP

Object Pos. Angle Pos. Angle Pos. Angle

Hammer 4.09 22.54 1.37 11.83 2.19 21.89

Screwdriver 4.55 23.13 1.56 10.27 3.21 30.76

Roll of tape 3.52 16.79 2.12 12.91 2.25 26.27

Saw 3.94 22.44 2.19 6.65 2.99 26.81

Spatula 4.74 29.96 2.96 22.67 3.11 28.51

Average 4.17 22.97 2.04 12.87 2.75 26.85

Table 4.1: Mean absolute errors of pose estimation with leave-one-out cross-validation of 40 grasps.
Position: cm, Angle: degree.

PHOR Voting Scheme ICP

Object Pos. Angle Pos. Angle Pos. Angle

Hammer 1.55 9.24 0.66 9.15 1.80 9.89

Screwdriver 1.54 9.63 0.55 10.20 2.44 14.25

Roll of tape 1.49 6.97 0.60 8.71 1.49 10.08

Saw 1.91 16.78 1.55 2.94 1.51 12.89

Spatula 2.09 17.61 1.80 21.69 2.35 16.64

Average 1.72 12.05 0.90 10.54 1.92 12.75

Table 4.2: Mean absolute errors of pose estimation with leave-ten-out cross-validation of 40 grasps.
Position: cm, Angle: degree.

Table 4.1 shows the mean absolute errors of the position and angle estimation for all methods and all
objects. We could achieve the best results on leave-one-out cross-validation with the voting scheme. The
main reason for that is that the other two methods required a larger number of observation in order to
make reliable pose predictions. In fact, the number of tactile observations from a single grip was in the
range from 11 to 32. When using PHOR, the data was distributed among the primitive features and the
resulting amount of observations was too low for building reliable KDEs. The generated KDEs had much
noise, which was propagated to the top of the hierarchy. The voting scheme, on contrary, used only a
single KDE for all observations, which had enough data for a reliable pose inference.

The convergence of the ICP method also heavily depends on the amount of observations, i.e. the
number of points to be aligned. Due to the low amount of the points, the number of possible alignments
increases. Therefore, although we could improve the alignment with appearance features, in many cases
ICP did not converge to a correct alignment and terminated in a local optimum.

Using more observations leads to a significant increase of the localization performance. Table 4.2
shows pose estimation results after combining tactile observations of 10 grasps for pose inference and
creating models from the other 30 grasps. The increased number of grasps simulates a higher resolution
of the tactile matrix. Improvement of results of PHOR and ICP methods confirms that they perform
better with a bigger amount of observations. Here, all algorithms had an average positional error under
2cm, the voting scheme even under 1cm. The angular error was in the 10-13 degree range.

The lowest performance was observed for the spatula. It was the thinnest object, which led to a
situation where the tactile sensors of both hands could touch each other during the grip and generate
noise. The problem of detecting contacts between different parts of the robot hand, i.e. self-collisions of
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Figure 4.2: Pushing (left) and pulling (right) screwdriver actions inside the robot hand.

the robot, should be addressed in the future. Furthermore, localization of objects that are much bigger
than the hand remains an open problem, as only a small object part can be observed at a time. In
our experiments, a frequent kind of a localization error was a 180-degree flipping of objects with long
straight handles, such as a hammer or spatula, due to the high similarity of the corresponding tactile
images. This problem can be addressed by using vision for determining the approximate object pose
based on its appearance outside of the hand, and refining the localization with tactile data.

For the object manipulation task, we need a good localization performance with tactile data from a
single grasp. As the voting scheme was the only method that could provide reliable pose estimation from
a small amount of data, we used this method in our manipulation experiments.

4.3 Tactile time series experiments

We evaluated the discriminatory power of the time series similarity measure by performing two actions
inside the robot hand: pushing a screwdriver handle from one hand side to another (Figure 4.2 left) and
pulling it or pushing from the other side (Figure 4.2 right).

4.3.1 Experimental setup

Both actions were performed at different angles and positions. Therefore, before computing the simi-
larity of tactile series, the screwdriver was localized inside the hand and tactile images were aligned.
We only performed localization in the first tactile image of the series. After localizing, we computed a
transformation needed to align tactile image to a predefined position.

Additionally, first tactile image, i.e. the image before the begin of the action, was subtracted from all
subsequent images in the series, such that the variance of the initial gripping force did not influence the
calculation. This means, we compared changes of the tactile images in relation to the first image.

4.3.2 Results and discussion

Figure 4.3 shows the similarity heat map of 60 time series of two actions performed inside the robot
hand at different angles, positions and velocities. First half corresponds to the action of pushing the
screwdriver handle and second to pulling it. The tactile images were normalized as described in Section
3.4. We see a clear distinction between both actions. Moreover, although having inexact localization and
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Figure 4.3: Tactile time series similarity heat-map of Push screwdriver (first half) and Pull screwdriver (sec-
ond half) actions.

often different scaling of tactile values by performing action at different positions, the similarities inside
same action blocks do not show a large variance.

We observe larger similarity values around the diagonal of the similarity matrix. In many cases, the
position of the screwdriver was similar in adjacent experiments. This led to a similar pose estimation
and after alignment, to a high similarity of the tactile images.

4.4 Tactile-based manipulation experiments

To evaluate the proposed approach for learning manipulation skills with tactile feedback, the robot was
given the task of gently scraping a surface with a spatula.

4.4.1 Experimental setup

After learning the scraping movement from human demonstration, we introduced two kinds of variations
from the original setup. In the first task, we used a higher table than the robot had expected by adding
a surface elevation of 5cm. The goal of the robot was to adapt to the new height and stay close to the
desired tactile trajectory by correcting the pressure of the spatula on the table. In the second task, we
placed a ramp on the table. Similarly, the goal of the robot was to learn to adjust its tactile feedback to
the dynamically changing height of the surface.

In both tasks, we used the first two principal components of the desired tactile trajectory. For each
principal component, we learned three weights for the three phases of the scraping action. The robot
movements were encoded in a three dimensional Cartesian space with a separate DMP for each dimen-
sion. Thus, the total number of tactile feedback weights to optimize with REPS was 18. We conducted
the complete policy learning experiments three times for both tasks. Each experiment included 6 sets of
20 episodes with resulting policy updates between the sets.

4.4.2 Results and discussion

Figure 4.4 shows development of the mean reward value after each policy update of all experiments
on an elevated surface and a ramp. Additionally, the figures show the standard errors of the reward
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Figure 4.4: Mean reward values and standard errors after each policy update. Top: scraping task on an
elevated surface. Bottom: scraping task on a ramp.

values. Although we have some high reward episodes in the first iteration, they are not consistent. As
the mean reward increases, the variance of rewards and therefore the standard error becomes smaller.
This indicates, that the exploration rate decreases with each policy update and the policy converges to
the tactile feedback weights with high rewards.

In the elevated surface task, the biggest weights were learned for the first phase of the task. By hitting
the table sooner than expected, there was a big deviation from the desired trajectory in the phase when
the robot should still have been in the air, which led to a need of a large correction of the movement in
order to maximize tactile trajectory similarity. In the ramp task, substantial weights were learned for the
second action phase as the deviation from the desired signal gradually increased during scraping along
the surface of the ramp. Therefore, the robot had to adjust its height to stay close to the trajectory.

In both tasks, the robot could achieve a significant improvement of the task performance and adapt to
the changed environment by learning the tactile feedback weights.
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5 Conclusion

This section concludes the work presented in this thesis by providing a summary of the main results and
pointing out the directions for future work.

5.1 Summary

This work presented methods for using tactile sensing for in-hand object localization, tactile time series
analysis and object manipulation with tactile feedback. In the following, we describe the main results of
this thesis.

Three pose estimation algorithms from computer vision were adapted for tactile images acquired from
tactile matrix arrays: probabilistic hierarchical object representation, iterative closest point and voting
scheme. We showed that the number of tactile observations and in general the resolution of the tactile
data have a big influence on their performance. The probabilistic voting scheme showed the best results
for performing localization from low-resolution tactile images acquired from single grasps of objects.
We observed that the localization performance could be improved by increasing the number of tactile
observations, e.g. with tactile images from multiple grasps.

Imitation learning and dynamic motor primitives were employed for learning a manipulation action
from human demonstration by kinesthetic teach-in and encoding desired tactile trajectories. Tactile feed-
back was incorporated into the robot control by computing deviations from the desired tactile trajectory
and multiplying them by feedback weights. The dimensionality of tactile data was reduced by perform-
ing principal component analysis of tactile images collected during multiple demonstrations of a task.
The number of tactile feedback weights was reduced by learning single weights for each action phase.
Action phases were recognized by applying spectral clustering to a similarity matrix based on the kernel
similarity of tactile images. Furthermore, we showed how tactile time series can be compared with dy-
namic time warping and kernel similarity. The parameters of tactile feedback were optimized with the
episodic version of the relative entropy policy search reinforcement learning algorithm.

Robot hand equipped with low-cost tactile matrix arrays was built and used for collecting tactile data
and providing tactile feedback. In-hand pose estimation was evaluated by performing leave-one-out and
leave-ten-out cross-validation of tactile images of five different objects. Similarity measure for tactile
time series was used to compute similarities of two actions performed at different positions, orientations
and velocities. Learning of manipulation skills with tactile sensing was evaluated on a real robot by
performing a gentle scraping task with a spatula in an altered task setup. Substantial improvement of
the task performance could be achieved by learning the tactile feedback weights that made the robot
stay close to the desired tactile trajectory.

5.2 Future work

In future work, presented methods should be tested on more complex tasks with a larger number of ac-
tion phases. In order to be able to perform manipulation in complex cluttered environments and receive
additional cues for object localization, the problem of combining tactile data and visual information
should be addressed in the future. Employing of higher-resolution sensors can provide new kinds of
local tactile features with greater details of the object form and surface. However, it will further increase
the amount of tactile information and need for the dimensionality reduction. In this work, we attached
tactile sensors to a parallel gripper. Although our methods can be used for other kinds of grippers, e.g.
grippers with fingers, the application of them will require adaptation to the new arrangement of tactile
elements.
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Classification of tactile time series should be further studied in order to detect action phases. This can
be useful for combining and merging of movements based on detected phases, e.g. by switching and
blending between various DMPs. Dynamic time warping similarity measure can be used with different
classification algorithms that are capable to incorporate similarity kernels.

Self-collision detection, as mentioned in Section 4.2.2, remains an important problem. Ability to
differentiate between contact with an object and contact with another parts of the hand is especially
crucial for compliant grippers. This skill can help to remove noise and provide information, which
parts of the tactile image can be discarded or treated differently during localization and manipulation
phases. Possible ways to detect self-collisions include building models of typical tactile signals during
self-collision and employing classification algorithms for detecting them. Furthermore, additional sensors
that can recognize temperature or material properties can provide cues about the self-contacts similar to
the human skin.
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