
Empowered Skills

Alexander Gabriel, Riad Akrour, Jan Peters and Gerhard Neumann

Abstract— Robot Reinforcement Learning (RL) algorithms
return a policy that maximizes a global cumulative reward
signal but typically do not create diverse behaviors. Hence, the
policy will typically only capture a single solution of a task.
However, many motor tasks have a large variety of solutions
and the knowledge about these solutions can have several
advantages. For example, in an adversarial setting such as
robot table tennis, the lack of diversity renders the behavior
predictable and hence easy to counter for the opponent. In an
interactive setting such as learning from human feedback, an
emphasis on diversity gives the human more opportunity for
guiding the robot and to avoid the latter to be stuck in local
optima of the task. In order to increase diversity of the learned
behaviors, we leverage prior work on intrinsic motivation and
empowerment. We derive a new intrinsic motivation signal by
enriching the description of a task with an outcome space,
representing interesting aspects of a sensorimotor stream. For
example, in table tennis, the outcome space could be given
by the return position and return ball speed. The intrinsic
motivation is now given by the diversity of future outcomes,
a concept also known as empowerment. We derive a new
policy search algorithm that maximizes a trade-off between
the extrinsic reward and this intrinsic motivation criterion.
Experiments on a planar reaching task and simulated robot
table tennis demonstrate that our algorithm can learn a diverse
set of behaviors within the area of interest of the tasks.

I. INTRODUCTION

The application of Reinforcement Learning (RL) to
robotics is widespread and has several success stories [1],
[2], [3]. A RL problem is defined by sets of states and
actions as well as a reward function that maps a state-action
pair to a score. The goal of RL algorithms is to learn a
policy which maximizes the global cumulative reward. The
policy can either be deterministic or stochastic but even
in the latter case, stochasticity is only introduced for the
sake of exploration [4], [5] and is typically reduced over
time, yielding as a result a policy exhibiting a relative small
amount of diversity.

However, diversity can be an advantage in many set-
tings. In dynamic environments, a diverse policy is often
easier to adapt to a changing environment or changing
task constraints [6]. Moreover, diversity can help to avoid
getting stuck in local optima. For example, in the coop-
erative setting of [7], a robot learns grocery checkout by
interacting with a human. The human can add constraints
such as not moving liquids over electronics by reranking
the trajectories of the robot. Unfortunately, the robot can
get stuck in local optima requiring manual modification of
the trajectory’s waypoints [7]. Increasing the diversity in the
robot’s behavior can give more feedback opportunities to the
human and avoids manual interventions. Another example
where diverse behaviors should be preferred are competitive

settings. Here, an agent with a repetitive strategy becomes
predictable and thus more easily exploitable. In robot table
tennis, for example, a task can be to return incoming balls to
the opponent’s side of the table in a way that is hard to return
for the opponent. A deterministic behavior would preclude
any effect of surprise and reduce the chances of defeating
the opponent. Therefore, we are interested in allowing the
robot to constitute a diverse library of high reward motor
skills. In order to increase the diversity of the learned skills,
we use intrinsic motivation [8] and empowerment [9]. We
derive a new intrinsic motivation signal by enriching the
description of a task with an outcome space. The outcome
space represents interesting aspects of a sensorimotor stream,
for example, in table tennis, the outcome space could be
given by the return position of the ball or the return ball
speed. Our intrinsic motivation signal is now given by the
diversity or entropy of the outcomes of the policy. Maxi-
mizing the entropy of the future is a concept also known
as empowerment [9], therefore, we will call our approach
Empowered Skills. Our new algorithm maximizes a trade-off
between an extrinsic reward, e.g., returning the ball on the
table in table tennis, and this intrinsic motivation criterion.
Experiments on a planar reaching task and a simulated robot
table tennis task demonstrate that our algorithm can learn
a diverse set of behaviors within the area of interest of the
tasks.

A. Related Work

Intrinsic motivation can be categorized into three clus-
ters [8]: knowledge-based models, competence-based models
and morphological models.

1) Knowledge-Based Models of Intrinsic Motivation:
Agents of this category typically monitor and maximize a
learning progress. [10], [11] monitor the learning progress
of the transition model (predicting the next state given the
current state and action). Its maximization leads to the
sequencing of the learning process from the simplest to the
most intricate parts of the state-action space, while ignoring
the parts that are already learned or impossible to learn.
Such an intrinsic motivation signal is also used in [12] and
is mixed with an extrinsic, goal-oriented reward. However,
unlike in our algorithm, the increased exploration due to the
intrinsic motivation serves only the purpose of speeding-
up the learning process. Moreover, its influence decreases
with time and the returned policy is similar to standard RL
algorithms.

2) Competence-Based Models of Intrinsic Motivation:
Agents of this category set challenges or goals for themselves
which consist of a specific sensorimotor configuration with

associated difficulty level. They then plan their actions to
achieve this goal and get a reward based on the difficulty
of the challenge and their actual performance. [8] suggests
three possible performance measures based on incompetence,
competence and competence progress. Since then, [13] has
examined the use of a competence-based model to support
an agent’s autonomous decision on what skills to learn. They
measure the improvement rate of competence on the basis
of the Temporal-Difference learning signal. [14] enhanced
the framework introduced in [10] with a competence-based
intrinsic motivation system. Here, learning is directed by a
measure of interestingness which characterizes goals in task
space. [15] applies this framework in the context of tool use
discovery. They split a high-dimensional structured sensori-
motor space into subspaces with an associated measure of
interestingness. A multi armed bandit algorithm then selects
in which subspace to perform goal babbling [16] based on
the subspaces’ interestingness.

3) Morphological Models of Intrinsic Motivation: This
category comprises algorithms that maximize mathematical
properties of the sensorimotor space of the robot and as such
is closely related to the diversity in behavioral space we are
striving for. In Evolutionary Robotics, [17] designed intrinsic
online fitness functions that encourage a population of robots
to seek out experiences that neither the current nor previous
generations of robots had before. Thus, the algorithm grows
a population of curious explorers that are motivated not by
reward but by diverse actions and experiences alone. [17]
and [18] evolved neural network controllers where the typical
goal-oriented fitness function is replaced by an intrinsically
motivated term. Specifically, [18] introduced a distance met-
ric in behavioral space and aimed to find behaviors that
are maximally different to all the previously experienced
behaviors. However, enumerating all such behaviors might
not be sustainable in high dimensional spaces. The authors
in [17] propose to search for a behavior exhibiting maximal
entropy in its sensorimotor stream. For some settings, such
behaviors can result in interesting solutions to a task such as
navigating through a maze. Yet, high entropy behaviors do
not necessarily coincide with high reward behaviors and as
such a trade-off between the intrinsic and extrinsic reward is
necessary.

Empowerment: The notion of empowerment introduced
in [19] and extended to the continuous case in [9] is
defined on the state space. The empowerment of a state is
proportional to the number of distinct states that could be
reached from it. It was demonstrated in [9] that for a task
such as pole balancing, the optimal swing up policy coincides
with the search of the most empowered state as the upright
position has the highest diversity of future states. However,
similar to the discussion of [17], such behaviors do not
always emerge for other tasks. As such, in our algorithm, the
intrinsic motivation is not used on its own but is combined
with the extrinsic reward of the task such that we can restrict
the diverse solution space to a subset of useful solutions.

Similar to [17], we measure diversity in our algorithm with
an entropy function. However, as the sensorimotor stream can

be excessively large, we restrict the domain of the entropy to
the outcome space (Sec. II-A) that only captures task-relevant
aspects of the stream. We call our algorithm Empowered
Skills and distinguish it from the notion of empowerment of
states [19], [9] as we search for (motor) skills that result in
diverse outcomes.

II. EMPOWERED SKILLS

The Empowered Skills algorithm is couched in the Direct
Policy Search (DPS) framework [4] and therefore reuses
most of its terminology (Sec. II-A). In the following sections,
we will describe our algorithm first for discrete and then for
continuous outcome spaces.

A. Notation and Problem Statement

Given a reward function R : T 7→ R mapping a robot
trajectory τ ∈ T to a real value R(τ), the goal of DPS
algorithms is to find a set of parameters θ ∈ Θ maximizing
Epθ(τ)[R(τ)] that we denote with a slight abuse of notation
R(θ). Specifically, DPS is a class of iterative algorithms
maintaining search distributions over Θ that we refer to
as policies1. The main objective of a DPS algorithm can
be formulated as maximizing the policy return J(π) =
Eθ∼π [R(θ)].

In addition to the maximization of the reward, we intro-
duce an intrinsic motivation term to the objective function
of our algorithm with the goal to enforce diverse solutions.
Similar to other intrinsically motivated algorithms [12], [17],
[9], [20], diversity is measured by an entropy term. However,
instead of computing the entropy over the whole sensori-
motor stream X (like in [17]) which is typically very high
dimensional, we provide additional guidance to the algorithm
by singling out relevant parts of the sensorimotor stream
which we call outcomes.

Formally, the outcome space O is defined as the image
of a non-injective mapping f : X 7→ O such that typically
card(O)� card(X). For instance, a trajectory τ , that is part
of X and comprised of all joint positions of the robot as well
as the positions of the ball during the execution of a robot
table tennis strike could retain as outcome o = f(τ) only
the 2D ball position when it hits the table after returning the
ball.

Upon the definition of the outcome space, the intrin-
sic term is simply given2 by the entropy HO(π) =
−
∑
o pπ(o) ln pπ(o) of the outcome probabilities pπ(o) =∫

p(o|θ)π(θ)dθ. Finally, the policy π∗ returned by our
algorithm is optimal w.r.t. a trade-off between the extrinsic
reward and intrinsic motivation, i.e.,

π∗ = arg max
π

J(π) + βHO(π),

1For simplicity of notation, only policies of the form π(θ) are considered
throughout the paper. An extension to the contextual case π(θ|c) for some
initial i.i.d. task-dependent contexts c ∈ C is straightforward and similar
to that of previous DPS algorithms (see chapter 2.4.3.2 in [4])

2HO(π) is given for a discrete outcome space; extension to continuous
outcomes follows in Section II-C

with trade-off parameter β. Higher values for β will put more
emphasis on the entropy and result in policies exhibiting
higher diversity.

B. Finite Outcome Space

Inspired by information-theoretic policy search algorithms
[21], [22], we solve this optimization problem in an iterative
scheme where at each iteration the new policy is updated by
solving the following constrained optimization problem

arg max
π,p̂π

J(π) + βHO(π),

s.t. ε > KL(π||q), (1)

1 =

∫
π(θ) dθ, (2)

∀o : p̂π(o) =

∫
p(o|θ)π(θ) dθ, (3)

1 =
∑
o

p̂π(o). (4)

The Kullback-Leibler Divergence KL(π||q) is used to specify
the step-size [21], [22] of the policy update and is given by

KL(π||q) =

∫
π(θ) log

(
π(θ)

q(θ)

)
dθ.

Without the outcome entropy term HO(π) and conditions 3
and 4, this optimization problem would be a standard Policy
Search problem where the information loss, given by the
Kullback-Leibler Divergence between the last and current
policy, is bounded by ε [21], [22]. The use of KL-constraints
is widespread in the robotic RL community whether it
is in the context of Policy Search [21], Policy Gradient
Methods [23] or Optimal Control [20].

The addition of the outcome entropy term HO(π) in-
troduces an interdependency between pπ(o) and π. This
interdependency prohibits the derivation of a closed form
policy update directly from the constrained optimization
problem3. A set of auxiliary variables p̂π(o) that we op-
timize for is therefore introduced to break this dependency
yielding HO(π) = −

∑
o p̂π(o) ln p̂π(o). For a finite (and

relatively small) outcome space, constraints 3 and 4 then
allow us to enforce for all o ∈ O the equality4 p̂π(o) =∫
p(o|θ)π(θ) dθ, resulting in the closed form policy update

π(θ) ∝ q(θ) exp

(
1

η

(
R(θ) +

∑
o

µo p(o|θ)

))
,

where µo are the Lagrangian multipliers for the constraints
given in Equation 3. In comparison to the standard solution
for DPS, see the episodic REPS algorithm given in [22],
we can identify the term

∑
o µo p(o|θ), which is added to

the reward function R(θ) as intrinsic motivation. This term

3The interdependency results in a log-sum expression in the Lagrangian
that cannot be solved in closed form.

4Within the internal optimization routine of a policy update, a sample
estimates of the r.h.s.

∫
p(o|θ)π(θ) dθ of each equality constraint needs to

be computed for different π. This can be done solely from data generated in
previous iterations using importance sampling. However, we do not elaborate
further as these constraints will not appear in the continuous outcome case.

depends on the Lagrangian multipliers µo that are obtained
by optimizing the dual function of the optimization problem.

C. Continuous Outcome Space

In the continuous case, adding a constraint for every
possible outcome is impossible. As a consequence, we need
to resort to matching feature expectations instead of single
probability values. Hence, we replace the constraints 3 and 4
with∫

φ(o) p̂π(o) do =

∫
φ(o)

∫
p(o|θ)π(θ) dθdo, (5)

1 =

∫
p̂π(o) do. (6)

The expression of HO(π) in the continuous case is simply
obtained by replacing the sum over the domain O by an
integral.

D. Solving the Optimization Problem

The policy update can now again be obtained by La-
grangian optimization and is given by

π(θ) ∝ q(θ) exp

(
1

η
δµ(θ)

)
,

where δµ(θ) = R(θ)+µ
∫
p(o|θ)φ(o) do and µ is a vector

of Lagrangian multipliers for the constraint given in Equa-
tion 5. The policy depends on the Lagrangian multipliers
η and µ which can be determined by minimizing the dual
function

g(η,µ) = ηε+ η log

(∫
q(θ) exp

(
1

η
δµ(θ)

)
dθ

)
+ β log

(∫
exp

(
−µφ(o)

β

)
do

)
. (7)

Similar to other DPS algorithms such as episodic REPS [22],
we can only solve this optimization problem for a finite set
of samples. The result of this optimization is then given by
a weighting wi = exp

(
1
η (ri + µφ(oi))

)
for each sample.

These weights are subsequently used to estimate a new
parametric policy using a Weighted Maximum Likelihood
(WML) estimate [22].

E. Estimating the New Policy

Because of their simplicity, we use multi-variate Gaussian
distributions for our policies which is also a common as-
sumption in DPS. The mean and covariance matrix of the
new policy π are given by

µπ =

∑
wiθi∑
wi

,

Σπ =

∑
wi(θi − µπ)(θi − µπ)T

Z
,

Z =
(
∑
wi)

2 −
∑
w2
i∑

wi

which is the WML estimator for samples θi drawn from the
previous policy q.

III. EXPERIMENTS

The objectives of our experiments are twofold. Firstly
we investigate the ability of our algorithm to learn policies
showing high diversity in the outcome space. Secondly
we investigate how we can shape the learned policies by
choosing different characteristics as outcomes.

We assessed the abilities and performance of our algorithm
in two scenarios: a 2D reaching task involving a 5 DoF robot
arm and the table tennis task featuring a 9 DoF robot arm
as shown in Figure 4. In all experiments the policy learned
by the algorithm is represented by a multivariate Gaussian
distribution over parameters of the Dynamic Movement
Primitives (DMP) that control the motion of the respective
robot arm. As the outcome space is continuous in all of
the experiments we use Radial Basis Functions (RBF) to
approximate the distribution of outcomes pπ(o). As basis
we use 20 randomly chosen outcomes. For each basis, we
weight the distance to each outcome by the squared median
of distances to this basis. We chose the median to have an
outlier resistant scaling factor for every basis.

A. Reaching Task

In the reaching task the robot’s objective is to move the
end effector from the top to a target position on the right.
It performs this task in 100 time steps. The parameter space
is 30 dimensional and consists of the weights of the DMP
(5 basis per joint and the target location in joint space). The
reward R depends on the action cost u and the distance d
between end effector and target in the last time step i.e.

R(d,u) = −105d2 − 0.7uTu.

In this experiment scenario we define the positions of the
middle joint at the end of the trajectory as the outcome. This
results in a two-dimensional, continuous outcome space.

To learn the policy, the algorithms runs 75 iterations of
policy updates. In every iteration they each draw 50 sample
trajectories from their current policy.

Comparison to State-of-the-Art RL Algorithms

The first set of experiments pits our algorithm against
state-of-the-art RL algorithms.

Figure 1 shows how outcome entropy, policy entropy and
reward evolve over the 75 iterations of the algorithms. First

β Policy Entropy Outcome Entropy Avg. Reward

100 −302.47± 6.28 −10.980± 1.496 −4032± 3329
1000 −289.72± 10.04 −8.675± 1.533 −4316± 3363
10000 −264.36± 10.87 −5.677± 1.429 −4406± 2480

REPS −311.48± 1.44 −17.394± 0.989 −3900± 3270
MORE −49.56± 0.00 −14.291± 0.262 −2144± 1946

TABLE I
RESULTS OF THE REACHING TASK EXPERIMENTS.

The table shows the results of our reaching task experiments. The
experiments were run with 5 trials of 75 iterations per setting. We include

REPS [21] and MORE [24] results as baseline comparison. Of note are
the similar policy entropy and average reward, the high standard deviation
on the reward as well as the distinct differences in outcome entropy which

show that our algorithm is able to find more diverse solutions.

Fig. 1. Evolution of outcome entropy, policy entropy and reward over
75 iterations in the reaching task experiments. The figure shows that our
algorithm manages to find policies with higher outcome entropy at the
expense of a slight reward decrease.

we note that for all the runs, the reward stabilizes from
iteration 30 onwards while the policy entropy continues to
shrink. The outcome entropy converges more slowly than the
reward. This is even more apparent for our algorithm, where
the outcome entropy declines more slowly than the policy
entropy. MORE [24] introduces an entropy constraint on the
search distribution regulating the reduction of the parameter
entropy at each iteration. The purpose of this constraint is to
have a better control over the exploration trading-off slower
initial progress as apparent in Figure 1 for better reward at
convergence as can be seen in Table I. The effect of the
entropy constraint of MORE results in a slower and steadier
decrease of the policy entropy. However, the higher entropy
in parameter space does not translate into entropy in outcome
space where our algorithm clearly outperforms the others.

0 1 2 3 4 5

−0.5

0

0.5

1

y
−

a
x
is

 [
m

]

REPS

0 1 2 3 4 5

−0.5

0

0.5

1

MORE

0 1 2 3 4 5

−0.5

0

0.5

1

x−axis [m]

y
−

a
x
is

 [
m

]

Empowered REPS (β=1000)

0 1 2 3 4 5

−0.5

0

0.5

1

x−axis [m]

Empowered REPS (β=10000)

Fig. 2. Final arm configuration of 50 trajectories sampled for different
algorithms and values of β. Policies returned by standard RL algorithms
exhibit no diversity (top row). For our algorithm (bottom row), increasing β
increases the behavioral diversity while only slightly decreasing the reward.

The returned policy of each algorithm can be seen in
Figure 2 which shows for different settings of β the robot
arm configurations in the last time step as well as the target
point, indicated by the red cross. For this we plotted the
arm configuration for all the 50 sample trajectories on top of
each other. The results make it clear that the solution found
by our algorithm is similar to that found by REPS which
it is based on. But where REPS finds a single solution, our
algorithm exploits the robot’s structure to locally increase
diversity in the target joint. Choosing higher values for β
leads to increased diversity in posture.

2.5 2.55 2.6 2.65

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

x−axis [m]

y
−

a
x
is

 [
m

]

Middle Joint

4.4 4.45 4.5 4.55

−0.1

−0.05

0

0.05

0.1

0.15

x−axis [m]

End Effector

REPS

MORE

Empowered Skills (β=100)

Empowered Skills (β=1000)

Empowered Skills (β=10000)

Fig. 3. Middle Joint position (left, outcome) and End Effector (right,
reward) of 50 trajectories sampled for different algorithms and values of β
illustrating the trade-off between behavioral diversity and reward.

This can be confirmed with a look at Figure 3 which
displays the end effector and the middle joint in the last time
step of the last iteration. The position distributions seem to
be arc shaped in the runs of our algorithm. This suggests
that the algorithm exploits the configuration of the robot to
locally increase diversity. The arcs are evidence of variation
in few, specific joints. Variation in many joints dissolves the
arc-shape-constraint imposed by a single link rotating around
a single joint.

We measured a sizable increase in the diversity of the
outcomes. For REPS the middle joint positions cover an area
smaller than 0.01mm2. For Empowered Skills (β = 100) this
area is more than 220 times larger5.

The statistical results of the experiment runs can be seen in
Table I. While the policy entropy for our algorithms is only
marginally increased in comparison to REPS and a lot lower
than in the MORE results, the outcome entropy is distinctly
higher.

B. Robot Table Tennis

In the table tennis setting there is a simulated robot
arm with a racket attached to its end effector. The robot’s
objective is to return a ball to the opponent’s side of the
table. The robot arm has six joints and is suspended over
the table from a floating base which itself has 3 linear joints

5The size of the markers exaggerates the area covered by REPS due to
visibility constraints.

Fig. 4. Images of the robot table tennis performing a forehand strike using
a policy learned by our algorithm.

to allow small 3D movement. A trajectory is parameterized
by the goal position and velocities of a DMP, yielding an
18 dimensional continuous action space (9 positions and 9
velocities).

In this setting we conduct several experiments in which
we choose different characteristics as outcomes. In the first
experiment we use the location of the ball when landing on
the table upon being returned by the robot. This gives us a
two dimensional continuous outcome space. In the second
experiment we use the speed of the ball at the moment
of impact instead, that gives a one dimensional outcome
space. Because in these sets of experiments the outcomes
are not properties of the robot, the relation between policy
and outcomes depends on the environment (in this case the
physics of ball movement).

We use imitation learning to initialize the weight param-
eters of the DMP and optimize for the goal position and
velocity. The initial trajectory used for imitation learning was
generated using a hand coded player following [25]. Once
the policy is initialized, we run 100 iterations of each of the
RL algorithms. The reward optimized by these algorithms
is inversely proportional to the distance between a target
point6 and the location where the ball first enters the table
plane after being returned by the robot. If the robot doesn’t
hit the ball, the reward is the negative minimum distance
between the racket and the ball throughout the trajectory. In
all the experiments we ran 5 trials for each algorithms for
100 iterations using 50 samples per iteration.

Experiment 1 - Comparison to a State-of-the-Art RL Algo-
rithm

The first set of experiments again pits our algorithm
against a state-of-the-art RL algorithm and explores the

6The target is marked by a red cross in our plots.

β Policy Entropy Outcome Entropy Avg. Reward

10 −217.805± 1.463 −3.705± 0.891 17.694± 0.190
100 −216.498± 2.951 −2.898± 0.616 17.412± 0.503
1000 −214.432± 2.184 −1.654± 0.830 10.536± 5.394

REPS −216.863± 1.591 −8.119± 1.765 18.124± 0.017

TABLE II
RESULTS OF THE TABLE TENNIS EXPERIMENTS.

These experiments were run in 5 trials with 100 iterations and 50 samples
per iteration. Displayed are mean values over the 5 trials. The results

show how higher settings of β lead to an increased outcome entropy while
having a limited effect on policy entropy and reward except for

beta = 1000. In this experiment the outcomes are the 2D location where
the ball impacts the table after being returned by the robot.

influence of an increased β on the shape of the solutions.
The outcomes in this case are the position of the ball in the
table plane at the moment the ball enters this plane.

Fig. 5. Evolution of outcome entropy, policy entropy and reward over 100
iterations of the table tennis experiment. The figure shows the similarities in
the policy entropy and reward while the outcome (bounce locations) curves
are more distinct. For β = 1000, reward decreases due to balls hitting the
net.

Figure 5 shows how outcome entropy, policy entropy and
reward develop over 100 iterations of running the algorithms.
The biggest differences are visible in the outcome entropy.
While the policy entropy is comparable for all the runs over
all iterations, the outcome entropy clearly decreases when a

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

R
E

P
S

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

β
=

1
0

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

E
m

p
o

w
e

re
d

 S
k
ill

s

β
=

1
0

0

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

y−axis [m]

β
=

1
0

0
0

x
−

a
x
is

 [
m

]

Fig. 6. Sample trajectories from REPS and Empowered Skills for different
values of β. REPS although learning a probabilistic policy always shoots to
the target. Our algorithm is able to simultaneously learn to shoot to different
areas of the table.

smaller β is chosen. The reward converges slower for higher
β but does reach a similar score for all but the run with
the highest β. Our algorithms seems to be able to keep
outcome entropy and reward relatively high while decreasing
the policy entropy. The results for the last iteration are shown
again in Table II.

The final ball trajectories can be seen in Figure 6. The
figure shows 50 ball trajectories for each of the algorithms.
While the trajectories for REPS are indistinguishable and
those with β = 10 are still very similar, for higher values
of β the trajectories cover a much wider area. The figure
makes it clear that the Empowered Skills algorithm is able
to learn a policy that represents multiple solutions to the
posed problem while the policy learned by REPS just yields
a single behavior.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3.6

−3.4

−3.2

−3

−2.8

−2.6

−2.4

−2.2

x−axis [m]

y
−

a
x
is

 [
m

]

Table Surface

REPS

Emp. Skills (β=10)

Emp. Skills (β=100)

Emp. Skills (β=1000)

Fig. 7. A top view of the table. Marked on it are the impact points of the
ball for 50 sample trajectories per algorithm. Higher values of β lead to a
larger spread of outcomes. The mean of the outcomes is different as well,
and gets further away from the table’s edge.

Figure 7 displays the outcomes of 50 sample trajectories
drawn from the final policy for different settings of β. We
can see that the impact area grows with β. For the second
highest choice of β two shots miss the table and for the
highest β some of the shots end in the net. Interestingly with
increasing outcome entropy the center of outcomes moves
to the middle of the opponent’s side of the table. Had it
stayed in the same place (the target point marked by the
red cross) approximately half of the outcomes would have
missed the table and with it the objective. This shows that
our algorithm finds a compromise between getting a high
reward and producing outcomes with higher entropy.

Experiment 2 - The Speed Test

The second set of experiments changes the outcomes to
the speed at which the ball impacts the table. This leads our
algorithm to learn a different set of policies.

Figure 8 shows the distribution of outcomes for REPS
and our algorithm at different settings of β. The diversity of
impact speeds increases with growing β. Again the algorithm
learns policies with different mean, shifting away from the

table border with increasing β. This shift is a lot less
pronounced than in the experiments with position outcomes
in Section III-B.

3.8

3.85

3.9

3.95

REPS

s
p

e
e

d
 [

m
/s

]

β=10

Empowered Skills

β=100

β=1000

Fig. 8. Speed outcomes of 50 trajectories sampled for different values of
β and REPS. Here the outcome is the balls impact speed on the table. The
figure shows how increasing β leads to more diverse impact speeds that are
distributed around different means.

With a look at Figure 9 it becomes also clear that the
diversity of impact locations is much lower than in the pre-
vious experiment. We can thus choose which characteristics
are important to us and learn fitting policies by choosing
appropriate outcomes.

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

R
E

P
S

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

β
=

1
0

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

E
m

p
o
w

e
re

d
 S

k
ill

s

β
=

1
0
0

x
−

a
x
is

 [
m

]

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−1

−0.8

−0.6

−0.4

y−axis [m]

β
=

1
0
0
0

x
−

a
x
is

 [
m

]

Fig. 9. Speed outcomes of 50 trajectories sampled for different values of β
and REPS. The solutions found by our algorithm for the speed experiment
show a distinctly reduced spread on the table compared to those for the
position experiment (Sec. III-B).

IV. DISCUSSION

In this paper we added an outcome entropy based intrinsic
motivation term to a state-of-the-art objective driven Policy
Search algorithm. Our new algorithm is capable of solving
problems with continuous action and outcome spaces and
is easily extendable to the contextual case. We tested the
algorithm in two experimental settings, a reaching task and
a robot table tennis task. The experiments show how the
Empowered Skills algorithm proposed in this paper is able
to learn policies which exhibit higher behavioral diversity in
high reward areas of the task. The main limitation of our
current setting is the simple form of our Gaussian policy. In
order to further increase outcome diversity, our future per-
spective is to study the integration of this intrinsic motivation
term in more complex distributions such as mixture models.
Another perspective is to learn a higher level policy to select
the most appropriate skill in a cooperative or adversarial
setting such as robot table tennis, from a library of skills
discovered by intrinsic motivation.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” IJRR, vol. 32, no. 11, pp. 1238–1274, 2013.

[2] S. Levine, N. Wagener, and P. Abbeel, “Learning Contact-Rich Ma-
nipulation Skills with Guided Policy Search,” in IEEE ICRA, 2015,
pp. 156–163.

[3] P. Kormushev, S. Calinon, and D. G. Caldwell, “Robot motor skill
coordination with EM-based reinforcement learning,” in IEEE/RSJ
IROS, no. September 2016, 2010, pp. 3232–3237.

[4] M. P. Deisenroth, G. Neumann, and J. Peters, “A Survey on Policy
Search for Robotics,” Foundations and Trends in Robotics, vol. 2, no.
2011, pp. 1–142, 2011.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with Deep Reinforce-
ment Learning,” CoRR, 2013.

[6] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical
Relative Entropy Policy Search,” JMLR, vol. 17, pp. 1–50, 2016.

[7] A. Jain, B. Wojcik, T. Joachims, and A. Saxena, “Learning Trajectory
Preferences for Manipulators via Iterative Improvement,” in NIPS,
2013, pp. 575–583.

[8] P. Y. Oudeyer and F. Kaplan, “What is intrinsic motivation? A typology
of computational approaches,” Frontiers in Neurorobotics, vol. 1, no.
Nov, p. 6, 2009.

[9] T. Jung, D. Polani, and P. Stone, “Empowerment for Continuous
Agent–Environment Systems,” Adaptive Behavior, vol. 19, pp. 16–39,
2011.

[10] A. Baranes and P.-Y. Oudeyer, “R-IAC: Robust Intrinsically Motivated
Exploration and Active Learning,” IEEE TAMD, vol. 1, no. 3, pp.
155–169, 2009.

[11] J. Schmidhuber, “A Possibility for Implementing Curiosity and Bore-
dom in Model-Building Neural Controllers,” in SAB, vol. 1, 1991, pp.
222–227.

[12] M. Lopes, T. Lang, M. Toussaint, and P.-Y. Oudeyer, “Exploration in
model-based reinforcement learning by empirically estimating learning
progress,” in NIPS, 2012, pp. 206–214.

[13] G. Baldassarre and M. Mirolli, “Deciding Which Skill to Learn
When: Temporal-Difference Competence-Based Intrinsic Motivation
(TD-CB-IM),” in Intrinsically Motivated Learning in Natural and
Artificial Systems, G. Baldassarre and M. Mirolli, Eds. Springer,
2013, pp. 257–278.

[14] A. Baranes and P. Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[15] S. Forestier and P.-Y. Oudeyer, “Modular active curiosity-driven
discovery of tool use,” in IEEE/RSJ IROS, 2016, pp. 3965–3972.
[Online]. Available: http://ieeexplore.ieee.org/document/7759584/

[16] M. Rolf, J. J. Steil, and M. Gienger, “Goal babbling permits direct
learning of inverse kinematics,” IEEE TAMD, vol. 2, no. 3, pp. 216–
229, 2010.

[17] P. Delarboulas, M. Schoenauer, and M. Sebag, “Open-Ended Evo-
lutionary Robotics: An Information Theoretic Approach,” in PPSN,
2010, pp. 334–343.

[18] J. Lehman and K. O. Stanley, “Abandoning objectives: evolution
through the search for novelty alone.” Evolutionary computation,
vol. 19, no. 2, pp. 189–223, 2011.

[19] A. S. Klyubin, D. Polani, and C. L. Nehaniv, “All Else Being Equal
Be Empowered,” in ECAL, 2005, pp. 744–753.

[20] V. Kumar, E. Todorov, and S. Levine, “Optimal Control with Learned
Local Models : Application to Dexterous Manipulation,” in IEEE
ICRA, 2016, pp. 378–383.

[21] J. Peters, K. Mülling, and Y. Altün, “Relative Entropy Policy Search,”
in AAAI, 2010, pp. 1607–1612.

[22] A. Kupcsik, M. P. Deisenroth, J. Peters, A. P. Loh, P. Vadakkepat,
and G. Neumann, “Model-based Contextual Policy Search for Data-
Efficient Generalization of Robot Skills,” Artificial Intelligence, 2015.

[23] J. Schulman, S. Levine, M. Jordan, and P. Abbeel, “Trust Region
Policy Optimization,” in ICML, 2015, pp. 1889–1897.

[24] A. Abdolmaleki, R. Lioutikov, J. R. Peters, N. Lau, L. P. Reis, and
G. Neumann, “Model-Based Relative Entropy Stochastic Search,” in
NIPS, 2015, pp. 3523–3531.

[25] K. Mülling, J. Kober, and J. Peters, “Simulating human table tennis
with a biomimetic robot setup,” in SAB, 2010, pp. 273–282.

