
Stochastic Optimal Control
with Linearized Dynamics
Stochastisch optimale Regelung mit linearisierten Modellen
Master-Thesis von Hany Abdulsamad
Tag der Einreichung:

1. Gutachten: Prof. Gerhard Neumann
2. Gutachten: Prof. Jan Peters
3. Gutachten: Prof. Ulrich Konigorski

Stochastic Optimal Control with Linearized Dynamics
Stochastisch optimale Regelung mit linearisierten Modellen

Vorgelegte Master-Thesis von Hany Abdulsamad

1. Gutachten: Prof. Gerhard Neumann
2. Gutachten: Prof. Jan Peters
3. Gutachten: Prof. Ulrich Konigorski

Tag der Einreichung:

Erklärung zur Master-Thesis

Hiermit versichere ich, die vorliegende Master-Thesis ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 1. März 2016

(Hany Abdulsamad)

Abstract
Policy Search is a powerful class for learning optimal control policies of complex systems. By allowing a
very broad description of a task, they are suitable for solving challenging robotic applications. Although
model-free Policy Search approaches require the least amount of knowledge about the environment,
they often suffer from the disadvantage of having to draw a large number of samples from the system.
Therefore, in cases where it is feasible to reconstruct the system dynamics, it is advantageous to include
as much prior knowledge about the learning setting as possible. In this work we consider this insight as
motivation for exploring model-based Policy Search algorithms.
A recent approach, Guided Policy Search, has combined the strengths of a powerful model-based tra-
jectory optimization technique, Stochastic Optimal Control, with Relative Entropy Policy Search to learn
policies of complicated tasks like bipedal walking. By alternating between linearizing the system dy-
namics and optimizing local policies, it follows the main scheme of iterative methods like Differential
Dynamic Programing and Iterative Linear Quadratic Gaussian. The novelty is, however, the introduction
of a relative entropy bound on the trajectory distribution in order to preserve the locality of the lineariza-
tion and improve the robustness of convergence.
In this work we will examine and reformulate Guided Policy Search in order to highlight its main contri-
bution. We will show that the bound on the trajectory distribution is equivalent to a bound on the change
of the policy. Moreover, we will motivate and propose a new constraint that would strictly bound the
state distribution between iterations, and further ensure the validity of the linearization, while allowing
us to preform larger steps on the policy updates. In addition, we will introduce a bound on the entropy
of the policy, which allows to control the ability the controller to explore the action space and prevent
premature convergence.
We will present results and compare all variants of the proposed algorithms on highly non-linear sys-
tems, such as a swing-up task on a torque- and angle-constrained double and quad pendulum. As
supplementary material, we will provide a full and detailed mathematical derivation of our methods.

i

Acknowledgments
I would especially like to thank Prof. Gerhard Neumann, Head of the Computational Learning and
Autonomous Systems (CLAS) group, for introducing me the to ideas covered in this thesis and for his
patient supervision, open-door policy and the countless hours of his time, that have resulted in many
informative discussions for me. I also thank M.Sc. Oleg Arenz, who co-supervised me and always took
the time to share his insights and experience.
I owe a debt of gratitude to Prof. Jan Peters, Head of the Intelligent Autonomous Systems (IAS) group,
and all IAS and CLAS members, who constantly engage and motivate their students. During my time at
IAS and CLAS, I’ve had the pleasure of working closely with Alexandros Paraschos and Simone Parisi. I
am deeply grateful for their help and support.
Finally, I thank Prof. Ulrich Konigorski and M.Sc. Zhongyi Gong from the Institut für Regelungstechnik
und Mechatronik (RTM) at the Electrical Engineering Department, who agreed to co-supervise me and
showed interest in my work.

ii

Contents

1. Introduction 2
1.1. Locality and Validity of Linearization . 2
1.2. Reinforcement Learning vs. Motion Planning . 2
1.3. Preliminaries . 3

1.3.1. Markov Decision Process . 3
1.3.2. Stochastic Optimal Control . 3
1.3.3. Information Theoretic Bounds . 3

Differential Entropy . 4
Relative Entropy . 4

2. Related Work 5
2.1. Iterative Local Methods for Non-Linear Systems . 5

2.1.1. Differential Dynamic Programming . 5
2.1.2. Iterative Linear Quadratic Gaussian . 6

2.2. Relative Entropy Policy Search . 7

3. Guided Policy Search 8
3.1. Optimization Problem . 8
3.2. Dual Problem . 9
3.3. Policy Dependent Reward . 10
3.4. Implementation . 11

4. State-Action Bound Policy Search 13
4.1. Optimization Problem . 13
4.2. Dual Problem . 14
4.3. State-Action Dependent Reward . 15
4.4. Implementation . 15

4.4.1. Circular Dependency of Vt(s) and µt(s) . 15
4.4.2. Block Descent over Vt(s) and µt(s) . 15
4.4.3. Gradient Descent over αt . 17
4.4.4. Block Coordinate Descent . 17

5. Entropy State-Action Bound Policy Search 19
5.1. Optimization Problem . 19
5.2. Dual Problem . 19
5.3. Augmented Reward . 20
5.4. Implementation . 21

6. Evaluation 22
6.1. Double Pendulum Task . 22
6.2. Quad Pendulum Task . 23
6.3. Discussion . 23

iii

7. Future Work 25
7.1. Separate Bounds on State and Action . 25
7.2. Comparison to Full Gradient Descent . 25
7.3. Principled Control of Policy Entropy . 25
7.4. Reformulation for Deterministic Policies . 25
7.5. Further Evaluations on Larger and Real Systems . 25

8. Conclusion 26

References 27

A. Derivation of Guided Policy Search 29

B. Derivation of State-Action Bound Policy Search 38

C. Derivation of Entropy State-Action Bound Policy Search 43

iv

Figures and Tables

List of Figures

6.1. Double Pendulum Task: The total expected reward of GPS, SAPS and ESAPS in comparison
during a swing-up task. Each learner is given 25 iterations per trial to find the best policy.
To account for the stochasticity of the setup, 10 trails were preformed and averaged. The
hyperparameters of each learner were optimized separately to reflect its best performance. 22

6.2. Double Pendulum Task: The maximum change in the policy for each iteration of GPS,
SAPS and ESAPS. GPS has a constant step that is equal its KL-bound. SAPS takes signif-
icantly bigger steps while maintaining the upper bound on the state-action distribution.
ESAPS is able to take the largest steps due to its ability to maintain a larger variance . . . 23

6.3. Quad Pendulum Task: The expected reward of GPS and ESAPS. Each learner is given 50
iterations. For a statistical mean of the expected reward, 10 trails were preformed and
averaged. The hyperparameters of each learner were optimized separately to reflect its
best performance. The final result shows ESAPS outperforming GPS significantly. 24

6.4. Quad Pendulum Task: The maximum step in the policy space for each iteration of GPS
and ESAPS. The step of GPS, per definition, is constant and equal its KL-bound. ESAPS,
however, modulates the maximum step size based on the state-action bound 24

List of Algorithms
1. Guided Policy Search in Pseudo-Code . 12

2. State-Action Policy Search: Dual Block Descent over Vt(s) and µt(s) in Pseudo-Code 16
3. State-Action Policy Search: Dual Gradient Descent over αt in Pseudo-Code 17
4. State-Action Policy Search: Dual Coordinate Descent in Pseudo-Code 18

5. Entropy State-Action Policy Search: Dual Coordinate Descent in Pseudo-Code 21

v

Abbreviations

List of Abbreviations

Notation Description

DDP Differential Dynamic Programming

DP Dynamic Programming

ESAPS Entropy State-Action Bound Policy Search

GPS Guided Policy Search

iLQG Iterative Linear Quadratic Gaussian

KLD Kullback-Leibler Divergence

LQG Linear Quadratic Gaussian

MDP Markov Decision Process

REPS Relative Entropy Policy Search

RL Reinforcement Learning

SAPS State-Action Bound Policy Search

SOC Stochastic Optimal Control

1

1 Introduction
Recent advancements in the field of robotics have resulted in a considerable growth in robotic appli-
cations and tasks. The introduction of new platforms such as high dimensional humanoids and high
velocity/torque manipulators gives the promise of making headway in solving major tasks like bipedal
locomotion and grasping. However, with this progress comes a sharp rise in the complexity and non-
linearity of the dynamical systems in question, which poses several challenges from a control and plan-
ning point of view.
Trajectory Optimization methods set out to solve Optimal Control problems under general time, en-
ergy and spacial constraints. Stochastic Optimal Control (SOC) with linearized dynamics, in particular,
is a powerful approach to obtain optimal control laws for non-linear systems. Fundamental work on
Stochastic Optimal Control includes Differential Dynamic Programming (DDP) (Mayne, 1966) (Jacob-
son and Mayne, 1970), Iterative Linear Quadratic Gaussian (Todorov and Li, 2005) (Tassa et al., 2012),
Approximate Inference Control (AICO) (Toussaint, 2009a) (Rawlik et al., 2010) and Robust Policy Up-
dates for Stochastic Optimal Control (RSOC) (Rueckert et al., 2014).

1.1 Locality and Validity of Linearization

Stochastic Optimal Control algorithms implement an iterative scheme using linearized dynamics to lo-
cally optimize the current trajectory. A key element in the stability of such procedure is a mechanism to
control the step size of the update of the controller in a principled manner. The linearized dynamics are
only accurate in the vicinity of the linearization point. Solutions that stray too far from this linearization
point have to be avoided, as they may cause oscillations or even instabilities. A recent approach, Guided
Policy Search (GPS) (Levine and Koltun, 2014) (Levine and Abbeel, 2014), addresses this issue by intro-
ducing a relative entropy bound on the update of the trajectory distribution between iterations.
In the course of this thesis, we will evaluate the aforementioned approach and extend it by proposing
new bounds. Therefore, we will argue for a an explicit bound on the state distribution, instead of the tra-
jectory distribution, as it is crucial to the linearization. This bound should provide a stronger guarantee
for the validity of the linearization between iterations, hence, allowing more aggressive updates of the
policy. Moreover, we will suggest an entropy constraint that would allow us to control the exploration
rate of the policy, thus preventing premature convergence issues that have been observed in GPS.

1.2 Reinforcement Learning vs. Motion Planning

At this point it is necessary to draw an important distinction between two categories of Optimal Con-
trol methods. Namely, Motion Planning algorithms and Reinforcement Learning methods (RL) (Sutton
and Barto, 1998). In Motion Planning, a complete model of the environment, a mapping from system
dynamics to reward, is available and can exploited to optimize the expected return of the trajectory.
State-of-the-art algorithms in this area are CHOMP (Ratliff et al., 2009), STOMP (Kalakrishnan et al.,
2011) and TRJOPT (Schulman et al., 2013). Whereas, in a Reinforcement Learning setting such models
are either learned online, as in PILCO (Deisenroth and Rasmmussen, 2011) and GPS (Levine and Abbeel,
2014), or completely circumvented, as in REPS (Peters et al., 2010), in the process of finding the optimal
policy. The focus of this work will be devoted to model-based Reinforcement Learning algorithms with
state-of-the-art GPS as the center piece.

2

1.3 Preliminaries

1.3.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical model for sequential decision making in a Motion
Planning or Reinforcement Learning setting. An MDP sequence is time discrete and can stretch over a
finite or infinite time horizon. MPDs derive their name from the Markov property, which stipulates that
in a Markovian system, the distribution over the future state s′ of the environment depends only on the
current state s and next action a. The transition to a future state s′ is governed by the stochastic system
dynamics Pt(s′|s,a). Because decision making has to be rationalized by some quantifiable measure,
MDPs also specify a reward function Rt(s,a), that rates the quality of state-action pairs (s,a). Since we
are interested in time-constrained trajectories, we will, for the remainder of this thesis, always consider
finite-horizon MDPs. Furthermore, we assume the dynamics to be of linear-Gaussian nature with time-
variant quadratic reward functions,

Pt(s
′|s,a) =N (s′|Ats+ bta+ ct ,Σs′),

Rt(s,a) = sT Mts+ aT Hta.

We dub these conditions on the dynamics and reward function as the LQG assumptions.

1.3.2 Stochastic Optimal Control

Stochastic Optimal Control’s objective is to find a control policy πt(a|s) that maximizes a reward measure
Rt(s,a) along a trajectory. General solutions are rare and restricted to a small class of systems. Aside
from discrete systems, the most important exception are systems with linear-Gaussian dynamics. It has
be shown, that the optimal controller for a system adhering to the LQG assumptions can be computed
in closed-form by applying Dynamic Programming (DP) (Bellman, 1957). DP introduces the concept
of state value function Vt(s) and state-action value function Q t(s,a). Vt(s) is defined as the expected
reward-to-go under a certain policy πt(a|s) starting from a state s, whereas Q t(s,a) is the expected
reward-to-go after executing an action a and subsequently following a policy πt(a|s). DP implements
a backward induction algorithm, that recursively computes both value functions starting from the end
time point T , where Vt(s) = RT (s). The Bellman equations, here given in continuous form, define the
relation between Vt(s) and Q t(s,a) as follows

Q t(s,a) = Rt(s,a) +

∫

s′
Pt(s

′|s,a)Vt+1(s
′)ds′,

Vt(s) =

∫

a

πt(a|s)Q t(s,a)da.

Following these definitions, determining the optimal policy πt(a|s) is reduced to finding a function that
maximizes the state-action value function Q t(s,a) at each time step of the trajectory

π∗t (a|s) = argmax
a

Q t(s,a).

1.3.3 Information Theoretic Bounds

In this section we introduce the theoretical background to the entropy and relative entropy bounds that
we will encounter in the course of this thesis.

3

Differential Entropy

The entropy of a distribution p over a random variable s is a measure of the variance of that distribution
and , thus, also a measure of the average amount of information embedded in it. Relevant to this work is
the entropy of probability distribution over continuous random variables, also called differential entropy.
In that case the entropy H of a distribution p(s) is defined as

H = −
∫

s

p(s) log p(s)ds.

We will use the entropy as a measure of the stochasticity of the control policy, which in turn would allow
us to judge and control its capability in exploring the state-action space.

Relative Entropy

The relative entropy, also known as the Kullback-Leibler divergence, DKL(p||q) between two probability
distribution p(s) and q(s), is a non negative measure of information loss when p(s) is used to approxi-
mate q(s) and is defined as

DKL(p(s)||q(s)) =
∫

s

p(s) log
p(s)
q(s)

ds.

The relative entropy of two conditionals p(a|s) and q(a|s), or their expected KL divergence, is defined
analogously

DKL(p(a|s)||q(a|s)) =
∫

s

p(s)

∫

a

p(a|s) log
p(a|s)
q(a|s)

dads.

The measure of relative entropy is central to the ideas of this work. We will use it to define bounds
over different distributions with the aim of limiting their change between iterations, thus ensuring the
stability of the algorithm.

4

2 Related Work

2.1 Iterative Local Methods for Non-Linear Systems

In our introduction of Stochastic Optimal Control, we have discussed the limitations of its framework,
in which tractable solution are exclusive to discrete and linear systems. These restrictions may seem
to completely eliminate the possibility of applying Stochastic Optimal Control to non-linear systems.
However, it is possible to apply SOC in an iterative scheme with the following structure,

• Starting from an initial state, apply an initial control sequence to the non-linear dynamics to obtain
a finite state sequence.

• Linearize the dynamics around each point of the retrieved trajectory and quadratize the reward
function.

• Formulate and solve a local LQG problem with respect to state-action deviations to get a new locally
optimal policy.

• Execute the new policy on the non-linear system to obtain a new trajectory.

In the coming sections we will introduce Differential Dynamic Programming (DDP) and Iterative Linear
Quadratic Gaussian (iLQG), two algorithms that follow this iterative cycle.

2.1.1 Differential Dynamic Programming

Differential Dynamic Programing was introduced in (Mayne, 1966) (Jacobson and Mayne, 1970). It
follows the main scheme described above. Starting from the objective of maximizing the expected reward
along the trajectory τ= {s1,a1, ..., sT ,aT}

J(s1,A) =
T−1
∑

t=0

Rt(s,a) + RT (s).

Maximizing J is equivalent to finding the optimal state value function Vt(s) that maximizes the reward-
to-go for each state s and time step t

Vt(s)≡max
A

J(s1,A).

By setting VT (s) = RT (s) and applying Dynamic Programing, we can reduce the maximization over the
whole control sequence to a sequence of maximizations over a single control

Vt(s) = max
a
[Rt(a|s) +

∑

s′
Pt(s

′|s,a)Vt+1(s
′)]

= max
a
[Rt(s,a) + Vt+1(Pt(s,a))],

where Pt(s′|s,a) are the linearized dynamics at each time step of the current trajectory.
By moving to a notation that describes the perturbations around each state-action pair (s,a), we are able
to reformulate the argument of the maximization problem as

Q t(δs,δa) = Rt(s+δs,a+δa)− Rt(s,a) + Vt+1(Pt(s+δs,a+δa))− Vt+1(Pt(s,a)).

5

After expanding to second order, the Jacobians and Hessians of the dynamics can be determined. The
subscripts denote the derivatives with respect to state s and action a

Qs,t = Rs,t +P T
s,t Vs,t+1,

Qa,t = Ra,t +P T
s,t Vs,t+1,

Qss,t = Rss,t +P T
s,t Vss,t+1Ps,t + Vs,t+1Pss,t ,

Qaa,t = Raa,t +P T
a,t Vss,t+1Ps,t + Vs,t+1Paa,t ,

Qas,t = Ras,t +P T
a,t Vss,t+1Ps,t + Vs,t+1Pas,t .

For the optimal local control sequence δa∗, we maximize the function Q t(δs,δa) and get a policy
πt(δa|δs) that resembles a linear controller

δa∗ = argmax
δa

Q t(δs,δa)

= −Q−1
aa,t(Qa,t +Qas,tδs) = kt +Ktδs.

Substituting the policy πt(δa|δs) into Q t(δs,δa) leads to a quadratic value function

∆Vt = −
1
2

Qa,tQ
−1
aa,tQa,t ,

Vs,t = Qs,t −Qa,tQ
−1
aa,tQas,t ,

Vss,t = Qss,t −Qsa,tQ
−1
aa,tQas,t .

Applying the new policy to the non-linear system to get a new trajectory completes one cycle of DDP.
The main problem with this formulation, is that it greedily exploits the local dynamics and produces
policies that be can be arbitrarily different between iterations, undermining the locality and validity of
the linearization. In most cases this leads to divergence or oscillations. The authors addressed this issue
by introducing a regularization to the action-reward Hessian

Q̃aa,t =Qaa,t +µI .

which is equivalent to adding a reward for stying close to the last policy and not straying. This regular-
ization is helpful under the assumption that small changes in the policy imply small changes in the state
space and, thus, preserve the validity of the linearization.

2.1.2 Iterative Linear Quadratic Gaussian

Iterative Linear Quadratic Gaussian sets out to correct the shortcomings of DDP by offering several
improvements on the regularization and a line search algorithm.
In (Tassa et al., 2012) the authors present a new regularization on the state reward, that would force the
new trajectory to be stay close to the last one and results in modified state and action Hessian matrices

Qaa,t = Raa,t +P T
a,t(Vss,t+1 +µI)Ps,t + Vs,t+1Paa,t ,

Qas,t = Ras,t +P T
a,t(Vss,t+1 +µI)Ps,t + Vs,t+1Pas,t .

which also results in a new quadratic value function that takes into account the new regularization

∆Vt = −
1
2

kT
t Q−1

aa,t kt + kT
t Qa,t ,

Vs,t = Qs,t − K T
t Q−1

aa,t kt + K T
t Qa,t +QT

as,t kt ,

Vss,t = Qss,t − K T
t Q−1

aa,t Kt + K T
t Qas,t +QT

as,t Kt .

6

Furthermore, with aim of bounding the trajectory change even more, and preventing highly non-linear
systems from diverging, the authors also introduce a scaler α to the policy parameters

ât = at +αkt +Ktδs.

This scaler is optimized by a line search method based on the expected improvement of the reward.

2.2 Relative Entropy Policy Search

Relative Entropy Policy Search (REPS) is a model-free Reinforcement Learning approach (Peters et al.,
2010). The novelty of REPS is the introduction of a new type of bounds, that can be imposed between
updates. The bound resembles a relative entropy measure, or a Kullback-Leibler divergence, on the state-
action distribution. In a Reinforcement Learning environment this constraint is crucial to convergence,
as it preserves the experience contained in the last policy and last state distribution, that has developed
over multiple iterations and constrains the algorithm from jumping arbitrarily to new unexplored regions
of the state space. The optimization problem under REPS is given as

argmax
π(a|s)µ(s)

∑

s,a

R(s,a)µ(s)π(a|s), (2.5a)

s.t.
∑

s′

µ(s′)Φ(s′) =
∑

s,a

µ(s)π(a|s)P(s′|s,a)Φ(s′), (2.5b)

∑

s,a

µ(s)π(a|s) log
µ(s)π(a|s)

q(s,a)
≤ ε, (2.5c)

∑

s,a

µ(s)π(a|s) = 1. (2.5d)

where the objective 2.5a maximizes the reward with respect to the joint distribution over the state µ(s)
and conditional action π(a|s) and Equation 2.5c ensures that the state-action distribution µ(s)π(a|s)
stays close the old one q(s,a). Under this formulation the optimal policy is a normalized exponential

π(a|s)∝ exp
�1
η

�

η log q(s,a) + R(s,a) +
∑

s′
P(s′|s,a)θ TΦ(s′)− θ TΦ(s)

��

.

The parameters θ and η are the Lagrangian multipliers corresponding to Equations 2.5b and 2.5c and
can be optimized by a gradient descent method.

7

3 Guided Policy Search
Guided Policy Search (GPS) was developed over multiple publications (Levine and Koltun, 2013, 2014;
Levine and Abbeel, 2014). The idea as presented in (Levine and Koltun, 2013) is to introduce a set
of guiding trajectories generated under locally optimal Differential Dynamic Programming (DDP) and
weighted by Importance Sampling (IS) to exploit regions in the state space with high rewards and to
"guide" and speed-up convergence. In (Levine and Koltun, 2014) the algorithm was further modified
to ensure the usefulness of the guiding trajectories. This improvement is done by alternating between
optimizing a set of trajectories for high rewards (Trajectory Optimization), while constraining the policy
to match the actions in each trajectory thus constraining the policy update from straying into unexplored
regions of the state space (Policy Search). While the contributions in (Levine and Koltun, 2013, 2014)
are interesting in their own standing, this thesis will concentrate on the core of Guided Policy Search
in its latest and most refined version as presented in (Levine and Abbeel, 2014), which imposes a KL-
divergence bound on the trajectory distribution between iterations.

3.1 Optimization Problem

In their work the authors adopt a trajectory-based notation (Levine and Abbeel, 2014)

argmax
p(τ)

∫

τ

R(τ)p(τ)dτ, (3.1a)

s.t.

∫

τ

p(τ) log
p(τ)
q(τ)

dτ ≤ ε, (3.1b)

p(τ) = p(s1)
T−1
∏

t=1

Pt(s
′|s,a)πt(a|s). (3.1c)

where the objective 3.1a maximizes the reward R(τ) along a trajectory τ = {s1, a1, ..., sT , aT}, while
Equation 3.1b provides the KL-bound on the current and last trajectory distribution p(τ) and q(τ).
Equation 3.1c propagates the state s along the trajectory under the local linear dynamics P(s′|s,a) and
the Gaussian policy π(a|s) starting from the state distribution p(s1).
We find this notation to be somewhat unclear, therefore we transform the problem to its step-based
equivalent. Thus, we are able to show that the KL-divergence bound imposed on the trajectory distribu-
tion p(τ) can be, in fact, simplified to a bound set on the policy π(a|s). For the purpose of clarity we
preform this transformation explicitly. By substituting the dynamics constraint 3.1c into the KL-bound
3.1b and replacing trajectories τ with state-action pairs (s,a) we can rewrite the integral in 3.1b

DKL(p(τ)||q(τ)) =
∫

τ

p(τ) log
p(s1)

∏T−1
t=1 Pt(s′|s,a)πt(a|s)

p(s1)
∏T−1

t=1 Pt(s′|s,a)qt(a|s)
dτ (3.2a)

=
T−1
∑

t=1

∫

s

∫

a

pt(s,a) log
πt(a|s)
qt(a|s)

dads (3.2b)

=
T−1
∑

t=1

∫

s

pt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads. (3.2c)

8

From Equation 3.2c, it is clear that KL-bound on the trajectory distribution is equivalent to an expected
bound on the policy at each time step. At this point we are able to rewrite the whole problem with our
new state-action-pairs notation

argmax
πt (a|s)

T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds, (3.3a)

s.t. ∀s′,∀t > 1

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads= µt(s

′), (3.3b)

∀t < T

∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads≤ ε, (3.3c)

∀t < T,∀s

∫

a

πt(a|s)da= 1, (3.3d)

∀s µ1(s) = p1(s). (3.3e)

where the reward R(s,a) is to be maximized with respect to the state-action distribution, given by the
policy πt(a|s) and its induced state distribution µt(s), while under the system dynamics constraint 3.3b,
that propagates the initial state distribution through time and is referred to as a forward pass. Equation
3.3c is a constraint on the expected KL-bound on the policy for each time step, whereas Equation 3.3d
ensures the policy is a distribution, and Equation 3.3e specifies the initial state distribution µ1(s).

3.2 Dual Problem

For the purpose of this thesis we produce a complete derivation of the closed-form solution of Guided
Policy Search under the assumptions of linear dynamics, Gaussian noise and quadratic rewards, see
Appendix A. We start by applying the method of Lagrangian multipliers to formulate the so called pri-
mal problem, which introduces a new Lagrangian multiplier per constraint and time step. The state-
dependent Lagrangian multipliers Vt(s) are associated with the dynamics constraint 3.3b and will later
resemble the state value function, while αt are associated with the KL-bound given in Equation 3.3c.
By solving for the optimal policy πt(a|s) we obtain a normalized exponential of the state-action value
function Q t(s,a)

πt(a|s)∝ exp
� 1
αt

�

αtqt(a|s) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

. (3.4)

By plugging Equation 3.4 into the primal problem we arrive at the Lagrangian dual L(µt , Vt ,αt)

L(µt , Vt ,αt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
T
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε

+
T−1
∑

t=1

∫

s

αtµt(s) log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads.

(3.5)

The dual L is a function of the state distribution µt(s) and the Lagrangian multiplier Vt(s) and αt . By
exploiting the duality of this optimization, we are able to maximize the primal problem by minimizing
the dual function (Boyd and Vandenberghe, 2009). Therefore, we take the partial derivatives of L and
apply dual descent in their respective directions,

9

∂ L
∂ µt

=







RT (s)− VT (s) , t = T

Vt(s)−αt log
∫

a exp
�αt log qt(a|s) + Rt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)
αt

�

, t < T
, (3.6a)

∂ L
∂ Vt

=







p1(s)−µ1(s) , t = 1

µt(s)−
∫

ŝ

∫

aπt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ, a)dad ŝ , t > 1
, (3.6b)

∂ L
∂ αt

= ε−
∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads. (3.6c)

Setting the derivatives in Equations 3.6a and 3.6b to zero delivers two optimality conditions for the state
value function Vt(s) and the state distribution µt(s), that correspond to a backward pass (backward prop-
agation of future reward) and forward pass (forward propagation of the state distribution) respectively

Vt(s) =







RT (s) , t = T

αt log
∫

a exp
�αt log qt(a|s) + Rt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)
αt

�

, t < T
, (3.7a)

µt(s) =







p1(s) , t = 1
∫

ŝ

∫

aπt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ,a)dad ŝ , t > 1
. (3.7b)

Under the LQG assumptions, these passes can be computed in closed form, whereas αt have to be
optimized by gradient descent. Considering the partial derivative of L with respect to αt , it is worth
noting, that at the optimal point, the KL-constraint given in Equation 3.3c is met exactly at the bound ε,
because the gradient in Equation 3.6c becomes zero. Finally, by plugging Equations 3.7a and 3.7b into
Equation 3.8 the dual simplifies to

L(µt , Vt ,αt) =

∫

s

V1(s)µ1(s)ds+
T−1
∑

t=1

αtε. (3.8)

3.3 Policy Dependent Reward

An interesting insight into the state value function Vt(s), which stands for the expected reward-to-go
and is defined in Equation 3.7a, is the emergence of new terms that augment the immediate reward to
include a policy-related term qt(a|s) in addition to the standard state-action reward as provided by a
time-variant function Rt(s,a) in a setting analog to DDP and iLQG

rt(s,a) = Rt(s,a) +αt log qt(a|s). (3.9)

Under linear-Gaussian dynamics Pt(s′|s,a) = N (s′|Ats+ bta+ ct ,Σs′) and quadratic reward Rt(s,a) =
(z− s)T Mt(z− s) + aT Hta, we show that the overall reward rt(s,a) is also quadratic

rt(s,a) = sT Rss.ts+ aT Raa.ta+ aT RT
sa.ts+ sT Rsa.ta+ sT rs.t + aT rs.t + r0,t . (3.10)

10

Rss,t =Mt −
αt

2
(Kq

t)
T (Σq

a,t)
−1Kq

t , (3.11a)

Raa,t = Ht −
αt

2
(Σq

a,t)
−1, (3.11b)

Rsa,t =
αt

2
(Kq

t)
T (Σq

a,t)
−1, (3.11c)

rs,t = −αt(K
q
t)

T (Σq
a,t)
−1kq

t − 2Mtz, (3.11d)

ra,t = αt(Σ
q
a,t)
−1kq

t , (3.11e)

r0,t = zT Mtz−αt log

s

�

�

�2πΣq
a,t

�

�

�−
αt

2
(kq

t)
T (Σq

a,t)
−1kq

t . (3.11f)

A quadratic reward function rt(s,a), by definition, forces a quadratic state value function Vt(s)

Vt(s) = sT Vts+ sT vt + vt . (3.12)

In turn and by considering Equation 3.4, a quadratic state value function gives rise to a time-variant
linear-Gaussian optimal policy

πt(a|s) =N (a|kπt +Kπt s,Σπa,t). (3.13)

3.4 Implementation

In this section we describe the structure of our version of Guided Policy Search as we have implemented
it. For the purpose of brevity, we do not consider the process of linearization. Generally, linearization is
done by sampling full trajectories from the non-linear system under the current policy and fitting linear-
Gaussian dynamics at each time step. The implementation as discussed here, focuses on the optimization
step, and presupposes the existence of the linearized dynamics.
Based on the derivation of the dual function from the previous sections, we have transformed the prob-
lem into a convex minimization problem over three parameters per time step Vt(s), µt(s) and αt . How-
ever, since Equations 3.7a and 3.7b deliver closed-form solutions to the optimal state value function
Vt(s) and state distribution µt(s) as functions of αt , the problem is reduced to a minimization of the dual
with respect to αt and can be iteratively solved by a gradient descent scheme. In this case, the whole
procedure can be seen as a batch-coordinate-descent optimization with respect to Vt(s), µt(s) and αt .
Algorithm 1 shows the step by step sequence of the minimization.
Although a gradient descent implementation is a straight forward procedure, it is recommended to use
more sophisticated optimizers as provided by Mathworks MATLAB or Non-Linear Optimization Library
(NLopt) (Johnson, 2016), because they provide advanced heuristics of modulating the step size along
the gradient and a numerical estimate of the second degree derivative (Hessian), generally leading to
faster convergence and less computation cost.
For reasons related to computational stability and efficiency, all our algorithms will be implemented in
the framework of the Armadillo Linear Algebra Library (Sanderson, 2010).

11

input : T ; /* time horizon */

Pt(s′|s,a) ; /* linearized dynamics */

µ1(s) ; /* initial state distribution */

qt(a|s) ; /* last policy */

Mt ,Ht ,zt ; /* reward matrices and goal state */

output: πt(a|s) ; /* optimal policy */

Vt(s) ; /* optimal state value function */

µt(s) ; /* state distribution under optimal policy */

αt ; /* optimal Lagrangian parameters αt */

initialize αt ; /* initial guess of αt */

/* minimizing the dual by gradient descent */

while L(µt , Vt ,αt) not at minimum do

/* compute augmented reward function using Equation 3.10 */

rt(s,a)← overall_reward(Mt ,Ht ,zt , qt(a|s),αt);

/* compute value function and policy using Equations 3.7a and 3.4 */

[Vt(s),πt(a|s)]← backward_pass(rt(s,a),Pt(s′|s,a),αt);

/* compute the state distribution using Equation 3.7b */

µt(s)← forward_pass(µ1(s),πt(a|s),Pt(s′|s,a));

/* update Lagrange dual value with Equation 3.8 */

L(µt , Vt ,αt)← update_dual(V1(s),µ1(s),αt ,ε);

/* compute Lagrange dual gradient with respect to αt using Equation 3.6c */
∂ L
∂ αt

← dual_alpha_gradient(µt(s),πt(a|s), qt(a|s),ε);

/* update αt along the gradient with step λt */

αt = αt −λt
∂ L
∂ αt

;

Algorithm 1: Guided Policy Search in Pseudo-Code

12

4 State-Action Bound Policy Search
At the beginning of this thesis we introduced the general scheme of applying Stochastic Optimal Control
to non-linear systems. The main challenge is the absence of a theoretical guarantee on the improvement
of the induced trajectory after each iteration. This shortcoming is due to the restricted validity of the
local dynamics to a small region around the linearization point. A greedy exploitation of the linearized
dynamics may lead to policies that force the non-linear system into regions of the state space that are "far
away" from what is expected under the linearized model making the optimization step under the model
meaningless. Therefore, it is crucial to maintain a bound on the state distribution between iterations in
order to ensure the validity of the locally optimized controller.
Iterative Linear Quadratic Gaussian (iLQG) tries to solve this problem by introducing a scalar to the
policy parameters which is optimized by a backtracking line-search scheme that increases or reduces
the step size based on the improvement in the expected reward. Guided Policy Search follows a similar
logic; by introducing a relative entropy bound on the change of the stochastic policy, the induced state
distribution becomes implicitly bounded. However, for highly dynamical systems this condition would
require imposing very small steps on the policy, which might dramatically slow down convergence and
cost a considerable extra amount of samples on the real system.
In this chapter we aim to address this issue. We propose the introduction of an explicit relative entropy
bound on the state-action distribution and set out to show that such a bound would allow taking larger
steps in the policy space while preventing the state distribution from diverging, thus reducing the number
of needed iterations and overall samples.

4.1 Optimization Problem

We take a similar formulation to Guided Policy Search, but replace the KL-bound on the policy distribu-
tion by a bound on the state-action distribution

argmax
πt (a|s)

T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds, (4.1a)

s.t. ∀s′,∀t > 1

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads= µt(s

′), (4.1b)

∀t < T

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads≤ ε, (4.1c)

∀s,∀t < T

∫

a

πt(a|s)da= 1, (4.1d)

∀s, t = 1 µ1(s) = p1(s). (4.1e)

The objective in 4.1a seeks to maximize the reward under the final state-action distribution pt(s,a) =
µt(s)πt(a|s), while 4.1b keeps the state distribution µt(s) under the constraint of the linearized system
dynamics. Our novelty state-action bound is introduced in 4.1c, with qt(s,a) representing the state-
action distribution of the last linearization. The remaining constraints 4.1d and 4.1e ensure that the
policy is a distribution and specify the initial state distribution respectively.

13

4.2 Dual Problem

As in our derivation of Guided Policy Search in Chapter 3, we apply the method of Lagrangian multipliers
to formulate the primal problem with one Lagrangian multiplier per constraint and time step. The full
derivation under the LQG assumptions is listed in Appendix B. In this case, the optimal policy is also a
normalized exponential of the state-action value function Q t(s,a)

πt(a|s)∝ exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

. (4.2)

We obtain the Lagrangian dual function L(µt , Vt ,αt) by substituting the optimal policy Equation 4.2 into
the primal problem

L =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

∫

s

αtµt(s) log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads.

(4.3)

According to the principle of duality, minimizing the dual function is equivalent to maximizing the primal
problem (Boyd and Vandenberghe, 2009). Therefore, we minimize L by taking its partial derivatives

∂ L
∂ µt

=

(

RT (s)− VT (s) , t = T

Vt(s)−αt log
∫

a exp
�αt log qt(s,a)−αt logµt(s)−αt + Rt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)
αt

�

, t < T
, (4.4a)

∂ L
∂ Vt

=







p1(s)−µ1(s) , t = 1

µt(s)−
∫

ŝ

∫

aπt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ, a)dad ŝ , t > 1
, (4.4b)

∂ L
∂ αt

= ε−
∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads. (4.4c)

At the optimal point of L the partial derivatives are equal to zero, which can be seen as optimality
conditions for the state value function Vt(s) and the state distribution µt(s)

Vt(s) =







RT (s) , t = T

αt log
∫

a exp
�αt log qt(s,a)−αt logµt(s)−αt + Rt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)
αt

�

, t < T
,

(4.5a)

µt(s) =







p1(s) , t = 1
∫

ŝ

∫

aπt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ, a)dad ŝ , t > 1
. (4.5b)

Analog to Guided Policy Search in Chapter 3, the optimality conditions resemble a backward pass and
a forward pass that can be computed in closed-form in an LQG environment. Furthermore, the KL-
constraint 4.1c is being met exactly at the bound ε due to Equation 4.4c becoming equal to zero at
the optimal point. Also, using Equations 4.5a and 4.5b, we can further simplify the Lagrange dual
L(µt , Vt ,αt)

L(µt , Vt ,αt) =

∫

s

V1(s)µ1(s)ds+
T−1
∑

t=1

αt(ε+ 1). (4.6)

14

4.3 State-Action Dependent Reward

The introduction of the state-action constraint 4.1c results in an augmented reward function. The new
terms not only account for distance to the last policy qt(a|s), but also weight the distance between µt(s),
the current state distribution, and qt(s), the state distribution under the last policy around which the
system was linearized

rt(s,a) = Rt(s,a) +αt log qt(s,a)−αt logµt(s)−αt

= Rt(s,a) +αt log qt(a|s) +αt log qt(s)−αt logµt(s)−αt .
(4.7)

By substituting linear-Gaussians dynamics P(s′|s,a) = N (s|τq
s,t ,Σ

q
s,t), a Gaussian state-action distribu-

tion qt(s,a) = N (s,a|τq
s,a,t ,Σ

q
s,a,t) and a quadratic reward function Rt(s,a) = (z− s)T Mt(z−)+ aT Hta,

the overall reward rt(s,a) becomes also quadratic

rt(s,a) =sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t , (4.8a)

Rss,t =Mt −
αt

2
(Kq

t)
T (Σq

a,t)
−1Kq

t −
αt

2
(Σq

s,t)
−1 +

αt

2
(Σp

s,t)
−1, (4.8b)

Raa,t = Ht −
αt

2
(Σq

a,t)
−1, (4.8c)

Rsa,t =
αt

2
(Kq

t)
T (Σq

a,t)
−1, (4.8d)

rs,t = −αt(K
q
t)

T (Σq
a,t)
−1kq

t +αt(Σ
q
s,t)
−1τ

q
s,t −αt(Σ

p
s,t)
−1τ

p
s,t − 2Mtz, (4.8e)

ra,t = αt(Σ
q
a,t)
−1kq

t , (4.8f)

r0,t = zT Mtz−
αt

2
log

�

�

�2πΣq
a,t

�

�

�−
αt

2
(kq

t)
T (Σq

a,t)
−1kq

t (4.8g)

−
αt

2
log |2πΣq

s,t | −
αt

2
(τq

s,t)
T (Σq

s,t)
−1τ

q
s,t −αt (4.8h)

+
αt

2

�

log |2πΣp
s,t |+ (τ

p
s,t)

T (Σp
s,t)
−1τ

p
s,t

�

. (4.8i)

4.4 Implementation

In this section we present the implementation of State-Action Bound Policy Search (SAPS). We ignore the
linearization step and focus on the convex minimization problem of the dual L(µt , Vt ,αt) as presented
in the previous sections.

4.4.1 Circular Dependency of Vt(s) and µt(s)

The equations of the backward pass 4.5a and forward pass 4.5b introduce a new algorithmic challenge
that did not occur under Guided Policy Search. The emergence of new state-distribution-dependent
terms in the augmented reward function rt(s,a) of the state value function Vt(s), generates a circular
dependency between Vt(s) and the state distribution µt(s). This relation becomes clear when we recog-
nize that the state distribution µt(s) is a function of the policy πt(a|s), Equation 4.5b, and that πt(a|s)
is in its self a function of the state value function Vt(s), Equation 4.2.

4.4.2 Block Descent over Vt(s) and µt(s)

At this point we propose a new approach to calculate the state value function Vt(s) and state distribution
µt(s). The Equations 4.5a and 4.5b still offer optimality conditions and can be used iteratively in a

15

block-descent scheme on the dual L(µt , Vt ,αt). Starting with an initial and broad guess of the state
distribution pt(s), we iteratively apply the backward pass, to compute Vt(s) and π(a|s), and forward
pass, to compute µt(s), and update pt(s) by interpolating in the direction of µt(s) until both distributions
match. Algorithm 2 provides a detailed view of this procedure.

input : T ; /* time horizon */

Pt(s′|s,a) ; /* linearized dynamics */

µ1(s) ; /* initial state distribution */

qt(a|s) ; /* last policy */

qt(s) ; /* last state distribution */

αt ; /* current Lagrangian parameters αt */

Mt ,Ht ,zt ; /* reward matrices and goal state */

output: πt(a|s) ; /* policy under current αt */

Vt(s) ; /* state value function under current αt */

µt(s) ; /* state distribution under current αt */

initialize pt(s) ; /* initial guess of state distribution */

L(µt , Vt ,αt) ; /* initial dual value */

γt ; /* interpolation step size */

/* minimizing the dual with respect to Vt(s) and µt(s) */

while pt(s) 6= µt(s) do

/* compute augmented reward function using Equation 4.7 */

rt(s,a)← overall_reward(Mt ,Ht ,zt , qt(a|s), qt(s), pt(s),αt);

/* compute value function and policy using Equations 4.5a and 4.2 */

[Vt(s),πt(a|s)]← backward_pass(rt(s,a),Pt(s′|s,a),αt);

/* compute the state distribution using Equation 4.5b */

µt(s)← forward_pass(µ1(s),πt(a|s),Pt(s′|s,a));

/* check KL-divergence between pt(s) and µt(s) */

if DK L(pt(s),µt(s))< threshold then
break;

/* interpolate pt(s) in the direction of µt(s) with step size γt */

p̃t(s)← interpolate_distribution(pt(s),µt(s));

/* update Lagrange dual value with Equation 4.6 */

L̃(µt , Vt ,αt)← update_dual(V1(s), p̃1(s),αt ,ε);

/* check if the dual reached a lower value */

if L̃ < L then
L = L̃;
pt(s) = p̃t(s) ;

else
γt = 0.5 · γt ;

Algorithm 2: State-Action Policy Search: Dual Block Descent over Vt(s) and µt(s) in Pseudo-Code

16

4.4.3 Gradient Descent over αt

input : T ; /* time horizon */

Pt(s′|s,a) ; /* linearized dynamics */

µ1(s) ; /* initial state distribution */

qt(a|s) ; /* last policy */

qt(s) ; /* last state distribution */

Mt ,Ht ,zt ; /* reward matrices and goal state */

output: πt(a|s) ; /* optimal policy */

Vt(s) ; /* optimal state value function */

µt(s) ; /* optimal state distribution */

initialize αt ; /* initial guess of αt */

/* minimizing the dual by gradient descent */

while L(µt , Vt ,αt) not at minimum do

/* do block-descent to compute Vt(s) and µt(s) */

[Vt(s),πt(a|s),µt(s)]← block_descent(Pt(s′|s,a), qt(a|s), qt(s), pt(s),Mt ,Ht ,zt ,αt);

/* update Lagrange dual value with Equation 4.6 */

L(µt , Vt ,αt)← update_dual(V1(s),µ1(s),αt ,ε);

/* compute Lagrange dual gradient with respect to αt using Equation 4.4c */
∂ L
∂ αt

← dual_alpha_gradient(µt(s),πt(a|s), qt(a|s), qt(s),ε);

/* update αt along the gradient with step λt */

αt = αt −λt
∂ L
∂ αt

;

Algorithm 3: State-Action Policy Search: Dual Gradient Descent over αt in Pseudo-Code

4.4.4 Block Coordinate Descent

A significant draw back of Algorithm 3 is the computation cost of preforming the block descent over
Vt(s) and µt(s) for every gradient-descent step of αt . Therefore, we suggest a modified algorithm, that
implements a different block-coordinate-descent with respect to Vt(s), µt(s) and αt . By holding the state
value function Vt(s) constant while optimizing αt , and vice versa, we are able to optimize both separately
and reduce computation time dramatically. However, that would require us to reconsider the optimality
condition of µt(s) when optimizing αt . Thus, we need to retake the partial derivative of Equation 4.6
with respect to µt(s), we arrive at a different closed-form condition for µt(s)

µt(s) =N (s|Vt(s), V̂t(s),αt), (4.9)

where V̂t(s) is a term that resembles an αt -dependent state value function

V̂t(s) = log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da. (4.10)

A full derivation of the coordinate-descent scheme can be found in Appendix B.

17

input : T ; /* time horizon */

Pt(s′|s,a) ; /* linearized dynamics */

µ1(s) ; /* initial state distribution */

qt(a|s) ; /* last policy */

qt(s) ; /* last state distribution */

Mt ,Ht ,zt ; /* reward matrices and goal state */

output: πt(a|s) ; /* optimal policy */

Vt(s) ; /* optimal state value function */

µt(s) ; /* optimal state distribution */

initialize αt ; /* initial guess of αt */

/* minimizing the dual by coordinate descent */

while L(µt , Vt ,αt) not at minimum do

/* do block-descent to compute Vt(s) and µt(s) */

[Vt(s),πt(a|s),∼]← block_descent(Pt(s′|s,a), qt(a|s), qt(s), pt(s),Mt ,Ht ,zt ,αt);

/* minimize Lagrange dual with respect to αt */

while L(µt ,αt) not at minimum do

/* compute V̂t(s) with Equation 4.10 */

[V̂t(s), π̂t(s)]← co_descent_backward_pass(Pt(s′|s,a), Vt(s), qt(a|s), qt(s),Mt ,Ht ,zt ,αt);

/* compute state distribution µ̂t(s) with Equation 4.9 */

µ̂t(s)← co_descent_state_distribution(V̂t(s), Vt(s),αt);

/* update Lagrange dual value with Equation 4.3 */

L(µt ,αt)← update_dual(Vt(s), V̂t(s), µ̂t(s),αt ,ε);

/* compute Lagrange dual gradient with respect to αt using Equation 4.4c */
∂ L
∂ αt

← dual_alpha_gradient(µ̂t(s), π̂t(a|s), qt(a|s), qt(s),ε);

/* update αt along the gradient with step λt */

αt = αt −λt
∂ L
∂ αt

;

Algorithm 4: State-Action Policy Search: Dual Coordinate Descent in Pseudo-Code

18

5 Entropy State-Action Bound Policy Search
The introduction of a stochastic policy to the classical Markov Decision Process formulation of Opti-
mal Control, poses challenges similar to problems that occur in general Stochastic Search settings
(Abdolmaleki et al., 2015). These issues boil down to the problem of exploration vs. exploitation.
The stochasticity of a policy adds to the ability of an algorithm to explore the state-action space. The
challenge lies in systematically controlling the variance of the policy in a way that allows for exploration
but also converges to a mean controller that maximizes the expected reward. Algorithms like Guided
Policy Search and State-Action Bound Policy Search can suffer from premature convergence, because of
the nature of their relative entropy bounds. The KL-divergence acts on the mean and variance of a distri-
bution and may result in the algorithm opting to greedily maximizing its reward by rapidly shrinking the
variance and barely exploring in the direction of mean actions. To counteract this dynamic, we introduce
a new constraint on the entropy of the policy that aims to maintain a lower bound of stochasticity and,
thus, forces exploration in the action space.

5.1 Optimization Problem

The new optimization problem is analog to that of State-Action Bound Policy Search with the addition
of an entropy constraint in Equation 5.1d

argmax
πt (a|s)

T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds, (5.1a)

s.t. ∀s′,∀t > 1

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads= µt(s

′), (5.1b)

∀t < T

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads≤ ε, (5.1c)

∀t < T

∫

s

µt(s)

∫

a

πt(a|s) logπt(a|s)dads≤ δ, (5.1d)

∀s,∀t < T

∫

a

πt(a|s)da= 1, (5.1e)

∀s, t = 1 µ1(s) = p1(s). (5.1f)

The hyperparameter δ can be chosen in such a way, for example, to maintain or increase the variance or
entropy of the last policy qt(a|s) by some factor.

5.2 Dual Problem

Just as in GPS and SAPS, we transform the primal problem to its dual equivalent by solving for πt(a|s).
The introduction of the entropy constraint 5.1d results in a new Lagrangian variable for each time step
βt . A complete derivation of Entropy State-Action Bound Policy Search is in Appendix C

πt(a|s)∝ exp
� 1
αt + βt

�

Rt(s,a) +αt log qt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

. (5.2)

19

We substitute πt(a|s) into the primal problem to get the dual function L(µt , Vt ,αt ,βt)

L =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

(αt + βt)

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads.

(5.3)

For dual minimization, we take the partial derivatives of L(µt , Vt ,αt ,βt) and set them to zero to get the
optimality conditions of the state value function Vt(s) and state distribution µt(s)

∂ L
∂ µt

=

(

RT (s)− VT (s) , t = T

Vt(s)− (αt + βt) log
∫

a exp
�αt log qt(s,a)−αt logµt(s)−αt + Rt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)
αt + βt

�

, t < T
,

(5.4a)

∂ L
∂ Vt

=







p1(s)−µ1(s) , t = 1

µt(s)−
∫

ŝ

∫

aπt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ, a)dad ŝ , t > 1
, (5.4b)

∂ L
∂ αt

= ε−
∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads (5.4c)

∂ L
∂ βt

= δ−
∫

s

µt(s)

∫

a

πt(a|s) logπt(a|s)dads. (5.4d)

By plugging these optimality conditions into Equation 5.3 we get a simplified dual L(µt , Vt ,αt ,βt)

L(µt , Vt ,αt ,βt) =

∫

s

V1(s)µ1(s)ds+
T−1
∑

t=1

αt(ε+ 1) +
T−1
∑

t=1

βtδ. (5.5)

5.3 Augmented Reward

From Equations 5.4b and 5.4a, it is clear that the reward function rt(s,a) is similar to that of the State-
ACtion Bound Policy Search in Equation 4.7. However, the temperature parameter of the state-action
value function Q t(s,a) and the weighting of the state value function Vt(s) have the added value of βt

Q t(s,a) =
1

αt + βt

�

rt(s,a) +EP[Vt+1(s
′)]
�

, (5.6a)

Vt(s) =(αt + βt) log

∫

a

exp
�

Q t(s,a)
�

da. (5.6b)

In Appendix C, we do full derivation of ESAPS under linear Gaussian dynamics P(s′|s,a) = N (s′|Ats+
bta + ct ,Σs′) and time variant quadratic rewards Rt(s,a) = (z − s)T Mt(z − s) + aT Hta and show the
resulting value functions Q t(s,a) and Vt(s) are also quadratic and the policy πt(a|s) is a linear-Gaussian
distribution.

20

5.4 Implementation

The implementation of ESAPS is similar in its structure to SAPS with an additional optimization over βt .
Algorithm 5 shows the details of the coordinate-descent scheme.

input : T ; /* time horizon */

Pt(s′|s,a) ; /* linearized dynamics */

µ1(s) ; /* initial state distribution */

qt(a|s) ; /* last policy */

qt(s) ; /* last state distribution */

Mt ,Ht ,zt ; /* reward matrices and goal state */

output: πt(a|s) ; /* optima policy */

Vt(s) ; /* optimal state value function */

µt(s) ; /* optimal state distribution */

initialize αt ,βt ; /* initial guess of αt ,βt */

/* minimizing the dual by coordinate descent */

while L(µt , Vt ,αt ,βt) not at minimum do

/* do block-descent to compute Vt(s) and µt(s) */

[Vt(s),πt(a|s),∼]← block_descent(Pt(s′|s,a), qt(a|s), qt(s), pt(s),Mt ,Ht ,zt ,αt ,βt);

/* minimize Lagrange dual with respect to αt */

while L(µt ,αt) not at minimum do

/* compute state value function V̂t(s) */

[V̂t(s), π̂t(s)]←
co_descent_backward_pass(Pt(s′|s,a), Vt(s), qt(a|s), qt(s),Mt ,Ht ,zt ,αt ,βt);

/* compute state distribution µ̂t(s) */

µ̂t(s)← co_descent_state_distribution(V̂t(s), Vt(s),αt ,βt);

/* update Lagrange dual value with Equation 5.3 */

L(µt ,αt ,βt)← update_dual(Vt(s), V̂t(s), µ̂t(s),αt ,βt ,ε,δ);

/* compute Lagrange dual gradient with respect to αt using Equation 5.4c */
∂ L
∂ αt

← dual_alpha_gradient(µ̂t(s), π̂t(a|s), qt(a|s), qt(s),ε);

/* compute Lagrange dual gradient with respect to βt using Equation 5.4d */
∂ L
∂ βt

← dual_beta_gradient(µ̂t(s), π̂t(a|s),δ);

/* update αt βt along the gradient with step λt and ζt */

αt = αt −λt
∂ L
∂ αt

; βt = βt − ζt
∂ L
∂ βt

Algorithm 5: Entropy State-Action Policy Search: Dual Coordinate Descent in Pseudo-Code

21

6 Evaluation

6.1 Double Pendulum Task

The double pendulum task is a setup with a fully actuated two link arm under the influence of gravity.
The objective of the learners is to do a full swing up of the pendulum starting from the down-right posi-
tion and try to stabilize the tail of the trajectory around the up-right posture. To make the task harder,
we introduce friction to the joints and shift the center of mass towards the end of the second link. Fur-
thermore, we limit the allowed torque by applying sharp non-linear constraints. The number of samples
used for linearization is 25 per iteration.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
·106

Iterations

R
ew

ar
d

GPS
SAPS
ESAPS

Figure 6.1.: Double Pendulum Task: The total expected reward of GPS, SAPS and ESAPS in comparison
during a swing-up task. Each learner is given 25 iterations per trial to find the best policy.
To account for the stochasticity of the setup, 10 trails were preformed and averaged. The
hyperparameters of each learner were optimized separately to reflect its best performance.

Figure 6.1 shows a direct comparison between GPS, SAPS and ESAPS after independent optimization of
the respective hyperparameters. After 25 iterations, GPS reaches the lowest reward and demonstrates
the highest rate of oscillation during the last 5 iteration, which is due to the system prematurely running

22

into the torque limits. SAPS and ESAPS both out preform GPS by reaching the same reward level after
only have the number of iterations or less.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

M
ax

Po
lic

y
St

ep

GPS
SAPS
ESAPS

Figure 6.2.: Double Pendulum Task: The maximum change in the policy for each iteration of GPS, SAPS
and ESAPS. GPS has a constant step that is equal its KL-bound. SAPS takes significantly bigger
steps while maintaining the upper bound on the state-action distribution. ESAPS is able to
take the largest steps due to its ability to maintain a larger variance

Figure 6.2 illustrates the maximum KL-divergence of the policy after each iteration. The results validate
our assumption, that by bounding the state-action distribution in SAPS and ESAPS, we are able take
larger steps in the policy space without the risk of leaving the vicinity of the linearized dynamics. Also,
by maintaining a significant portion of its entropy, ESAPS is capable of taking larger steps in the direction
of the mean action.

6.2 Quad Pendulum Task

The quad pendulum task is similar to that of the double pendulum, albeit with much higher complexity
in the dynamics. The pendulum is fully actuated and has to be swung-up and stabilized in the up-right
position. We only specify the end-points of the trajectory for stabilization and forgo the specification of
any other via-points. The number of samples used for linearization is 100 per iteration.
Figure 6.3 offers a comparison of the total expected reward of ESAPS against GPS. The hyperparameters
of both algorithms were optimized independently. It is clear that ESAPS outperforms GPS by a very large
margin, reaching similar reward levels after only 25 iterations compared to 50 iterations for GPS.
A justification for this difference in performance is found in Figure 6.4, that compares the maximum
policy step that both algorithms can take without risking divergence. ESAPS can, at least for some time
steps, take steps 6-7 times the step of GPS without compromising the integrity of the linearization.

6.3 Discussion

Based on the results we have presented, it is clear that our assumptions have been validated to some
extent. In direct comparison to GPS, we were able to show the impact of bounding the state distribution
to preserve the validity of the linearization, as it allowed us to execute larger steps in the policy space
and significantly reduce the number of iterations and samples. Also, the existence of the an entropy
lower bound has contributed to maintaining exploration and, thus, reaching better end policies.

23

5 10 15 20 25 30 35 40 45 50
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
·106

Iterations

R
ew

ar
d

GPS
ESAPS

Figure 6.3.: Quad Pendulum Task: The expected reward of GPS and ESAPS. Each learner is given 50 itera-
tions. For a statistical mean of the expected reward, 10 trails were preformed and averaged.
The hyperparameters of each learner were optimized separately to reflect its best perfor-
mance. The final result shows ESAPS outperforming GPS significantly.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

Iterations

M
ax

Po
lic

y
St

ep

GPS
ESAPS

Figure 6.4.: Quad Pendulum Task: The maximum step in the policy space for each iteration of GPS and
ESAPS. The step of GPS, per definition, is constant and equal its KL-bound. ESAPS, however,
modulates the maximum step size based on the state-action bound

24

7 Future Work
In this chapter we suggest a possible list of improvements and areas of further research, based on the
encouraging results we have presented.

7.1 Separate Bounds on State and Action

Our main contribution in this thesis has been the introduction of an upper bound on the change of
state distribution in iterative Stochastic Optimal Control methods. We have chosen to achieve that by
bounding the state-action distribution. However, it is conceivable that two separate bounds, one on the
policy and one the state distribution, may carry some advantages, such as being able to set independent
upper or lower bounds on the policy change.

7.2 Comparison to Full Gradient Descent

In our derivations we have shown that we are able to compute the optimal value function and state
distribution in closed-form based on two optimality conditions from the dual partial derivatives. This
formulation reduces the minimization of the dual function to a gradient descent problem over the La-
grangian multipliers associated with relative entropy constraint. In the future we plan to analyze the
possibility of applying full gradient descent on the value function and state distribution and comparing
the search direction to that of the optimality conditions.

7.3 Principled Control of Policy Entropy

By adding the entropy constraint on the policy in Entropy Bound State Action Policy Search, we were
able to prevent the decay of the policy variance, allowing us to explore the action space for a larger
number of iterations. A possible extension is the introduction of some heuristics that would not only
maintain the variance but also increase it. Such ability to manipulate the entropy would help in escaping
shallow local minima that might result of sub-optimal initialization of the policy.

7.4 Reformulation for Deterministic Policies

By concentrating on the formulation of Guided Policy Search, we are limited to a class of algorithms that
try to optimize a stochastic policy. However, the original formulation of the Markov Decision Process does
not necessarily require such a policy. In fact, it states that the optimal policy is a deterministic controller.
Based on this insight, it may be interesting to reformulate the problem along the lines of Differential
Dynamic Programming and Iterative Quadratic Gaussian and exploring equivalent regularizations that
correspond to what we have introduces in this thesis.

7.5 Further Evaluations on Larger and Real Systems

Although our results are promising, further comparisons to other state-of-the-art algorithms are still
needed for stronger validation. Also the application on high dimensional and real systems would help us
understand the scalability of computation time and feasibility in regard to the number of samples.

25

8 Conclusion
Stochastic Optimal Control with linearized dynamics is a powerful technique for learning optimal control
policies of highly non-linear systems. In this thesis we have investigated and introduced several varia-
tions of state-of-the-art algorithms in this field.
In our introduction we have discussed a major issue in this class of algorithms, which is its dependency
on the validity of the model around the linearization point. Hence, it is crucial to provide guarantees
that would prevent a greedy exploitation of the local dynamics.
In Chapter 3, we went on to analyze a recent approach, Guided Policy Search, that addresses this issue,
by forcing a relative entropy bound on the trajectory distribution between iterations. We succeeded in
reformulating GPS and were able to show that its proposed constraint is equivalent to bounding the
policy update at each time step. We have also argued that such an approach only implicitly bounds the
state distribution around which the system is linearized. Thus, to avoid divergence in highly dynamical
systems, the algorithm is limited to very small updates on the policy, which would, in turn, increase the
number of iteration and samples needed.
In Chapter 4, relying on these insights, we proposed a new constraint that explicitly imposes a relative
entropy bound on the state distribution by bounding the state-action distribution instead of the policy.
This addition has resulted in a number of new algorithmic challenges, which we were able to deal with.
The main issue was the emergence of new reward terms that encode the distance between the current
and last state distribution, which has lead to a circular dependency between the value function and state
distribution, which we were able to solve by applying a block-coordinate-descent scheme.
By concentrating on a class of algorithms that require a stochastic policy and due to the nature of the
relative entropy bounds we have introduced, we were inevitably confronted with problems of trade-off
between exploration and exploitation. We addressed this issue, in Chapter 5, through an additional con-
straint on the differential entropy of the policy, thus, allowing us to control the stochasticity of policy as
the algorithm advances after each iteration.
As proof of concept of our contribution, we have compared our algorithms with GPS by preforming a
swing-up task on the highly non-linear double and quad pendulums. The results validate our view, that
a bound on the state-action distribution allows for more aggressive updates of the policy, while setting
an upper bound on the divergence of the state distribution.
Finally, we have discussed ways to improve and extend our contribution, such as introducing separate
bounds on the state and action, developing a principled approach for manipulating the entropy of the
policy and preforming evaluations on higher dimensional and real systems.

26

References
Abbas Abdolmaleki, Rudolf Lioutikov, Nuno Lau, Luis Reis, Jan Peters, and Gerhard Neumann. Model-

Based Relative Entropy Stochastic Search. Advances in Neural Information Processing Systems (NIPS),
2015.

Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2009.

Marc Deisenroth and Carl Rasmmussen. PILCO: A Model-Based and Data-Efficient Approach to Policy
Search. International Conference on Machine Learning (ICML), 2011.

Marc Deisenroth, Gerhard Neumann, and Jan Peters. A Survey on Policy Search for Robotics. Foundations
and Trends in Robotics, 2013.

David Jacobson and David Mayne. Differential Dynamic Programming. American Elsevier Publishing
Company, 1970.

Steven G. Johnson. The NLopt Nonlinear-Optimization Package. 2016.

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Stefan Schaal. STOMP:
Stochastic Trajectory Optimization for Motion Planning. International Conference on Robotics and Au-
tomation (ICRA), 2011.

Sergey Levine and Pieter Abbeel. Learning Neural Network Policies with Guided Policy Search under Un-
known Dyamics. Advances in Neural Information Processing Systems (NIPS), 2014.

Sergey Levine and Vladeln Koltun. Guided Policy Search. International Conference on Machine Learning
(ICML), 2013.

Sergey Levine and Vladeln Koltun. Learning Complex Neural Network Policies with Trajectory Opitmization.
International Conference on Machine Learning (ICML), 2014.

David Mayne. A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-
time Systems. International Journal of Control, Vol. 3, Iss. 1, 1966.

Jan Peters, Katharina Mülling, and Yasemin Altun. Relative Entropy Policy Search. National Conference
on Artificial Intelligence (AAAI), 2010.

Kaare Petersen and Michael Pedersen. The Matrix Cookbook. 2012.

Nathan Ratliff, Matt Zucker, Andrew Bagnell, and Siddhartha Srinivasa. CHOMP: Gradient Optimization
Techniques for Efficient Motion Planning. International Conference on Robotics and Automation (ICRA),
2009.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. Approximate Inference and Stochastic Optimal
Control. e-Print arXiv:1009.3958, 2010.

Elmar Rueckert, Max Mindt, Jan Peters, and Gerhard Neumann. Robust Policy Updates for Stochastic
Optimal Control. IEEE/RAS International Conference on Humanoid Robots (HUMANOIDS), 2014.

27

Conrad Sanderson. Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and
Computationally Intensive Experiments. NICTA, 2010.

John Schulman, Jonathan Ho, Alex Lee, Henry Awwal, Ibrahim Bradlow, and Pieter Abbeel. Finding Lo-
cally Optimal, Collision-Free Trajectories with Sequential Convex Optimization. International Conference
on Robotics and Automation (ICRA), 2013.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and Stabilization of Complex Behaviors through
Online Trajectory Optimization. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2012.

Emanuel Todorov and Weiwei Li. A Generalized Iterative LQG Method for Locally-Optimal Feedback Control
of Constrained Nonlinear Stochastic Systems. American Control Conference (ACC), 2005.

Marc Toussaint. Robot Trajectory Optimization using Approximate Inference. International Conference on
Machine Learning (ICML), 2009a.

Marc Toussaint. Stochastic Optimal Control. Lecture Notes, 2009b.

28

A Derivation of Guided Policy Search

argmax
πt (a|s)

∑T -1
t=1

∫

s

∫

a Rt(s,a)µt(s)πt(a|s)dads+
∫

sµT (s)RT (s)ds

∀s,∀t < T
∫

aπt(a|s)da= 1

∀s′,∀t > 1
∫

s

∫

aµt−1(s)πt−1(a|s)Pt−1(s′|s,a)dads= µt(s′)

∀s, t = 1 µ1(s) = p1(s)

∀t < T
∫

sµt(s)
∫

aπt(a|s) log
πt(a|s)
qt(a|s)

dads≤ ε

Primal Problem:

L(πt ,µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)
�

1−
∫

a

πt(a|s)da
�

ds+

∫

s

V1(s)
�

p1(s)−µ1(s)
�

ds

+
T
∑

t=2

∫

s′
Vt(s

′)
�

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads−µt(s

′)
�

ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads
�

L(πt ,µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)Pt(s
′|s,a)dadsds′ −

T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads
�

∂ L(πt ,µt , Vt ,λt ,αt)
∂ πt

= Rt(s,a)µt(s)−λt(s) +

∫

s′
µt(s)Vt+1(s

′)Pt(s
′|s,a)ds′

−αtµt(s) log
πt(a|s)
qt(a|s)

−αtµt(s) = 0

⇒ πt(a|s) = qt(a|s)exp
� 1
αt

�

Rt(s,a)−
λt(s)
µt(s)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ −αt

��

29

Dual Problem:

L(µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dsda+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)P(s′|s,a)dadsds′ −
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

µt(s)

∫

a

πt(a|s)...

... log
qt(a|s)exp

�

1
αt

�

Rt(s,a)− λt (s)
µt (s)

+
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′ −αt

��

qt(a|s)
dads

�

=

∫

s

µT (s)RT (s)ds+
T−1
∑

t=1

∫

s

λt(s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αt(ε+ 1)

Solve for λt:

1 =

∫

a

πt(a|s)da

1 =

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a)−
λt(s)
µt(s)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ −αt

��

da

1 =

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

ds′
�

exp
�

−
λt(s)
αtµt(s)

− 1
�

da

exp
� λt(s)
αtµt(s)

+ 1
�

=

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

ds′
�

da

λt(s) = αtµt(s)
�

− 1+ log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da
�

L(µt , Vt ,αt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε

+
T−1
∑

t=1

∫

s

αtµt(s) log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

30

∂ L
∂ µt

= −Vt(s) +αt log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

0 = −Vt(s) +αt log

∫

a

exp
� 1
αt

�

αt log qt(a|s) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

∂ L
∂ µT

= RT (s)− VT (s)

∂ L
∂ Vt

= −µt(s) +

∫

ŝ

µt−1(ŝ)

∫

a

qt−1(a|ŝ)exp
� 1
αt−1

�

Rt−1(ŝ,a) +

∫

s′
Vt(s

′)Pt−1(s
′|ŝ,a)ds′

��

∫

a

qt−1(a|ŝ)exp
� 1
αt−1

�

Rt−1(ŝ,a) +

∫

s′
Vt(s

′)Pt−1(s
′|ŝ,a)ds′)

�

da

Pt−1(s|ŝ,a)dad ŝ

0 = −µt(s) +

∫

ŝ

∫

a

πt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ,a)dad ŝ

∂ L
∂ V1

= p1(s)−µ1(s)

∂ L
∂ αt

= ε+

∫

s

µt(s) log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

−
∫

s

µt(s)αt

∫

a

qt(a|s)exp
�

1
αt

�

Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

∫

a qt(a|s)exp
�

1
αt

�

Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′)
�

da
...

...
1
α2

t

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

0 = ε+

∫

s

µt(s) log

∫

a

qt(a|s)exp
� 1
αt

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

−
1
αt

∫

s

∫

a

µt(s)πt(a|s)
�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

= ε−
∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads

L(µt , Vt ,αt) =

∫

s

V1(s)p1(s)ds+
T−1
∑

t=1

αtε

31

Plug in Gaussians:

Pt(s
′|s,a) = N (s′|Ats+ bta+ ct ,Σs’,t)

qt(a|s) = N (a|Kq
t s+ kq

t ,Σ
q
a,t)

µt(s) = N (s|τµs,t ,Σ
µ
s,t)

Rt(s,a) = (z− s)T Mt(z− s) + aT Hta

RT = (z− s)T MT (z− s)
∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ = EP[Vt+1(s

′)]

Vt+1(s) = sT Vt+1s+ sT vt+1 + vt+1

rt(s,a) = Rt(s,a) +αt log qt(a|s)

= (z− s)T Mt(z− s) + aT Hta−αt log

s

�

�

�2πΣq
a,t

�

�

�−
αt

2
(a−Kq

t s− kq
t)

T (Σq
a,t)
−1(a−Kq

t s− kq
t)

= (z− s)T Mt(z− s) + aT Hta−αt log

s

�

�

�2πΣq
a,t

�

�

�−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t

−sT (Kq
t)

T (Σq
a,t)
−1a+ sT (Kq

t)
T (Σq

a,t)
−1Kq

t s+ sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a

+(kq
t)

T (Σq
a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

= zT Mtz− zT Mts− sT Mtz+ sT Mts+ aT Hta−αt log

s

�

�

�2πΣq
a,t

�

�

�

−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t − sT (Kq
t)

T (Σq
a,t)
−1a

+sT (Kq
t)

T (Σq
a,t)
−1Kq

t s+ sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a

+(kq
t)

T (Σq
a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

= sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t

Rss,t = Mt −
αt

2
(Kq

t)
T (Σq

a,t)
−1Kq

t

Raa,t = Ht −
αt

2
(Σq

a,t)
−1

Rsa,t =
αt

2
(Kq

t)
T (Σq

a,t)
−1

rs,t = −αt(K
q
t)

T (Σq
a,t)
−1kq

t − 2Mtz

ra,t = αt(Σ
q
a,t)
−1kq

t

r0,t = zT Mtz−αt log

s

�

�

�2πΣq
a,t

�

�

�−
αt

2
(kq

t)
T (Σq

a,t)
−1kq

t

32

Compute Q-Function:

Q t(s,a) =
1
αt

�

rt(s,a) +EP[Vt+1(s
′)]
�

=
1
αt

�

sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t +EP[Vt+1(s

′)]
�

=
1
αt

�

sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t

+(Ats+ bta+ ct)
T Vt+1(Ats+ bta+ ct) + Tr(Vt+1Σs’,t) + vT

t+1(Ats+ bta+ ct)− vt+1

�

=
1
αt

�

sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t + Tr(Vt+1Σs’,t)

+sT AT
t Vt+1Ats+ sT AT

t Vt+1bta+ sT AT
t Vt+1ct + aT bT

t Vt+1Ats+ aT bT
t Vt+1bta+ aT bT

t Vt+1ct

+cT
t Vt+1Ats+ cT

t Vt+1bta+ cT
t Vt+1ct + vT

t+1Ats+ vT
t+1bta+ vT

t+1ct + vt+1

�

= sT Qss,ts+ aT Qaa,ta+ sT Qs,t + aT Qa,t + sT Qsa,ta+ aT QT
sa,ts+Q0,t

Qss,t =
1
αt
(Rss,t +AT

t Vt+1At)

Qaa,t =
1
αt
(Raa,t + bT

t Vt+1bt)

Qsa,t =
1
αt
(Rsa,t +AT

t Vt+1bt)

Qs,t =
1
αt
(rs,t + 2AT

t Vt+1ct +AT
t vt+1)

Qa,t =
1
αt
(ra,t + 2bT

t Vt+1ct + bT
t vt+1)

Q0,t =
1
αt

�

cT
t Vt+1ct + Tr(Vt+1Σs′,t) + vT

t+1ct + vt+1 + r0,t

�

x =





s

a



 Wt =





−2Qss,t −2Qsa,t

−2QT
sa,t −2Qaa,t



 wt =





Qs,t

Qa,t





Q t(s,a) = −
1
2

xT Wtx+ xT wt +wt

33

Compute V-Function:

exp
�

Q(s,a)
�

= exp
�

−
1
2

xT Wtx+ xT wt +wt

�

=

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

�N [x|wt ,Wt]

Vt(s) = αt log

∫

a

exp
�

Q t(s,a)
�

da

= αt log
�

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

�

∫

a

N [x|wt ,Wt]da
�

= αt log
�

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

� ...

...

∫

a

N [s|Qs,t −Qsa,tQ
−1
aa,tQa,t ,−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t]N [a|Qa,t + 2QT

sa,ts,−2Qaa,t]da
�

= αt log
�

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

�N [s|Qs,t −Qsa,tQ
−1
aa,tQa,t ,−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t]

= αt log
�

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

� ...

...N (s|(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)

−1(Qs,t −Qsa,tQ
−1
aa,tQa,t), (−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t)

−1)
�

= αt log

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

� −αt log

s

�

�

�2π(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)−1

�

�

�

−
αt

2
sT (−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t)s+αts

T (Qs,t −Qsa,tQ
−1
aa,tQa,t)

−
αt

2
(Qs,t −Qsa,tQ

−1
aa,tQa,t)

T (−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)

−1(Qs,t −Qsa,tQ
−1
aa,tQa,t)

= sT Vts+ sT vt + vt

Vt = αt(Qss,t −Qsa,tQ
−1
aa,tQ

T
sa,t)

vt =
αt

2
(Qs,t −Qsa,tQ

−1
aa,tQa,t)

34

vt = αt log

s

�

�

�2πW−1
t

�

�

�

exp
�

− 1
2wT

t W−1
t wt −wt

� −αt log

s

�

�

�2π(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)−1

�

�

�

−
αt

2
(Qs,t −Qsa,tQ

−1
aa,tQa,t)

T (−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)

−1(Qs,t −Qsa,tQ
−1
aa,tQa,t)

= −αt log

s

(2π)Ns

�

�

�(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)−1

�

�

�

s

(2π)Na+Ns

�

�

�W−1
t

�

�

�

+
αt

2
wT

t W−1
t wt +αt wt + vT

t V−1
t vt

=
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

+
αt

2
wT

t W−1
t wt +αt wt + vT

t V−1
t vt

=
αt

2





Qs,t

Qa,t





T 



−2Qss,t −2Qsa,t

−2QT
sa,t −2Qaa,t





−1



Qs,t

Qa,t



+αt wt + vT
t V−1

t vt +
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

= αt
2





Qs,t

Qa,t





T 



(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)

−1 −(−2Qss,t + 2Qsa,tQaa,tQ
T
sa,t)

−1Qsa,tQ
−1
aa,t

−Q−1
aa,tQ

T
sa,t(−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t)

−1 Q−1
aa,tQ

T
sa,t(−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t)

−1Qsa,tQ
−1
aa,t − 2Q−1

aa,t









Qs,t

Qa,t





+αt wt + vT
t V−1

t vt +
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

=
αt

2





Qs,t

Qa,t





T 



αt
2 V−1

t −αt
2 V−1

t Qsa,tQ
−1
aa,t

−αt
2 Q−1

aa,tQ
T
sa,tV

−1
t

αt
2 Q−1

aa,tQ
T
sa,tV

−1
t Qsa,tQ

−1
aa,t −

1
2Q−1

aa,t









Qs,t

Qa,t





+αt wt + vT
t V−1

t vt +
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

=
αt

2

�αt

2
QT

s,tV
−1
t Qs,t −

αt

2
QT

a,tQ
−1
aa,tQ

T
sa,tV

−1
t Qs,t −

αt

2
QT

s,tV
−1
t Qsa,tQ

−1
aa,tQa,t

+
αt

2
QT

a,tQ
−1
aa,tQ

T
sa,tV

−1
t Qsa,tQ

−1
aa,tQa,t −

1
2

QT
a,tQ

−1
aa,tQa,t

�

+αt wt + vT
t V−1

t vt +
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

= −
αt

4
QT

a,tQ
−1
aa,tQa,t +

αt

2

�αt

2
(QT

s,t −QT
a,tQ

−1
aa,tQ

T
sa,t)V

−1
t Qs,t −

αt

2
(QT

s,t −QT
a,tQ

−1
aa,tQ

T
sa,t)V

−1
t Qsa,tQ

−1
aa,tQa,t

�

+αt wt + vT
t V−1

t vt +
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

35

= −
αt

4
QT

a,tQ
−1
aa,tQa,t +

αt

2
vT

t V−1
t Qs,t −

αt

2
vT

t V−1
t Qsa,tQ

−1
aa,tQa,t +αt wt + vT

t V−1
t vt

+
αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

= −
αt

4
QT

a,tQ
−1
aa,tQa,t − vT

t V−1
t vt +αt wt + vT

t V−1
t vt −

αt Na

2
log(2π) +

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

vt = −
αt

4
QT

a,tQ
−1
aa,tQa,t +αt wt +

αt Na

2
log(2π)−

αt

2
log

�

�

�

αt
2 V−1

t

�

�

�

�

�

�W−1
t

�

�

�

π(a|s) =
qt(a|s)exp

�

1
αt

�

Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

∫

a qt(a|s)exp
�

1
αt

�

Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′)
�

da

=
exp

�

Q t(s,a)
�

∫

a exp
�

Q t(s,a)
�

da

=

√

√

√

�

�

�2πW−1
t

�

�

�

exp

�

− 1
2 wT

t W−1
t wt−wt

�N [x|wt ,Wt]

√

√

√

�

�

�2πW−1
t

�

�

�

exp

�

− 1
2 wT

t W−1
t wt−wt

�N [x|wt ,Wt]da

=
N [x|wt ,Wt]

∫

a N [x|wt ,Wt]da

=
N [s|Qs,t −Qsa,tQ

−1
aa,tQa,t ,−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t]N [a|Qa,t + 2QT

sa,ts,−2Qaa,t]

N (s|(−2Qss,t + 2Qsa,tQ
−1
aa,tQ

T
sa,t)−1(Qs,t −Qsa,tQ

−1
aa,tQa,t), (−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t)−1)

=
N [s|Qs,t −Qsa,tQ

−1
aa,tQa,t ,−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t]N [a|Qa,t + 2QT

sa,ts,−2Qaa,t]

N [s|Qs,t −Qsa,tQ
−1
aa,tQa,t ,−2Qss,t + 2Qsa,tQ

−1
aa,tQ

T
sa,t]

= N [a|Qa,t + 2QT
sa,ts,−2Qaa,t]

= N (a| − 1
2

Q−1
aa,tQa,t −Q−1

aa,tQ
T
sa,ts,−

1
2

Q−1
aa,t)

= N (a|kπt +Kπt s,Σπa,t)

36

∫

s

µt(s)DKL(πt(a|s)||qt(a|s))ds =

∫

s

µt(s)

∫

a

πt(a|s) log
πt(a|s)
qt(a|s)

dads

=

∫

s

N (s|τµs,t ,Σ
µ
s,t)
�1

2
log
|Σq

a,t |
|Σπa,t |

+
1
2

Tr
�

(Σq
a,t)
−1Σπa,t

�

−
1
2

Na

+
1
2

�

(Kq
t −Kπt)s− (−kq

t + kπt)
�T
(Σq

a,t)
−1
�

(Kq
t −Kπt)s− (−kq

t + kπt)
�

�

ds

=

∫

s

N (s|τµs,t ,Σ
µ
s,t)
�1

2
log
|Σq

a,t |
|Σπa,t |

+
1
2

Tr
�

(Σq
a,t)
−1Σπa,t

�

−
1
2

Na

+
1
2

�

sT (Kq
t −Kπt)

T (Σq
a,t)
−1(Kq

t −Kπt)s

−2sT (Kq
t −Kπt)

T (Σq
a,t)
−1(−kq

t + kπt)

+(−kq
t + kπt)

T (Σq
a,t)
−1(−kq

t + kπt)
�

ds

=
1
2

log
|Σq

a,t |
|Σπa,t |

+
1
2

Tr
�

(Σq
a,t)
−1Σπa,t

�

−
1
2

Na

+
1
2

Tr
�

(Kq
t −Kπt)

T (Σq
a,t)
−1(Kq

t −Kπt)Σ
µ
s,t

�

+
1
2
(τµs,t)

T (Kq
t −Kπt)

T (Σq
a,t)
−1(Kq

t −Kπt)τ
µ
s,t

−(τµs,t)
T (Kq

t −Kπt)
T (Σq

a,t)
−1(−kq

t + kπt)

+
1
2
(−kq

t + kπt)
T (Σq

a,t)
−1(−kq

t + kπt)

µt(s) =

∫

ŝ

∫

a

πt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ,a)dad ŝ

=

∫

ŝ

µt−1(ŝ)

∫

a

πt−1(a|ŝ)Pt−1(s|ŝ,a)dad ŝ

N (s|τµs,t ,Σ
µ
s,t) =

∫

ŝ

N (ŝ|τµs,t−1,Σµs,t−1)

∫

a

N (s|At−1ŝ+ bt−1at−1 + ct−1,Σs,t−1)...

...N (at−1|k
π
t−1 +Kπt−1ŝ,Σπa,t−1)dad ŝ

=

∫

ŝ

N (s|At−1ŝ+ ct−1 + bt−1(k
π
t−1 +Kπt−1ŝ),Σs,t−1 + bt−1Σ

π
a,t−1bT

t−1)...

...N (ŝ|τµs,t−1,Σµs,t−1)d ŝ

= N (s|ct−1 + bt−1kπt−1 + (At−1 + bt−1Kπt−1)τ
µ
s,t−1,

Σs,t−1 + bt−1Σ
π
a,t−1bT

t−1 + (At−1 + bt−1Kπt−1)Σ
µ
s,t−1(At−1 + bt−1Kπt−1)

T)

VT = (z− s)T MT (z− s) = sT MT s− 2sT MT z+ zT MT z

L(µt , Vt ,αt) =

∫

s

V1(s)p1(s)ds+
T−1
∑

t=1

αtε

=

∫

s

N (s|τµs,1,Σµs,1)(s
T V1s+ sT v1 + ϑ1)ds+

T−1
∑

t=1

αtε

= (τµs,1)
T V1τ

µ
s,1 + (τ

µ
s,1)

T v1 + ϑ1 + Tr(V1Σ
µ
s,1) +

T−1
∑

t=1

αtε

37

B Derivation of State-Action Bound Policy
Search

argmax
πt (a|s)

∑T -1
t=1

∫

s

∫

a Rt(s,a)µt(s)πt(a|s)dads+
∫

sµT (s)RT (s)ds

∀s,∀t < T
∫

aπt(a|s)da= 1

∀s′,∀t > 1
∫

s

∫

aµt−1(s)πt−1(a|s)Pt−1(s′|s,a)dads= µt(s′)

∀s, t = 1 µ1(s) = p1(s)

∀t < T
∫

s

∫

aµt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a) dads≤ ε

Primal Problem:

L(πt ,µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)
�

1−
∫

a

πt(a|s)da
�

ds+

∫

s

V1(s)
�

p1(s)−µ1(s)
�

ds

+
T
∑

t=2

∫

s′
Vt(s

′)
�

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads−µt(s

′)
�

ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

�

L(πt ,µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)Pt(s
′|s,a)dadsds′ −

T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

�

∂ L(πt ,µt , Vt ,λt ,αt)
∂ πt

= Rt(s,a)µt(s)−λt(s) +

∫

s′
µt(s)Vt+1(s

′)Pt(s
′|s,a)ds′

−αtµt(s) log
µt(s)πt(a|s)

qt(s,a)
−αtµt(s) = 0

⇒ πt(a|s) =
qt(s,a)
µt(s)

exp
� 1
αt

�

Rt(s,a)−
λt(s)
µt(s)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ −αt

��

38

Dual Problem:

L(µt , Vt ,λt ,αt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dsda+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)P(s′|s,a)dadsds′ −
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

∫

a

µt(s)πt(a|s)...

... log
qt(s,a)exp

�

1
αt

�

Rt(s,a)− λt (s)
µt (s)

+
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′ −αt

��

qt(s,a)
dads

�

=

∫

s

µT (s)RT (s)ds+
T−1
∑

t=1

∫

s

λt(s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αt(ε+ 1)

Solve for λt:

1 =

∫

a

πt(a|s)da

1 =

∫

a

qt(s,a)
µt(s)

exp
� 1
αt

�

Rt(s,a)−
λt(s)
µt(s)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ −αt

��

da

1 =

∫

a

exp
� 1
αt

�

αt log qt(s,a)−αt logµt(s) + Rt(s,a)−
λt(s)
µt(s)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ −αt

��

da

1 =

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

ds′
�

...

... exp
�

−
λt(s)
αtµt(s)

− 1− logµt(s)
�

da

exp
� λt(s)
αtµt(s)

+ 1+ logµt(s)
�

=

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

ds′
�

da

λt(s) = αtµt(s)
�

− 1− logµt(s) + log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a)

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da
�

39

L(µt , Vt ,αt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

∫

s

αtµt(s) log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

∂ L
∂ µt

= −Vt(s)−αt logµt(s)−αt +αt log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

0 = −Vt(s)−αt +αt log

∫

a

exp
� 1
αt

�

αt log qt(s,a)−αt logµt(s) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

0 = −Vt(s) +αt log

∫

a

exp
� 1
αt

�

αt log qt(s,a)−αt logµt(s)−αt + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

∂ L
∂ µT

= RT (s)− VT (s)

∂ L
∂ Vt

= −µt(s) +

∫

ŝ

µt−1(ŝ)

∫

a

exp
� 1
αt−1

�

αt−1 log qt−1(ŝ,a) + Rt−1(ŝ,a) +

∫

s′
Vt(s

′)Pt−1(s
′|ŝ,a)ds′

��

∫

a

exp
� 1
αt−1

�

αt−1 log qt−1(ŝ,a) + Rt−1(ŝ,a) +

∫

s′
Vt(s

′)Pt−1(s
′|ŝ,a)ds′)

�

da

Pt−1(s|ŝ,a)dad ŝ

0 = −µt(s) +

∫

ŝ

∫

a

πt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ,a)dad ŝ

∂ L
∂ V1

= p1(s)−µ1(s)

∂ L
∂ αt

=

∫

s

µt(s) log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads−
∫

s

µt(s) logµt(s)ds

ε−
∫

s

µt(s)αt

∫

a

exp
�

1
αt

�

αt log qt(s,a) + Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

∫

a exp
�

1
αt

�

αt log qt(s,a) + Rt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′)
�

da
...

...
1
α2

t

�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

0 = ε+

∫

s

µt(s) log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

−
1
αt

∫

s

∫

a

µt(s)πt(a|s)
�

Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads−
∫

s

µt(s) logµt(s)ds

= ε−
∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

L(µt , Vt ,αt) =

∫

s

V1(s)p1(s)ds+
T−1
∑

t=1

αt(ε+ 1)

40

Plug in Gaussians:

Pt(s
′|s,a) = N (s′|Ats+ bta+ ct ,Σs′)
qt(s) = N (s|τq

s,t ,Σ
q
s,t)

qt(a|s) = N (a|Kts+ kt ,Σ
q
a,t)

qt(s,a) = qt(a|s)qt(s) =N (





s

a



 |τq
s,a,t ,Σ

q
s,a,t)

= N
�





s

a





�

�

�





τ
q
s,t

kt +Ktτ
q
s,t



 ,





Σ
q
s,t (KtΣ

q
s,t)

T

KtΣ
q
s,t Σ

q
a,t +Kt(KtΣ

q
s,t)

T





�

µt(s) = N (s|τp
s,t ,Σ

p
s,t)

Rt(s,a) = (z− s)T Mt(z− s) + aT Hta

RT = (z− s)T MT (z− s)
∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ = EP[Vt+1(s

′)]

Vt+1(s) = sT Vt+1s+ sT vt+1 + vt+1

rt(s,a) = Rt(s,a) +αt log qt(s,a)−αt logµt(s)−αt

= Rt(s,a) +αt log qt(a|s) +αt log qt(s)−αt logµt(s)−αt

= zT Mtz− zT Mts− sT Mtz+ sT Mts+ aT Hta−
αt

2
log

�

�

�2πΣq
a,t

�

�

�

−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t − sT (Kq
t)

T (Σq
a,t)
−1a+ sT (Kq

t)
T (Σq

a,t)
−1Kq

t s

+sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a+ (kq

t)
T (Σq

a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

−
αt

2
log |2πΣq

s,t |

−
αt

2
(s−τq

s,t)
T (Σq

s,t)
−1(s−τq

s,t)−αt +αt

�1
2

log |2πΣp
s,t |+

1
2
(s−τp

s,t)
T (Σp

s,t)
−1(s−τp

s,t)
�

= zT Mtz− zT Mts− sT Mtz+ sT Mts+ aT Hta−
αt

2
log

�

�

�2πΣq
a,t

�

�

�

−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t − sT (Kq
t)

T (Σq
a,t)
−1a

+sT (Kq
t)

T (Σq
a,t)
−1Kq

t s+ sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a

+(kq
t)

T (Σq
a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

−
αt

2
log |2πΣq

s,t |

−
αt

2
sT (Σq

s,t)
−1s+αts

T (Σq
s,t)
−1τ

q
s,t −

αt

2
(τq

s,t)
T (Σq

s,t)
−1τ

q
s,t −αt

+
αt

2

�

log |2πΣp
s,t |+ sT (Σp

s,t)
−1s− 2sT (Σp

s,t)
−1τ

p
s,t + (τ

p
s,t)

T (Σp
s,t)
−1τ

p
s,t

�

= sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t

41

Rss,t = Mt −
αt

2
(Kq

t)
T (Σq

a,t)
−1Kq

t −
αt

2
(Σq

s,t)
−1 +

αt

2
(Σp

s,t)
−1

Raa,t = Ht −
αt

2
(Σq

a,t)
−1

Rsa,t =
αt

2
(Kq

t)
T (Σq

a,t)
−1

rs,t = −αt(K
q
t)

T (Σq
a,t)
−1kq

t +αt(Σ
q
s,t)
−1τ

q
s,t −αt(Σ

p
s,t)
−1τ

p
s,t − 2Mtz

ra,t = αt(Σ
q
a,t)
−1kq

t

r0,t = zT Mtz−
αt

2
log

�

�

�2πΣq
a,t

�

�

�−
αt

2
(kq

t)
T (Σq

a,t)
−1kq

t

−
αt

2
log |2πΣq

s,t | −
αt

2
(τq

s,t)
T (Σq

s,t)
−1τ

q
s,t −αt

+
αt

2

�

log |2πΣp
s,t |+ (τ

p
s,t)

T (Σp
s,t)
−1τ

p
s,t

�

Coordinate Descent:

L(µt ,αt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

∫

s

αtµt(s) log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

dads

∂ L(µt ,αt)
∂ µt

= −Vt(s)−αt logµt(s)−αt

+αt log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da= 0

logµt(s) = −
1
αt

Vt(s)− 1+ log

∫

a

exp
� 1
αt

�

αt log qt(s,a) + Rt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

��

da

= −
1
αt
(sT Vts+ sT vt + vt +αt) +

1
αt
(sT V̂ts+ sT v̂t + v̂t)

= −
1
2

�

sT 2
αt
(Vt − V̂t)s+ sT 2

αt
(vt − v̂t) +

2
αt
(vt − v̂t +αt)

�

logN (s|a, A) = −
1
2

�

log |2πA|+ (s− a)T A−1(s− a)
�

= −
1
2

�

log |2πA|+ sT A−1s− 2sT A−1a+ aT A−1a
�

A−1 =
2
αt
(Vt − V̂t)

A−1a = −
1
αt
(vt − v̂t)

a = −
1
2
(Vt − V̂t)

−1(vt − v̂t)

µt(s) = N (s|a, A)

= N (s| − 1
2
(Vt − V̂t)

−1(vt − v̂t),
αt

2
(Vt − V̂t)

−1)

42

C Derivation of Entropy State-Action Bound
Policy Search

argmax
πt (a|s)

∑T -1
t=1

∫

s

∫

a Rt(s,a)µt(s)πt(a|s)dsda+
∫

sµT (s)RT (s)ds

∀s,∀t < T
∫

aπt(a|s)da= 1

∀s′,∀t > 1
∫

s

∫

aµt−1(s)πt−1(a|s)Pt−1(s′|s,a)dads= µt(s′)

∀s, t = 1 µ1(s) = p1(s)

∀t < T
∫

s

∫

aµt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a) dads≤ ε

∀t < T
∫

sµt(s)
∫

aπt(a|s) logπt(a|s)dads≤ δ
Primal Problem:

L(πt ,µt , Vt ,λt ,αt ,βt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)
�

1−
∫

a

πt(a|s)da
�

ds+

∫

s

V1(s)
�

p1(s)−µ1(s)
�

ds

+
T
∑

t=2

∫

s′
Vt(s

′)
�

∫

s

∫

a

µt−1(s)πt−1(a|s)Pt−1(s
′|s,a)dads−µt(s

′)
�

ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

�

+
T−1
∑

t=1

�

βtδ− βt

∫

s

µt(s)

∫

a

πt(a|s) logπt(a|s)dads
�

L(πt ,µt , Vt ,λt ,αt ,βt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dads+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)Pt(s
′|s,a)dadsds′ −

T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

�

αtε−αt

∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

�

+
T−1
∑

t=1

�

βtδ− βt

∫

s

µt(s)

∫

a

πt(a|s) logπt(a|s)dads
�

43

∂ L(πt ,µt , Vt ,λt ,αt ,βt)
∂ πt

= Rt(s,a)µt(s)−λt(s) +

∫

s′
µt(s)Vt+1(s

′)Pt(s
′|s,a)ds′

−αtµt(s) log
µt(s)πt(a|s)

qt(s,a)
−αtµt(s)− βtµt(s) logπt(a|s)− βtµt(s)

= Rt(s,a)µt(s)−λt(s) +

∫

s′
µt(s)Vt+1(s

′)Pt(s
′|s,a)ds′ −αtµt(s) logµt(s)

−αtµt(s) logπt(a|s) +αtµt(s) log qt(s,a)−αtµt(s)− βt logπt(a|s)− βt

(αt + βt)µt(s) logπt(a|s) = Rt(s,a)µt(s)−λt(s) +

∫

s′
µt(s)Vt+1(s

′)Pt(s
′|s,a)ds′ −αtµt(s) logµt(s)

+αtµt(s) log qt(s,a)−αtµt(s)− βtµt(s)

⇒ πt(a|s) = exp
�

Rt(s,a)−
λt(s)
µt(s)

+αt log qt(s,a)−αt(logµt(s) + 1)− βt +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

αt + βt

�

Dual Problem:

L =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dsda+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)P(s′|s,a)dadsds′ −
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ

−
T−1
∑

t=1

αt

∫

s

∫

a

µt(s)πt(a|s)...

... log
µt(s)exp

�

Rt(s,a)−
λt(s)
µt(s)

+αt log qt(s,a)−αt(logµt(s) + 1)− βt +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

αt + βt

�

qt(s,a)
dads

−
T−1
∑

t=1

βt

∫

s

∫

a

µt(s)πt(a|s)...

...
�

Rt(s,a)−
λt(s)
µt(s)

+αt log qt(s,a)−αt(logµt(s) + 1)− βt +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

αt + βt

�

44

=
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dsda+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)P(s′|s,a)dadsds′ −
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ

−
T−1
∑

t=1

αt

∫

s

∫

a

µt(s)πt(a|s) logµt(s)dads+
T−1
∑

t=1

αt

∫

s

∫

a

µt(s)πt(a|s) log qt(s,a)dads

−
T−1
∑

t=1

(αt + βt)

∫

s

∫

a

µt(s)πt(a|s)...

...
�Rt(s,a)− λt (s)

µt (s)
+αt log qt(s,a)−αt(logµt(s) + 1)− βt +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

L(µt , Vt ,λt ,αt ,βt) =
T -1
∑

t=1

∫

s

∫

a

Rt(s,a)µt(s)πt(a|s)dsda+

∫

s

µT (s)RT (s)ds

+
T−1
∑

t=1

∫

s

λt(s)ds−
T -1
∑

t=1

∫

s

λt(s)

∫

a

πt(a|s)dads+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

+
T−1
∑

t=1

∫

s′
Vt+1(s

′)

∫

s

∫

a

µt(s)πt(a|s)P(s′|s,a)dadsds′ −
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′

+
T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ−
T−1
∑

t=1

αt

∫

s

∫

a

µt(s)πt(a|s) logµt(s)dads

+
T−1
∑

t=1

αt

∫

s

∫

a

µt(s)πt(a|s) log qt(s,a)dads

−
T−1
∑

t=1

∫

s

∫

a

µt(s)πt(a|s)
�

Rt(s,a)−
λt(s)
µt(s)

+αt log qt(s,a)−αt logµt(s)−αt − βt

+

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

=

∫

s

µT (s)RT (s)ds+
T−1
∑

t=1

∫

s

λt(s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αt(ε+ 1) +
T−1
∑

t=1

βt(δ+ 1)

45

Solve for λt:

1 =

∫

a

πt(a|s)da

1 =

∫

a

exp
�Rt(s,a)− λt (s)

µt (s)
+αt log qt(s,a)−αt(logµt(s) + 1)− βt +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da

1 =

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

exp
�−λt (s)

µt (s)
−αt(logµt(s) + 1)− βt

αt + βt

�

da

exp
�

λt (s)
µt (s)

+αt(logµt(s) + 1) + βt

αt + βt

�

=

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da

λt(s) = µt(s)
�

−αt(logµt(s) + 1)− βt + (αt + βt)...

... log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da
�

L(µt , Vt ,αt ,βt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

(αt + βt)

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

∂ L
∂ µt

= −Vt(s)−αt(logµt(s) + 1) + (αt + βt) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da

0 = −Vt(s) + (αt + βt) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a)−αt(logµt(s) + 1) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da

∂ L
∂ µT

= RT (s)− VT (s)

∂ L
∂ Vt

= −µt(s) +

∫

ŝ

(αt−1 + βt−1)µt−1(ŝ)...

...

∫

a

exp
�

1
αt−1+βt−1

�

Rt−1(ŝ,a) +αt−1 log qt−1(s,a) +
∫

s′ Vt(s′)Pt−1(s′|ŝ,a)ds′
��

∫

a exp
�

1
αt−1+βt−1

�

Rt−1(ŝ,a) +αt−1 log qt−1(s,a) +
∫

s′ Vt(s′)Pt−1(s′|ŝ,a)ds′
��

da
Pt−1(s|ŝ,a)dad ŝ

0 = −µt(s) +

∫

ŝ

∫

a

πt−1(a|ŝ)µt−1(ŝ)Pt−1(s|ŝ,a)dad ŝ

∂ L
∂ V1

= p1(s)−µ1(s)

46

∂ L
∂ αt

= ε+

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

−
∫

s

(αt + βt)µt(s)

∫

a

exp
�

1
αt+βt

�

Rt(s,a) +αt log qt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

∫

a exp
�

1
αt+βt

�

Rt(s,a) +αt log qt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

da
...

...
1

(αt + βt)2
�

Rt(s,a)− βt log qt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads−
∫

s

µt(s) logµt(s)ds

= ε+

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

−
1

αt + βt

∫

s

∫

a

µt(s)πt(a|s)
�

Rt(s,a)− βt log qt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

−
∫

s

µt(s) logµt(s)ds

= ε−
∫

s

∫

a

µt(s)πt(a|s) log
µt(s)πt(a|s)

qt(s,a)
dads

∂ L
∂ βt

= δ+

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

−
∫

s

(αt + βt)µt(s)

∫

a

exp
�

1
αt+βt

�

Rt(s,a) +αt log qt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

∫

a exp
�

1
αt+βt

�

Rt(s,a) +αt log qt(s,a) +
∫

s′ Vt+1(s′)Pt(s′|s,a)ds′
��

da
...

...
1

(αt + βt)2
�

Rt(s,a) +αt log qt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

= δ+

∫

s

µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

−
1

αt + βt

∫

s

∫

a

µt(s)πt(a|s)
�

Rt(s,a) +αt log qt(s,a) +

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′

�

dads

= δ−
∫

s

µt(s)

∫

a

πt(a|s) logπt(a|s)dads

L(µt , Vt ,αt) =

∫

s

V1(s)p1(s)ds+
T−1
∑

t=1

αt(ε+ 1) +
T−1
∑

t=1

βtδ

47

Plug in Gaussians:

Pt(s
′|s,a) = N (s′|Ats+ bta+ ct ,Σs′)
qt(s) = N (s|τq

s,t ,Σ
q
s,t)

qt(a|s) = N (a|Kts+ kt ,Σ
q
a,t)

qt(s,a) = qt(a|s)qt(s)

= N (





s

a



 |τq
s,a,t ,Σ

q
s,a,t) =N

�





s

a





�

�

�





τ
q
s,t

kt +Ktτ
q
s,t



 ,





Σ
q
s,t (KtΣ

q
s,t)

T

KtΣ
q
s,t Σ

q
a,t +Kt(KtΣ

q
s,t)

T





�

µt(s) = N (s|τp
s,t ,Σ

p
s,t)

Rt(s,a) = (zt − s)T Mt(zt − s) + aT
t Htat

RT = (zT − sT)
T Mt(zT − sT)

∫

s′
Vt+1(s

′)Pt(s
′|s,a)ds′ = EP[Vt+1(s

′)]

Vt+1(s) = sT Vt+1s+ vT
t+1s+ vt+1

rt(s,a) = Rt(s,a) +αt log qt(s,a)−αt logµt(s)−αt

= Rt(s,a) +αt log qt(a|s) +αt log qt(s)−αt logµt(s)−αt

= zT Mtz− zT Mts− sT Mtz+ sT Mts+ aT Hta−
αt

2
log

�

�

�2πΣq
a,t

�

�

�

−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t − sT (Kq
t)

T (Σq
a,t)
−1a+ sT (Kq

t)
T (Σq

a,t)
−1Kq

t s

+sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a+ (kq

t)
T (Σq

a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

−
αt

2
log |2πΣq

s,t |

−
αt

2
(s−τq

s,t)
T (Σq

s,t)
−1(s−τq

s,t)−αt +αt

�1
2

log |2πΣp
s,t |+

1
2
(s−τp

s,t)
T (Σp

s,t)
−1(s−τp

s,t)
�

= zT Mtz− zT Mts− sT Mtz+ sT Mts+ aT Hta−
αt

2
log

�

�

�2πΣq
a,t

�

�

�

−
αt

2

�

aT (Σq
a,t)
−1a− aT (Σq

a,t)
−1Kq

t s− aT (Σq
a,t)
−1kq

t − sT (Kq
t)

T (Σq
a,t)
−1a

+sT (Kq
t)

T (Σq
a,t)
−1Kq

t s+ sT (Kq
t)

T (Σq
a,t)
−1kq

t − (k
q
t)

T (Σq
a,t)
−1a+ (kq

t)
T (Σq

a,t)
−1Kq

t s+ (k
q
t)

T (Σq
a,t)
−1kq

t

�

−
αt

2
log |2πΣq

s,t | −
αt

2
sT (Σq

s,t)
−1s+αts

T (Σq
s,t)
−1τ

q
s,t −

αt

2
(τq

s,t)
T (Σq

s,t)
−1τ

q
s,t −αt

+
αt

2

�

log |2πΣp
s,t |+ sT (Σp

s,t)
−1s− 2sT (Σp

s,t)
−1τ

p
s,t + (τ

p
s,t)

T (Σp
s,t)
−1τ

p
s,t

�

= sT Rss,ts+ aT Raa,ta+ aT RT
sa,ts+ sT Rsa,ta+ sT rs,t + aT ra,t + r0,t

48

Rss,t = Mt −
αt

2
(Kq

t)
T (Σq

a,t)
−1Kq

t +
αt

2
(Σq

s,t)
−1 +

αt

2
(Σp

s,t)
−1

Raa,t = Ht −
αt

2
(Σq

a,t)
−1

Rsa,t = +
αt

2
(Kq

t)
T (Σq

a,t)
−1

rs,t = −αt(K
q
t)

T (Σq
a,t)
−1kq

t +αt(Σ
q
s,t)
−1τ

q
s,t −αt(Σ

p
s,t)
−1τ

p
s,t − 2Mtz

ra,t = αt(Σ
q
a,t)
−1kq

t

r0,t = zT Mtz−
αt

2
log

�

�

�2πΣq
a,t

�

�

�−
αt

2
(kq

t)
T (Σq

a,t)
−1kq

t −
αt

2
log |2πΣq

s,t |

−
αt

2
(τq

s,t)
T (Σq

s,t)
−1τ

q
s,t −αt +

αt

2

�

log |2πΣp
s,t |+ (τ

p
s,t)

T (Σp
s,t)
−1τ

p
s,t

�

Coordinate Descent:

L(µt , Vt ,αt ,βt) =

∫

s

µT (s)RT (s)ds+

∫

s

V1(s)p1(s)ds−
∫

s′
VT (s

′)µT (s
′)ds′

−
T−1
∑

t=1

∫

s′
Vt(s

′)µt(s
′)ds′ +

T−1
∑

t=1

αtε+
T−1
∑

t=1

βtδ−
T−1
∑

t=1

∫

s

αtµt(s) logµt(s)ds

+
T−1
∑

t=1

∫

s

(αt + βt)µt(s) log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

dads

∂ L(µt , Vt ,αt ,βt)
∂ µt

= −Vt(s)−αt logµt(s)−αt

+
(αt + βt)
αt

log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da= 0

logµt(s) = −
1
αt

Vt(s)− 1

+
(αt + βt)
αt

log

∫

a

exp
�Rt(s,a) +αt log qt(s,a) +

∫

s′ Vt+1(s′)Pt(s′|s,a)ds′

αt + βt

�

da

= −
1
αt
(sT Vts+ sT vt + vt +αt) +

1
αt
(sT V̂ts+ sT v̂t + v̂t)

= −
1
2

�

sT 2
αt
(Vt − V̂t)s+ sT 2

αt
(vt − v̂t) +

2
αt
(v̂t − vt +αt)

�

logN (s|a, A) = −
1
2

�

log |2πA|+ (s− a)T A−1(s− a)
�

= −
1
2

�

log |2πA|+ sT A−1s− 2sT A−1a+ aT A−1a
�

A−1 =
2
αt
(Vt − V̂t)

A−1a = −
1
αt
(vt − v̂t)

a = −
1
2
(Vt − V̂t)

−1(vt − v̂t)

µt(s) = N (s|a, A)

= N (s| − 1
2
(Vt − V̂t)

−1(vt − v̂t),
αt

2
(Vt − V̂t)

−1)

49

	Introduction
	Locality and Validity of Linearization
	Reinforcement Learning vs. Motion Planning
	Preliminaries
	Markov Decision Process
	Stochastic Optimal Control
	Information Theoretic Bounds
	Differential Entropy
	Relative Entropy

	Related Work
	Iterative Local Methods for Non-Linear Systems
	Differential Dynamic Programming
	Iterative Linear Quadratic Gaussian

	Relative Entropy Policy Search

	Guided Policy Search
	Optimization Problem
	Dual Problem
	Policy Dependent Reward
	Implementation

	State-Action Bound Policy Search
	Optimization Problem
	Dual Problem
	State-Action Dependent Reward
	Implementation
	Circular Dependency of Vt(s) and t(s)
	Block Descent over Vt(s) and t(s)
	Gradient Descent over t
	Block Coordinate Descent

	Entropy State-Action Bound Policy Search
	Optimization Problem
	Dual Problem
	Augmented Reward
	Implementation

	Evaluation
	Double Pendulum Task
	Quad Pendulum Task
	Discussion

	Future Work
	Separate Bounds on State and Action
	Comparison to Full Gradient Descent
	Principled Control of Policy Entropy
	Reformulation for Deterministic Policies
	Further Evaluations on Larger and Real Systems

	Conclusion
	References
	Derivation of Guided Policy Search
	Derivation of State-Action Bound Policy Search
	Derivation of Entropy State-Action Bound Policy Search

