
Learning a State
Representation for a Game
Agent’s Reactive Behaviour
Lernen einer Zustandsrepresentation für das reaktive Verhalten einer Spielfigur
Bachelor-Thesis von Alexander Blank aus Bad Neustadt a.d. Saale
Tag der Einreichung:

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Oliver Kroemer

Learning a State Representation for a Game Agent’s Reactive Behaviour
Lernen einer Zustandsrepresentation für das reaktive Verhalten einer Spielfigur

Vorgelegte Bachelor-Thesis von Alexander Blank aus Bad Neustadt a.d. Saale

1. Gutachten: Prof. Dr. Jan Peters
2. Gutachten: Dr. Oliver Kroemer

Tag der Einreichung:

Erklärung zur Bachelor-Thesis

Hiermit versichere ich, die vorliegende Bachelor-Thesis ohne Hilfe Dritter nur mit
den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
aus Quellen entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 15. September 2015

(Alexander Blank)

Abstract
In reinforcement learning, an agent interacts with its environment by taking actions and receiv-
ing rewards for those actions. A good example for such a task is a robot trying to clean up a
park. The agent has to interact with multiple different objects and other agents in the park. To
learn a behaviour in such a task it needs to be able to represent the state of his surroundings
based on the distribution of objects he sees. Similar challenges can be found in arcade games
wherein agents have to interact and avoid with objects in their environment. The goal of this
thesis is therefore to learn the behaviour of a game agent. The agent will be presented with a
view of the world consisting of a number of colored points in a 2D plane. Interactions such as
slaying enemies and collecting gold result in rewards for the agent. The agent then has to learn
a policy based on the distributions of the different object types in its surroundings. To learn such
a policy, we use fitted Q-iteration. The Q-function computation is based on a variant of random
trees which was modified into a representation that captures the key elements and conditions
for action selection. We evaluate the parametrization of the approach and achieve better results
than the standard grid-based state representation. We also explored and evaluated different
representations for providing the agent with important global information, e.g. the location of
a treasure in the game.

i

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Problem Definition . 3

2. Foundations 4
2.1. Reinforcement Learning . 4
2.2. Random Forests . 7

3. Experiments 12
3.1. Parameter Evaluation . 12
3.2. Comparison of State Representations . 17
3.3. Game with Additional Sword Actions . 23

4. Conclusion and Future Work 26

Bibliography 29

A. Appendix 31
A.1. Parameter Evaluation: RMSE . 31

ii

Figures and Tables

List of Figures

1.1. An overview of our approach. We have a 2D game environment from which
we extract the locations and type of objects in the current game view. This is
then given as state to the policy learning part, where we apply a further state
abstraction to form the basis of the policy. The state representation we use is a
variant of random forests. Finally, we use fitted Q-Iteration to learn a behaviour. . 2

2.1. The general steps of the fitted Q-iteration algorithm explained. 6
2.2. Two example tests inside the random forest structure. The blue test would eval-

uate as true, since there are less than 5 coins in the area. The test visualized in
red would fail and the right child node in the tree would be chosen. 9

2.3. Different test sampling approaches. In random box we sample the 4 dimensions
of the test. The fixed box is defined by its center and a certain Test width which
defines the size of the square. An extension of this is the bounded box approach,
were the test width is simply an upper limit for how far we go into each direction
from the center. Finally, the classical approach simply chooses a split value and
direction to generate the test. 10

3.1. When comparing different nmin there is no significant difference in the learning
progress. We selected 30 as the minimum number of examples in a node. 13

3.2. The number of tests generated at each node in the tree evaluated. Using 50 tests
resulted in the worst progression. Higher numbers perform better and therefore
we select K = 500 as our final value. 14

3.3. The number of trees trained in each forest plays a big role in the convergence of
the algorithm. The higher the number of trees the bigger the reward we converge
to. We selected 30 Trees as the number for all further experiments. 15

3.4. The test width evaluated in the actual fitted Q-iteration. Really small tests per-
form worse in the beginning but converge to a higher reward collected. Too big
tests perform as badly as expected. The final selection is a Twid th of 1 for fixed
and a Twid th of 4 for bounded boxes. 16

3.5. Different Grid-sizes compared. Using a 10× 10 grid worked the best out of all.
Using a too fine grid of 21 performed the worst out of all configurations. 17

3.6. Execution of fitted Q-iteration with different state representations. The fixed test
width random forests reaches the highest overall reward. The classical formu-
lation of random forests fails to really improve much. The grid representation
provides a very stable learning progress, but fails to reach the same levels as
random forests with box tests. 18

iii

3.7. Instead of using only the information from the local view in (a), we now also use
information of the whole world (b). In (c) we visualize the minimap approach
and the different objects spawned. The red circle means there is money in this
area and the blue diamond means that the stack of coins is in the area. In (d) the
arrow pointing towards the goal is shown. It is always close to the border of the
local view of the agent. 20

3.8. Execution of the three exploration methods in comparison to the standard ap-
proach without any information about the whole game world. All methods per-
form worse than the normal version. 21

3.9. Comparison of different data set sampling methods. In the normal version we
abandon the training data and model after each iteration. In the mixed approach
we do 5 iterations where we only update the output of the random forest between
each re-sampling of data. The latter approach proved to be more stable and
reaches a higher reward. 23

3.10.Execution of fitted Q-iteration with different state representations in the 8-action
environment. The grid representation fails to perform well in this setup. The
classic version of regression trees is very stable and manages to collect a positive
reward. Both the bounded and random box perform the best on this setup and
the fixed box setup is extremely unstable. 24

A.1. Sampling 300 different tests at each node results in the lowest RMSE. 32
A.2. Turning a node into a leaf at around 20 samples remaining gives us the lowest

overall RMSE. 32
A.3. The RMSE falls further the higher the number of trees is. 33
A.4. A test width of 2.5 results in the lowest RMSE. 33
A.5. Using different Grid sizes for the linear ridge regression results in different Errors.

A size of 16× 16 has the lowest RMSE. 34

List of Tables

1.1. The objects present in the game and their respective reward when the agent
interacts with them in the environment by walking into them. 3

3.1. The best parameters resulting from the evaluation using RMSE. These values
will be further evaluated on their actual performance when running the fitted
Q-iteration. 13

iv

1 Introduction

1.1 Motivation

The goal of this thesis is learning the behaviour of an autonomous agent based
on its interaction with an environment. The agent could be a robot performing
simple interactions with objects in different situations with varying number of
objects and obstacles in the environment e.g. a robot that has to collect trash
while avoiding obstacles in a park. It might also have to scare away magpies
trying to steal trash from him. Since we do not know the locations and number
of objects in the park, the robot has to learn a reactive behaviour based on the
current local environment. In such problems we have a continuous environment
with a manifold of different situations. The environment can also contain ob-
jects which are irrelevant for the optimal policy and the algorithm has to be able
to deal with such a problem.

In arcade games we often encounter similar challenges. A games state changes
rapidly when we take different actions and we want the agent to learn a policy
that plays the game in a near optimal manner, while only observing the dis-
tribution of relevant objects like money or enemies in the space. In our case,
the state is represented solely by the distribution of the game-objects in the 2D
plane. These objects can be encountered in the game in varying numbers i.e.
it is not previously known how many objects will be in which area. Actions in
the game may include walking in different directions and interacting/attacking
objects. As the game progresses a score is returned for certain state/action com-
binations, which is used as reward for our task.

Learning to play such an arcade game can be divided into three parts:

1. Mapping the observed scene into a set of objects with labels and poses.

2. Learn a state abstraction to form the basis of the policy.

3. Learn a policy for achieving a high score.

The first problem is difficult to handle for arbitrary games as one has to provide
ways to reliably recognize the objects correctly and in any position. For example

1

game objects which are very close to each other often cause problems. In this
thesis we have decided to focus on the latter two parts of the task.

In order to learn a policy that provides an optimal behaviour in a continuous
state space where the number and location of objects in the area are previously
unknown we use fitted Q-iteration. For this purpose we propose different state
representations using a variant of random forests and thoroughly evaluate their
performance.

Figure 1.1.: An overview of our approach. We have a 2D game environment from which we
extract the locations and type of objects in the current game view. This is then given
as state to the policy learning part, where we apply a further state abstraction to
form the basis of the policy. The state representation we use is a variant of random
forests. Finally, we use fitted Q-Iteration to learn a behaviour.

The rest of the thesis is organized as follows: In the first chapter we will fur-
ther define the problem. Chapter 2 presents the foundations required to un-
derstand the used methods and introduces the different state representations.
Afterwards, in Chapter 3 we first conduct experiments regarding the parameter-
ization of the learning algorithm. Subsequently, we evaluate the performance
of the algorithm on different difficulties of the game and additionally propose
solutions which improve the stability of the learning process and explore differ-
ent representations for providing the agent with important global information,
e.g. the location of a treasure in the game. Finally, the Chapter 4 concludes the
thesis with a recapitulation of the results and ideas for future work on this topic.

2

1.2 Problem Definition

The game environment used in this project is a randomly generated world filled
with different objects. The size of the world is limited by a constant value sizew.
This value gives an upper bound of how far the objects can be from the center.
The objects are spawned uniformly within those limits. In the game itself, we
always see a local section of the world which is centered on the agent and we
can see objects in the area up to 10 units in the x and y directions. The objects
inside the game are money, grass, enemy and wall as shown in Table 1.1.

The game initially supports four different moving directions as actions i.e. the
set of possible actions is

A= {aup, ari ght , adown, ale f t}.

Executing one of those actions repositions the agent into the direction specified
while also adding a random value between -0.1 and 0.1 to the position of the
agent. The agent cannot walk through walls. Executing those actions returns a
score from the game when interacting with objects i.e. when the agent collides
with a object when walking into that direction. All sprites and the rewards for
the actions are presented in Table 1.1.

Object Collision Sprite

Agent /

Money 100

Wall -50

Grass 0

Enemy -300

Table 1.1.: The objects present in the game and their respective reward when the agent interacts
with them in the environment by walking into them.

The general goal of the game is getting the highest score possible. This goal
can be achieved by avoiding the enemies while collecting as much money as
possible and not getting stuck at walls. The positions of the objects in the space
are given to the policy learner as the state. In order to generalize to different
states, a suitable representation of the state has to be learned. We propose
a representation using the properties of regression trees to generate different
tests that capture varying numbers and locations of objects in the current state.

3

2 Foundations
In this section, we will discuss the algorithms used in our approach. In Section
2.1 we outline the basic reinforcement learning framework and describe the
fitted Q-iteration. Afterwards, we introduce a variant of random forests for
representing the object distribution in Section 2.2.

2.1 Reinforcement Learning

Reinforcement Learning is a discipline where an agent learns to behave in an
optimal manner through trial and error. The agent interacts with the environ-
ment and receives a reward for performing suitable actions in certain states.
These interactions together with the feedback received are used to learn which
actions usually lead to a high reward in a certain state. This can be formalized
as a Markov-Decision-Processes (MDP). While the game is actually a partially
observed MDP, as the state of the objects beyond the screen are not observed, in
this thesis we model it as an MDP and learn a policy only on the observed dis-
tributions. In Section 3.2.1, we additionally evaluate the case where the agent
observes the entire world.

At the time t, the agent in a MDP is in a state st ∈ S, where S is the space
of all possible states. The agent then executes an action at ∈ A from the action
space A. The agent chooses the action from a stochastic policy a ∼ π(at |st).
The agent then transitions from st to st+1 according to a transition distribution
T(st ,at ,st+1) = p(st+1| st , at), which describes the probability of transitioning
to state st+1from stwhen performing a given action at . An immediate reward
signal rt = r(st , at), where r(st , at) ∈ R is returned by the system.

The usual format for one observation in discrete time is the current state st , the
action taken at , the immediate reward rtand the next state st+1of the environ-
ment after taking action at . The behaviour of the agent within the environment
is denoted by the policy π(at |st). The agent samples an action from π given

4

its current state. Finally, the goal is to find an optimal policy π∗(a|s), which
maximizes the expected long term reward E[R|π], where

R=
∞
∑

t=0

γt rt+1,

and the term γ ∈ [0,1] is a discount factor used to set the influence of future
rewards.

The policy can be learned using a policy iteration approach. Policy Iteration al-
gorithms alternate between policy evaluation and policy improvement phases.
In the evaluation step, the value-function of all states is given by

Vπ(st) = Eπ

�∞
∑

t=0

γt r(st , at)|s0 = s

�

,

which represents the expected discounted reward for starting in state s and
using policy π(at |st). This approach requires us to store a value for each possible
state. Using this approach is not feasible in a continuous and high dimensional
state space, because we would require a high amount of samples or an accurate
model of the environment. On the other hand, the policy improvement part
tries to improve the policy by taking actions with the highest quality. Sutton &
Barto proposed the Q-learning algorithm [1], where the goal of the approach
is finding the optimal value function by using the optimal Q-function for all
state-action pairs. Where Q is defined as:

Qπ(st , at) = r(st , at) + γEp(st+1|st ,at)[V
π(st+1)].

The Value function can then be expressed as

Vπ(s) = maxaQ
π(st , at).

In order to compute the Q-function for all state-action pairs, we iteratively col-
lect samples and update the Q-function with

QN+1(st , at) =QN(st , at) +αt[r + γmaxa′QN(st+1, at+1)−QN(st , at)].

If the state and action spaces are finite and small enough this can be solved in
a tabular form. However, when dealing with continuous or large discrete state
and action spaces the Q-function can no longer be expressed as a table with one

5

entry for each state-action pair. For this kind of problems an approximation of
the Q-function has to be determined from a finite and generally sparse set of
four-tuples (st ,at ,rt ,st+1). Therefore, the fitted Q-iteration algorithm has been
proposed by Ernst [2], which takes advantage of the generalization capabilities
of regression algorithms and reformulates this problem into a sequence of re-
gressions.

The Q-function is initialized as zero everywhere and in the first step an ap-
proximation is made by training a forest which has (st , at) as inputs and the
instantaneous reward rt as output. This first approximation is then used as
policy in order to sample from the game again. In this thesis, we use an epsilon-
greedy action selection policy that is defined by

π(at |st) =

¨

argmaxa∈AQ(st , a) if k ≥ ε
random action if k < ε,

where k ∈ [0, 1] is drawn from an uniform distribution and ε is the term defining
how likely we take an exploratory action. In the next iteration of the policy
evaluation the output of the training set is updated using the value iteration
approach with

QN+1 = rt + γmaxaQ
π(st+1, at).

The Q-value of the next state st+1 is drawn from the random forests of the
previous iteration. This process is iteratively repeated until convergence. Unlike
the original paper [2], we relearn the tree structure and re-sample the dataset
after each iteration. The general steps of the algorithm are summarized by
Figure 2.1.

Figure 2.1.: The general steps of the fitted Q-iteration algorithm explained.

6

2.2 Random Forests

Tree based methods are a common approach for solving classification and re-
gression problems. They are hierarchical structures consisting of nodes and
edges connecting the nodes. Each node can have multiple children or none. A
node without children is called a leaf. Each non-leaf node contains a test which
decides the next node on the path down. In the classical formulation of decision
trees, these tests are formulated as a boolean decision on an attribute i.e. if the
value of a certain feature is smaller or bigger than some value x we split the
data into the two parts depending on whether they satisfy this condition. The
leaf node predicts the final output of the tree. The output value is a continuous
real value in the case of regression trees.

A combination of multiple trees is called a forest. In the regression case the
final output is formed by averaging over the output of all trees in the forest.
This ensemble method works by growing many different trees from the same
data set by randomizing the tree building process. For example, sampling the
tests differently i.e. creating a completely random test at each node or selecting
the best test out of a randomly created set. These random forests are an effective
tool in prediction, because they are non-parametric and offer a great flexibility.
They are also highly scalable to high-dimensional spaces and are robust to over-
fitting. One of the most popular formulations is the one from Breiman (2001)
[3], where the randomness is brought in by choosing a random subset of the
training set and also randomly sampling splitting directions.

The forest building process we used is called Extra Trees [4]. Each tree is
learned by using the same training data TD, which is a set of tuple (x i,yi)
where x are the input and y are the output values. The training starts in a root
node and a test is generated by creating a set of K random tests which split
the data into the two sets Da and Db. The final test is the one minimizing the
relative variance of the output values yi defined by

score =
na

na + nb
v ar(Da) +

nb

na + nb
v ar(Db).

The test is then assigned to this node and the two children are created with their
respective data set. This process continues until a node contains less then nmin

samples. If this is the case, a leaf is created and is given the mean of all outputs
in its respective dataset as value. This is done multiple times with the whole
training set until we have a forest with M independent random trees.

7

To obtain a value for an instance, we start at the root node and evaluate the
instance x with the test. If the test is true, we evaluate the instance on the left
node and if it is false we evaluate it on the right node. This is done until a leaf
is reached. This evaluation is redone for every tree in the forest and the average
of all results is returned as final output of the ensemble.

Using this non-parametric approach offers the ability to model any Q-function
value, where the shape is a priori unknown. We chose this method due to its
high computational efficiency, scalability to high-dimensional tasks and their ro-
bustness to irrelevant variables.

The structure of the forest depends on three key parameters. The number of
trees M in each forest influences the smoothness of the output function and we
will therefore evaluate it in the experiments. Afterwards, the minimum amount
of examples nmin in a node has to be evaluated, because it has a high influence
on the tree size. The number of tests K generated at each node will be evaluated
in the experiments section, as the number controls the diversity between each
tree in the forest [5]. The tree structure also has to be adapted in order to learn
based on object distributions. For this purpose we propose a new representation
for the tests in the next subsection.

2.2.1 State Representation of the Q-function

In our framework, the regression tree is used to approximate the Q-function.
The input, i.e. the state of the game, is provided as a set of three-tuples

T = {〈x1, y2, t ype1〉 , ..., 〈xn, yn, t ypen〉}

where x and y are the coordinates of the object and the type is the kind of object
present at that position (i.e. money, enemy, etc.). Each node in a tree has a test
splitting the dataset into two child nodes. A test consists of:

• The 4 dimensions defining an area in the 2D plane [xmin, xmax , ymin, ymax],
where the x and y respectively are sorted.

• A type of object t ype which is tested for.

• The number of objects z contained in the area.

The test is successful if

z > |t ype == t ype ∧ x > xmin ∧ x < xmax ∧ y > ymin ∧ y < ymax |

8

is true i.e. there are less than z instances of t ype in the area. Figure 2.2 shows
two possible tests with its result in the evaluation. The test in blue is evaluated
to true. On the other hand, the test in red fails. These two tests combined give
the agent the information that going upwards is good. The blue test attracts the
agent while the red test detracts it.

Figure 2.2.: Two example tests inside the random forest structure. The blue test would evaluate
as true, since there are less than 5 coins in the area. The test visualized in red would
fail and the right child node in the tree would be chosen.

The state representation for the agents behaviour is completely described as a
combination of these tests in the tree structure. In this manner, we general-
ize to new states because the boxes generated for the tests are bigger than the
samples we actually encounter and cover similar states. We also have a certain
robustness towards irrelevant objects in the environment. In the example of our
game world, the grass is almost completely ignored simply because we generate
K tests and choose the one with minimal variance in the training data. Addi-
tionally, even if we have some tests which check for grass the influence will be
irrelevant through averaging over the different trees, where the same test will
not be found.

This representation also allows us to generalize to arbitrarily many objects in
the space e.g. it doesn’t matter if there are three enemies or twenty enemies,
the same test would capture both cases. The Q-function would look different
with a higher number of enemies in the area, but the behaviour resulting from
the tests will still work well. Each test generated is a different feature for the
regression and is used as state for the Q-function. The size of those tests plays

9

(a) Random box (b) Fixed box

(c) Bounded box (d) Classical

Figure 2.3.: Different test sampling approaches. In random box we sample the 4 dimensions of
the test. The fixed box is defined by its center and a certain Test width which defines
the size of the square. An extension of this is the bounded box approach, were the
test width is simply an upper limit for how far we go into each direction from the
center. Finally, the classical approach simply chooses a split value and direction to
generate the test.

an important role in how finely we look at the state and how much we gener-
alize between different states. Generating very big tests would lead to a badly
defined behaviour since the tests are too general and the agent may not differ-
entiate between an enemy 1 step or 5 steps away.

Therefore we propose multiple approaches to sampling the tests in order to
control the trade-off between generalization and specialization. In the first for-
mulation the 4 dimensions are sampled uniformly in the entire local game area.
We will denote this representation as random box, since the shape and size of
the tests is not limited in any way. Since the first version allows very big sizes
of tests, the approximation of the Q-value can be too general. Therefore, the
second representation uniformly samples the center of a test and creates a box
of a specific size testwidth TW around it.

10

The width can be either be fixed, creating equal sized square tests or sampled
from a uniform distribution where the upper limit is defined by TW. We evaluate
both formulations called fixed box and bounded box in the experiment section.
Finally, the last approach is essentially the classical way of creating random tests
in regression trees. We choose a random split value and direction (i.e. x or y
direction). Figure 2.3 shows the parameters we sample and the form of the tests
for each approach.

11

3 Experiments
In this section, we describe the experiments for evaluating the learning of the
game agent and discuss their results. Since the Q-function regression is essen-
tial for the success of the algorithm, we evaluated the performance of different
parameter settings according to their accuracy when estimating the Q-value in
the appendix. It is important to note that the policy learned with the lowest root
mean squared error (RMSE) is not necessarily the best policy, but it gives us a
feasible starting point for setting the parameters. Using the parameter settings
from this evaluation, we compare different parameters on their actual perfor-
mance when running the algorithm in Section 3.1. Next, in Section 3.2 we
compare the different state representations with their best parametrization to
each other on the game and do experiments on the encountered issues. Finally,
Section 3.3 deals with the evaluation of the performance on a more complex
version of the game.

3.1 Parameter Evaluation

We apply the fitted Q-iteration with the different parameters described in Table
3.1. They have been selected to test different interesting cases resulting from the
evaluation with the RMSE in the appendix. In each iteration we collect 20,000
samples. Starting from a random policy, we run the fitted Q-iteration for 20
iterations and compare the reward collected after each iteration to each other.
Although the training has been done using an epsilon greedy action selection
with ε = 0.2, the evaluation is performed using a deterministic action selection
process that always chooses the action a that returns the highest Q-value. We
also use the same reference world in each iteration of the evaluation. The world
currently used for training and evaluation changes every 50 steps in order to
capture the behaviour in many different situations. The plots presented always
begin in iteration 0, where we use a random policy that collects a reward of
about -100.000. Each parametrization was run 5 times and the presented results
are the average over these 5 runs. The standard parameter settings used in this
evaluation are nmin = 30, K = 300 and M = 15.

12

Table 3.1.: The best parameters resulting from the evaluation using RMSE. These values will be
further evaluated on their actual performance when running the fitted Q-iteration.

nmin K Tests M Trees Test width (TW) Gridsize N

Test 10,20,30 50, 300, 500 5, 15, 30 1, 2.5, 4 10,15,21

3.1.1 Minimum Number of Examples in a Leaf

This experiment focuses on finding a good value for nmin for the tree training.
This value influences the structure of the tree. Choosing a low value increases
the depth of the tree because much more leaves are required to represent the
training data. On the other hand, a really high value creates a shallow tree with
very general tests. Since the shape of the Q-function is previously unknown,
but in many applications has a very spiky form, choosing a high value leads to
higher errors. Using a lower nmin has proven successful for our task. Looking at
the results presented in Figure 3.1, we see that when we have a low number of
examples, there is no significant difference in the results. Using values of nmin

bigger than 50 led to an extremely unstable learning and the reward would
often decrease after an iteration. The final choice of nmin = 30 was made
because the learning starts with a very high progress in the first few steps when
using this value and additionally it leads to the smallest trees, which decreases
computational time.

0 2 4 6 8 10 12 14 16 18 20
−125,000

−100,000

−75,000

−50,000

−25,000

0

25,000

50,000

75,000

100,000

Iteration

R
ew

ar
d

nmin = 10
nmin = 20
nmin = 30

Figure 3.1.: When comparing different nmin there is no significant difference in the learning
progress. We selected 30 as the minimum number of examples in a node.

13

3.1.2 Number of Tests in each Node

The next parameter we investigated is the number of tests K created at each
node in the forest. The number represents how many different random splits
we generate at each node in the tree building process. It is therefore responsi-
ble for the trade-off between the randomness of the trees and finding the best
split at the cost of computational time. In the literature it is often suggested to
choose a value depending on the number of features m you have, i.e. a good
value often is

p
m [3]. In our case, each unique test in combination with an

object and a threshold is basically a feature. Hence, we cannot use this recom-
mendation and we need to evaluate it empirically.

It has to be mentioned that in case the tests generated are not sufficient to
determine a split of data, we repeat the process up to ten times before turning
the node into a leaf. We also do not want too many tests in order to keep the
difference between trees higher. Creating too many tests would result in very
similar tree structures, which leads to worse generalization. We therefore, ac-
cording to the results in Figure 3.2, select K = 500 as the final parameter. This
value is very stable in the first few iterations and provides good results.

0 2 4 6 8 10 12 14 16 18 20
−125,000

−100,000

−75,000

−50,000

−25,000

0

25,000

50,000

75,000

100,000

Iteration

R
ew

ar
d

K = 50
K = 300
K = 500

Figure 3.2.: The number of tests generated at each node in the tree evaluated. Using 50 tests
resulted in the worst progression. Higher numbers perform better and therefore we
select K = 500 as our final value.

14

3.1.3 Number of Trees

The last important parameter for random forests is the number of Trees M in
each forest. Increasing the number of trees does not overfit the data and should
therefore be as high as possible. We try to find a value which is sufficiently
large such that the accuracy does not increase much more when further increas-
ing the number of trees. It is also noteworthy that while they are a powerful
tool for prediction, the training of random forests is computationally expensive.
Using a high number of trees is advantageous, but at the cost of high model
learning time. In Figure 3.3 we can see how the reward collected behaves when
increasing the number of trees. As expected, using more trees results in bet-
ter learning progression. Creating even more than 30 trees didn’t lead to an
significant increase and therefore we select M = 30 as the final value.

0 2 4 6 8 10 12 14 16 18 20
−100,000

−80,000

−60,000

−40,000

−20,000

0

20,000

40,000

60,000

80,000

Iteration

R
ew

ar
d

5 Trees
15 Trees
30 Trees

Figure 3.3.: The number of trees trained in each forest plays a big role in the convergence of the
algorithm. The higher the number of trees the bigger the reward we converge to.
We selected 30 Trees as the number for all further experiments.

3.1.4 Test Width

Here we evaluate the different test widths used for representation where we
sample the center of the test and create a box around it by going Twid th into
every direction, namely fixed box and bounded box. This creates a lot of equal
sized tests and has proven to perform well on the actual learning task. The
results received with different test widths (TW) are shown in Figure 3.4. For
the fixed box we receive the highest reward using a really small test size of 1.
The convergence is less stable than using a test size of 2.5 but it was consistently

15

0 2 4 6 8 10 12 14 16 18 20
−150,000

−100,000

−50,000
0

50,000

100,000

150,000

Iteration

R
ew

ar
d

TW1
TW2.5
TW5

(a) Fixed box

0 2 4 6 8 10 12 14 16 18 20
Iteration

R
ew

ar
d

TW2
TW4
TW8

(b) Bounded box

Figure 3.4.: The test width evaluated in the actual fitted Q-iteration. Really small tests perform
worse in the beginning but converge to a higher reward collected. Too big tests
perform as badly as expected. The final selection is a Twid th of 1 for fixed and a
Twid th of 4 for bounded boxes.

able to outperform it in the end. The final choice will therefore be a test width
of 1. For the bounded boxes, the highest reward was obtained with a test width
of 2. However, since the learning is more stable using a TW of 4 and also the
overall largest reward was gained using this value, we will use this as our final
parameter.

3.1.5 Grid Size

The last parameter we evaluated is for the benchmark representation. This rep-
resentation uses an N × N grid of features to represent the object distributions.
Each bin in this grid contains the amount of objects of a certain type in it e.g.
in the game we would have N ×N ×Nt ypes bins representing the state. We then
use linear ridge regression to learn a simple model using this vector of bins as
the state.

The grid size N controls how finely we represent the game state. The higher
the grid size, the more features we have. However, the smaller the grid ele-
ments, the less the state generalizes. Since are using linear regression, we also
need more samples to fill the feature-space with examples when increasing the
number of grids. In Figure 3.5 we can see the result with different grid sizes.
Both 15× 15 and 21× 21 performed far worse than 10× 10.

16

0 2 4 6 8 10 12 14 16 18 20
−1.2 · 105

−1 · 105

−80,000

−60,000

−40,000

−20,000

0

20,000

40,000

Iteration

R
ew

ar
d

10 × 10
15 × 15
21 × 21

Figure 3.5.: Different Grid-sizes compared. Using a 10×10 grid worked the best out of all. Using
a too fine grid of 21 performed the worst out of all configurations.

3.2 Comparison of State Representations

As previously mentioned, in this game mode we have four actions

A= {up, ri ght, down, le f t}.

Therefore, the optimal behaviour is running away from the enemies while col-
lecting as much money as possible and not colliding with walls. We start by
collecting a dataset of 20,000 samples from a policy π0(s) returning a random
action. Every 50 samples we restart the game with a new random level. For
the rest of the iterations, the agent uses an epsilon greedy policy to balance
exploration and exploitation. The amount of exploration is controlled by the
parameter ε, that determines the probability of taking a random action instead
of the optimal one. We set ε to 0.2 for the experiments. The evaluation is done
on a separate validation world, where there is no random actions and the agent
always chooses the action according to the highest Q returned from one of the
forests.

The Figure 3.6 shows a comparison between the different state representations
performing 20 iterations. All runs collect a reward of approximately -100,000
in iteration 0. We run the algorithm 5 times with the same parameters and plot
the mean and the standard deviation of the reward collected in 20,000 sam-
ples at each of those 5 runs. The classical formulation for random forest tests

17

performs the worst out of all. It is a very unstable learning process and does
not manage to gather a positive reward in the end. The grid representation
slowly converges to a locally optimal policy collecting about 20,000 reward. It
is interesting to note that while the obtained policy collects a positive reward it
looks very unstable because the area of effect each object has on the Q-value is
big. The agent often goes from left to right and back again because the value
changes drastically when moving in the environment. This could also be due to
the discretization error made.

The representation using completely random boxes on average collects a reward
of 70,000. Finally, the representation using equal-sized boxes shows a slightly
less stable learning process but converges around 100,000. The bounded box
approach performs similar to the fixed box. The highest the agent collected
overall was 120,000 reward with a fixed box policy. Considering the fact that
a coin gives 100 points while colliding with an enemy gives a penalty of -300,
this is a very high score. When the game is played by a human, they are able to
collect approximately 150,000 with the same amount of samples.

0 2 4 6 8 10 12 14 16 18 20
−150,000

−100,000

−50,000

0

50,000

100,000

150,000

Iteration

R
ew

ar
d

Random
Fixed
Bounded
Classical
Grid

Figure 3.6.: Execution of fitted Q-iteration with different state representations. The fixed test
width random forests reaches the highest overall reward. The classical formulation
of random forests fails to really improve much. The grid representation provides a
very stable learning progress, but fails to reach the same levels as random forests
with box tests.

There are multiple reasons why the random box does not reach as high returns
as the two approaches where we control the size of the tests. The problem with
the random box approach is that the tests are often large and general, or too

18

small and specific. For example, a test may cover the majority of the observed
area, or it may be only a couple of pixels wide. These tests often do not even
separate the training data. The more regularly shaped bounded and fixed box
approach do not exhibit this issue as much and generalize to medium-sized re-
gions.

Another reason we do not get higher returns is that the method is only a reac-
tive policy. The agent can only behave optimally in the local view of the game,
since it does not know anything about the surroundings. In situations where
there are no more coins or enemies left, the behaviour has no guidance. This
leads to the agent being stuck at those local positions, without exploring further.

To improve on this problem, we have to additionally add information about
the global environment - the whole game world - to the learning process. While
we could make the agent follow a manually defined trajectory in the world and
only learn the behaviour in local parts of the game, we preferably would inher-
ently learn the global behaviour of the agent with a modification of our method.
In the next subsection, we will do experiments regarding solutions for this prob-
lem.

Another problem that has to be analyzed is the stability of the methods after
each iteration. Often the return crashes massively after a good iteration i.e. it
falls from a really high value to a low value. This happens because we re-sample
completely from the game after each iteration and forget any information pre-
viously obtained. If for example we get a good policy in one iteration, the next
one often fails to perform well because we don’t get enough negative examples
when collecting samples with the good policy. One would have to keep the in-
formation i.e. with importance sampling or similar approaches to reach a more
stable progress in this setup. Another way to look at this problem is adjusting
the way we sample the training data.

3.2.1 Exploration Problem

In this section, we investigate multiple methods for incorporating the global
state of the game into the learning. As shown in Figure 3.7, the agent now has
information of the whole world instead of only its local sub-view. We want to
use this information together with the proposed algorithm in order to learn the
behaviour of the agent even if the Q-function is flat i.e. there are no enemies
or money in the area. In order to test if the agent is able to learn a global

19

behaviour we added a goal to the world. When generating the game we now
create 20 coins very close to each other in an area near the border of the world.
If the agent can constantly find this stack of coins he will gain a much higher
reward than previously.

(a) Normal view (b) Global View

(c) Grid minimap (d) Arrow

Figure 3.7.: Instead of using only the information from the local view in (a), we now also use
information of the whole world (b). In (c) we visualize the minimap approach and
the different objects spawned. The red circle means there is money in this area and
the blue diamond means that the stack of coins is in the area. In (d) the arrow
pointing towards the goal is shown. It is always close to the border of the local view
of the agent.

In the first approach we give the whole world as state for the training data. In
this manner, the tests are generated across the entire game world and the state
is fully observable. The second approach transforms the world into a compact
minimap as shown in Figure 3.7c. We split the world into a grid where each
cell is as big as a local view of the agent. For each cell we add an object to the
area if there is gold in the area and the agent hasn’t previously visited it. Addi-

20

tionally, we add a different object to the cell which contains the stack of coins.
This global overview in the form of objects is then added to the local view of
the agent. Different distributions of those objects should provide the agent with
the necessary information to find the goal and more gold. Once the agent has
entered a cell, the object is removed. This adds two more objects to the learning.

For the last approach shown in Figure 3.7d we added an arrow to the local
view of the agent which always points into the direction of the goal. This
method adds one object to the learning process and provides information of
the global location of the stack of coins.

0 2 4 6 8 10 12 14 16 18 20
−200,000

−150,000

−100,000

−50,000

0

50,000

100,000

Iteration

R
ew

ar
d

Minimap
Normal
Arrow
Global World

Figure 3.8.: Execution of the three exploration methods in comparison to the standard approach
without any information about the whole game world. All methods perform worse
than the normal version.

For all runs in this section, we will use the random box sampling with N = 30,
K = 500, M = 30. We collect 20,000 samples at each iteration and average all
results over 5 runs, while also depicting the standard deviation. In iteration 0
the agent collects a reward of -100,000.

The results in Figure 3.8 show that none of the methods massively increased the
reward collected. The normal method without any global information outper-
forms all others. The arrow and minimap version perform only slightly worse,
which is caused by the additional objects in the state representation that make
the game more complex. The game does not discover the treasure often enough
to make use of those cues. Finally, the global world view performed poorly stay-
ing very close to a random policy in behaviour and return.

21

These results show that it is not straight-forward adjusting the method in or-
der to include global information. The global view suffers from too many
objects and too much space. The tests created are very big no matter where
they are created. Finding a good way to sample the tests in such an environ-
ment would make this work better e.g. prioritizing local features close to the
agent while still using global tests.

The objects depicting the global state in the two other approaches have no effect
on the return. This could be caused by the fact that we forget information from
previous iterations and completely re-sample. The additional context may also
require more samples in order to capture the information provided by the new
objects. The structure of the actual rollout might also need adjustment in order
to find the treasure more often while exploring.

3.2.2 Sampling

For this experiment we will look at different ways of handling the data between
each iteration. In the previous experiments we re-sampled a completely new
training set from the current policy and learned a completely new random for-
est from this data. The original version of fitted Q-iteration described in [2] is
inherently an offline method - given the initial data set, the algorithm estimates
the optimal policy by only updating the output of the samples after each iter-
ation. When we ran the algorithm this way, the returns increased very slowly
and converged too a way too low value.

Therefore, we mix the two versions together and after every 5 iterations we
completely abandon the model and re-sample the data using the currently best
policy. This turns the process into an online learning approach. Each iteration
shown in the experiment is obtained by sampling from the policy learned di-
rectly after the re-sampling of the data. The parametrization for the trees is the
same as in the previous experiments.

As Figure 3.9 shows the mixed approach led to a very stable convergence of the
algorithm and the mean was much higher than in the version were we com-
pletely abandon the dataset/model after each iteration.

22

0 2 4 6 8 10 12 14 16 18 20
−150,000

−100,000

−50,000

0

50,000

100,000

Iteration

R
ew

ar
d

Mixed
Normal

Figure 3.9.: Comparison of different data set sampling methods. In the normal version we aban-
don the training data and model after each iteration. In the mixed approach we do
5 iterations where we only update the output of the random forest between each
re-sampling of data. The latter approach proved to be more stable and reaches a
higher reward.

Although we achieved a more stable learning progress with additionally higher
average reward, it has to be noted that the policy which obtained the highest
reward overall still was obtained from the normal method. This is again caused
by sampling from a too good policy, where the bad situations aren’t encountered
often enough and therefore the next iteration gets a low return. After such a
low reward, the agent has enough information to avoid bad situations and the
reward becomes very high in the next step. This is suboptimal and we hope
to find a method that keeps information from previous iterations and combines
it with the current model in future work. This way we would reach higher
returns while also being stable because we do not forget important previous
information.

3.3 Game with Additional Sword Actions

In the section we present the experiments on the game with eight actions

Aex t = {up, ri ght, down, le f t, upswipe, ri ghtswipe, downswipe, le f tswipe}.

The agent now additionally has the ability to do an attack into one of four direc-
tions with his sword. Hitting an enemy returns a high positive reward of 300,
but he can not win against more than one enemy. Fighting multiple enemies at

23

the same time gives a negative reward of -900. Swinging his sword against a
stone or in the air gives a negative reward of -750.

This way he can collect a high positive reward by collecting coins and hunting
single enemies, but has to avoid swinging his sword wildly. For this experiment,
we use 40,000 samples in each iteration while training. However, the evaluation
is still done with 20,000 samples. The parametrization used here is the same as
in the 4-action case. Iteration zero is not shown in the plot because the agent
collects a reward of about -6,000,000 with a random policy.

2 4 6 8 10 12 14 16 18 20
−1,500,000

−1,000,000

−500,000

0

500,000

1,000,000

Iteration

R
ew

ar
d

Random
Fixed
Bounded
Classical
Grid

Figure 3.10.: Execution of fitted Q-iteration with different state representations in the 8-action
environment. The grid representation fails to perform well in this setup. The classic
version of regression trees is very stable and manages to collect a positive reward.
Both the bounded and random box perform the best on this setup and the fixed
box setup is extremely unstable.

As shown in Figure 3.10 we manage to obtain a high positive reward of up to
270,000 in this setup. The highest return was obtained using the bounded box
setup, while the random box setup also achieved good results of up to 250,000
points. The fixed box representation is extremely unstable in this setup and the
reward sometimes drops to values worse than random policies obtain. This re-
sult is related to the previously described problem that we don’t use information
of previous iterations. The grid representation improves in the first iterations,
but fails to get a positive return. The classical formulation of random forests per-
form fairly well and converge to a reward of approximately 50,000. In summary,
we were able to learn a good behaviour for the agent, but the extension to eight
actions has again shown the importance of the trade-off between generalization

24

and specialization. The fixed box approach with this parametrization provides
a too fine representation of the state. The area of effect the sword swipe has is
too big. Therefore, one test can not represent that it is bad to swing the sword
when there are multiple enemies approaching. The more general bounded box
performs much better here. The grid representation has another problem be-
sides the relatively fine representation. For each bin, we obtain one weight after
learning. This weight is either positive or negative. It can not capture the con-
dition that when there are two enemies in the area it is bad to swing and when
there is one enemy, it is good. The tree based approaches are capable of dealing
with this condition.

25

4 Conclusion and Future Work
In this thesis, we have learned the behaviour of an game agent based on object
distributions in his surrounding. We proposed a variant of random forests as an
abstract state representation for the agent and applied the fitted Q-iteration to
learn an optimal policy for the agents behaviour.

The tree based fitted Q-iteration with the classical way of sampling tests by
choosing a separating hyperplane in the feature space performed worse than
our benchmark grid representation. Using the proposed changes to the way we
sample the tests we were able to outperform the benchmark. We also analyzed
different ways to sample the size of the boxes that are created in the tree struc-
ture. Both the fixed size and bounded size tests were able to outperform the
random sampled tests in the 4-action case. This result showed the importance
of the trade-off between generalization and specialization of the tests. The ran-
dom box creates a lot of very general and very specific (i.e. small) tests which
are not even splitting the data set. Limiting or fixing the size of the tests there-
fore improved the performance of the algorithm.

When further increasing the number of actions by adding sword attacks the
fixed boxes performed poorly, while the bounded boxes were still able to per-
form well. This problem is caused by the big area of effect the sword swipe has
and the fact that it is bad to attack more than one enemy. The multiple small
tests are not big enough to cover the entire swipe area and therefore it requires
multiple tests to describe the optimal behaviour. More general tests like the
bounded or random box approach are able to handle such situations. In conclu-
sion, the optimal way of sampling the tests depends on the problem setting.

Next, we also evaluated different methods of sampling the training data and
updating the policy between each iteration. Instead of re-sampling the training
data after each iteration, we were able to improve the learning progress by re-
sampling the data from the currently best policy after each 5th iteration. For
all the other iterations, we only update the output value of the model. This
approach still abandons previously learned information which could be used
to improve the model. However, the old information might still be important

26

and should be re-used by for example using importance sampling or similar ap-
proaches.

Although we were able to collect a very high reward, we are still 30,000 points
below a human playing the game. We discovered that the biggest difference is
the behaviour when there are no observable attractors or detractors, e.g. coins
and enemies. The policy learned relies on what it sees in its local area and
providing the agent with the state of all objects in the game world did not lead
to a good performance. The method works well using only local information,
and can be used with more global information. However, the agent will need a
policy with more structured exploration to explore more of the game world and
thoroughly exploit the global information.

27

Bibliography
[1] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cam-

bridge, MA, USA: MIT Press, 1st ed., 1998.

[2] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforcement
learning,” J. Mach. Learn. Res., vol. 6, pp. 503–556, Dec. 2005.

[3] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,
2001.

[4] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,” Mach.
Learn., vol. 63, pp. 3–42, Apr. 2006.

[5] S. C. Amend, “Feature extraction for policy search,” bachelor thesis, TU
Darmstadt, Mai 2014.

29

A Appendix

A.1 Parameter Evaluation: RMSE

In this section, we evaluate the performance of the parameters regarding the
regression. This gives us a selection of parameters to choose from for the actual
execution of the fitted Q-iteration. For this purpose, we use the Root Mean
Squared Error (RMSE) defined as

RMSE =

√

√

√

∑n
t=1(ŷ − y)2

n

a measure for the quality of the approximation in the first step of fitted-Q itera-
tion. To evaluate the performance of the regression, we collected a data set TD1
which represents the Q-values in the first iteration of the algorithm i.e. there is
no discounted future reward included and we only look at the immediate return
received in this step. The training set consists of 20.000 samples collected by ex-
ecuting random actions in the game. The whole evaluation is done as a 10-fold
Cross-validation in order to check the accuracy of the model on unknown states.
Since the original data set is collected by executing a row of actions, we shuffle
the dataset randomly so each bin for the Cross-validation has a wide range of
different situations. Because for the learning part we split the dataset according
to the action taken, here we evaluate the accuracy of each forest representing
an action separately. We then average those four RMSE values and evaluate
the combination. This allows us to choose the lowest RMSE for all actions. We
compare different parameters for the Random Forests to each other. The same
process is done for the grid representation for the state in order to select the
number of bins N and for the test width in the alternative formulation of the
tests.

A.1.1 Number of Tests in Tree

Following the procedure described at the start of this section we get the results
presented in Figure A.1. Choosing the number of tests as 300 leads to the lowest
overall error on the regression. It has to be mentioned that in case the algorithm

31

doesn’t find a split in those 300 trials, it retries a few times before giving up and
turning the node into a leaf. This leads to a overall lower RMSE.

0 50 100 150 200 250 300 350 400 450 500 550
30

32

34

#Tests

R
M

SE
RMSE by #Tests

Figure A.1.: Sampling 300 different tests at each node results in the lowest RMSE.

A.1.2 Minimum number of examples in a leaf

The results of the evaluation are depicted in Figure A.2. Too low values per-
formed as bad as too high values while an nmin between 15 and 25 has shown
good results. We will further evaluate nmin of 10, 20 and 30 in the real execu-
tion of fitted Q-iteration.

5 10 15 20 25 30 35 40 45
30

31

32

33

34

35

nmin

R
M

SE

RMSE by nmin

Figure A.2.: Turning a node into a leaf at around 20 samples remaining gives us the lowest overall
RMSE.

A.1.3 Number of Trees

In Figure A.3 we can see the behaviour of the RMSE depending on the number
of Trees. The evaluation shows a surprisingly low value for 10 Trees. We will

32

further compare the values from here in the fitted Q-iteration part to see how
it influences the learning progress. Generally it can be said that the RMSE falls
further with a higher number of trees.

5 10 15 20 25 30 35 40 45 50
30

32

34

Trees

R
M

SE
RMSE by #Trees

Figure A.3.: The RMSE falls further the higher the number of trees is.

A.1.4 Test width

Here we evaluate the RMSE for different Test widths used for representation
where we sample the center of the test and create a box around it by going
Twid th into every direction. This creates a lot of equal sized tests and has proven
to perform well on the actual learning task.

As Figure A.4 shows, we get the lowest RMSE at 2.5 Twid th on the dataset
collected in the first step. Considering that this test is 5 × 5 units big while
the whole game is only 20 × 20 the low RMSE is surprising. We will further
evaluate the behaviour of this test width in the actual application of the algo-
rithm.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
30

32

34

36

Testwidth

R
M

SE

RMSE for different testwidths

Figure A.4.: A test width of 2.5 results in the lowest RMSE.

33

A.1.5 Grid size

The evaluation shown in Figure A.5 suggests that using a grid size of 16 gives
us the lowest RMSE overall.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

30

40

50

Gridsize NxN

R
M

SE

RMSE by Gridsize

Figure A.5.: Using different Grid sizes for the linear ridge regression results in different Errors. A
size of 16× 16 has the lowest RMSE.

34

	Introduction
	Motivation
	Problem Definition

	Foundations
	Reinforcement Learning
	Random Forests

	Experiments
	Parameter Evaluation
	Comparison of State Representations
	Game with Additional Sword Actions

	Conclusion and Future Work
	Bibliography
	Appendix
	Parameter Evaluation: RMSE

