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Abstract
An important part of control and planning in robotics is the ability to infer the next system states given
previous system states and the actions applied. In the case were the true system state is not accessible and
can only be perceived through observations, this is done using models describing the system dynamics
and which observations are emitted by the system in a certain state. Formally, these models can be
expressed as functions. Deriving these models analytically is almost impossible for real world systems.
Another way to obtain them is Machine Learning, a field which provides various tools to learn functions
based solely on example data.

Two recent approaches using machine learning tools to perform inference for dynamical systems are
the Kernel Kalman Filter (KKF) [Gebhardt et al., 2016] and Embed to Control (E2C) [Watter et al., 2015].
While the former employs kernel methods and nonparametric representations of probability distributions
to solve the task, the latter uses Deep Learning methods to perform inference.

We propose the Deep Nonparametric Kalman Filter (DNKF), an approach performing nonparametric
inference in a Deep Learning setting by combining ideas from E2C and the KKF. Further, we evaluate our
approach and compare it with E2C and the KKF.

Zusammenfassung
Ein wichtiger Aspekt von Planung und Steuerung in der Robotik ist die Fähigkeit die nächsten System-
zustände anhand von vorherigen Systemzuständen und angewendeten Aktionen vorherzusagen. In dem
Fall in dem der echte Systemzustand unbekannt ist und nur durch Beobachtungen wahrgenommen wer-
den kann, bedient man sich dazu Modellen welche die Beobachtungen die in einem bestimmten Zustand
gemacht werden sowie die Systemdynamik beschreiben. Formal können solche Modelle als Funktionen
aufgefasst werden. Für reale Systeme ist es fast unmöglich diese Modelle analytisch herzuleiten. Eine
Alternative bietet das Machine Learning welches zahlreiche Methoden bereitstellt um Funktionen einzig
anhand von Beispieldaten zu erlernen.

Der Kernel Kalman Filter (KKF) [Gebhardt et al., 2016] und Embed to Control (E2C) [Watter et al.,
2015] sind zwei aktuelle Ansätze welche sich Machine Learning Methoden bedienen um Inferenz in dy-
namischen Systemen durchzuführen. Während erstgenannter Kernel Methoden und nichtparametrische
Repräsentationen von Wahrscheinlichkeitsverteilungen nutzt, setzt letzterer Deep Learning Methoden
zur Inferenz ein.

Wir schlagen den Deep Nonparametric Kalman Filter (DNKF) vor, einen Ansatz welcher nicht para-
metrische Inferenz mittels Deep Learning Methoden ermöglicht indem er Ideen von E2C und dem KKF
verbindet. Des weiteren evaluieren wir unseren Ansatz und vergleichen ihn mit E2C und dem KKF .
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1 Introduction
One of the main goals of robotics is to perform control and planning for robots living in and interacting
with real world environments. The difficulty of that task is determined by the nature of the environment
itself. When building an assembly line, e.g., in a car factory, engineers try to build an environment that
is as deterministic as possible. Furthermore, they can use sufficiently many sensors in order to enable
the robot of perceiving every information necessary for the given task, making the environment fully
observable.

However, often it is not possible to build a deterministic and fully observable environment for the
robot, which makes the problem of control and planning much harder. Imagine for example a vacuum
robot that has the task to clean a house. For the robot it is not possible to perceive anything outside the
room it is currently in. Furthermore, the environment is highly nondeterministic and constantly changed
by factors outside of the robots influence.

An important aspect of control and planning is the ability to infer future system states. If the true state
of the system is known, it is sufficient to model the system dynamics using a transition model. This model
predicts future system states given the current state. Depending on the system at hand the future states
may also depend on actions applied to it. However, as described above, the robot usually has no access
to the true state of the environment, or even its own state, and can only partially perceive it through
noisy observations. In those cases an observation model, i.e., a model describing which observations are
emitted by the system in a certain state, is needed.

It is almost impossible to obtain accurate dynamics models for dynamical systems, due to factors such
as friction and material fatigue, causing inherent model errors. Those model errors, together with par-
tial information and the stochasticity of the environment, make exact predictions impossible, hence only
state estimates are available for the given task. In order to account for that and additionally providing in-
formation about the uncertainty of the estimates, it is beneficial to model the dynamics using probability
distributions.

Another way to obtain the models is Machine Learning, a branch of Artificial Intelligence, concerned
with finding models and solving a given task, only using data. This is achieved by using a parameterized
model, whose parameters are optimized using a function assessing the current performance of the model
given the data.

In Machine Learning linear models are desirable since those are particularly easy to work with and
to optimize. However, the system dynamics and the observation generation process are often highly
nonlinear, even for very simple systems. Hence, it is not reasonable to approximate them using a linear
model. One common approach to deal with this is to learn the models not directly in the observation
or state space but in some latent space in which the dynamics and observation generation process are
approximately linear.

With Embed to Control (E2C) a model for parametric inference using Machine Learning methods was
introduced by Watter et al. [2015]. They map the observations into a low dimensional latent space, using
a Variational Autoencoder (VAE). In that space a locally linear transition model is learned simultaneously
to the VAE. Additionally, another constraint is added to the optimized cost function in order to achieve a
dynamics model corresponding well with the real system dynamics.

Both the VAE and the transition model are learned using Deep Neural Networks (NNs), powerful
Machine Learning models inspired by the brain. Those Deep NNs are capable of solving complex tasks
and learning useful abstractions. Recently, they have been employed to solve a variety of tasks that
were considered to be unsolvable for computers in the near future, like winning the game of Go against
the best human players [Silver et al., 2016]. This has been possible due to new theoretical insights
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and progress in computer technology making very big data sets available and making it feasible to train
models with a large amount of parameters on these data sets.

However, parametric representations of probability distribution are inherently restricted in their ability
to represent complex statistical features such as multimodality, skewness and rich dependency structures.
To cope with this, several approaches providing nonparametric representations of probability distribu-
tions were introduced. One of them, a framework surveyed by [Song et al., 2013], is based on the idea of
embedding probability distributions into very high, potentially infinite, dimensional Reproducing Kernel
Hilbert Spaces (RKHSs).

Based on that framework, Gebhardt et al. [2016] introduced the Kernel Kalman Filter (KKF). Like the
classical Kalman Filter [Kálmán, 1960] it can be employed to form state estimates for dynamical systems
using sequences of observations, together with an observation and a transition model.

In this work we will combine the ideas of nonparamtetric inference using Kalman Filters and finding
latent representations of the state space in which the transition and observation model become linear.
Further, we will make use of Deep Learning methods, exploiting their capability of dealing with large
data sets.

After introducing all necessary preliminaries, we will propose our own approach, the Deep Nonpara-
metric Kalman Filter (DNKF) and finally evaluate its performance with experiments in simulation using
visual observations of a pendulum and the endeffector positions of a quad link, i.e., a pendulum with
four links.
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2 Preliminaries

2.1 Formalization of the Problem

We assume a time discrete system whose system dynamics are modelled by

xt+1 = Axt +But + εt ,

with system matrix A, control matrix B, transition noise εt and applied action ut . This is also referred to
as transition model. Further, it is assumed that there is no access to the true state xt but only to some
observation (measurement) ot of the system. The process generating these observations is also linear,
i.e.,

ot = Cxt + γt ,

with an observation matrix C and observation noise γt . However, we have full access to the actions ut
applied to the system.

Often it is useful to redefine those models as probability distributions. In this case the transition model
is given by

xt+1 ∼ Pt (X |Axt +But)

and the observation model is given by

ot ∼ Po (O|Cxt) .

2.2 Kalman Filter and Embeddings

Introduced by and named after Kálmán [1960], the Kalman Filter is used to obtain state estimates of
a system whose true state is hidden. It is an iterative algorithm working in two steps. First, it uses an
observation together with the observation model to update its estimate. Second, it employs the transition
model to predict an estimate of the next state given the executed action.

The Kalman Filter assumes the transition dynamics as well as the observation model to be known.
Further, it assumes both, the transition noise and the observation noise to be Gaussian distributed with
zero mean and known covariances denoted by Ht for the transitions and Rt for the observations. If
all those assumptions are satisfied the estimates produced by the Kalman Filter are optimal in the least
squares sense.

During the update step an estimate, a-posterior to the observation, of the current state is inferred.
This is done by computing a weighted average of the Kalman Filters a-priori estimate and the current
observation. The weights are represented by the Kalman gain Qt and depend on the uncertainty of both
the a-prior estimate and the observation. A higher uncertainty about one of the quantities yields smaller
influence on the a-posteriori estimate. The formulas of the update step are given by

Measurement Residual: yt = ot −Ctx
−
t

Resuidual Covariance: St = CtP
−
t CT

t +Rt

Kalman Gain: Qt = P−t CT
t S−1

t

Mean Update: x+t = x−t +Qtyt

Covariance Update: P+t = (I−QtCt)P
−
t ,

5



where I denotes the identity matrix. While x−t and P−t denote the mean and covariance of the esti-
mated state a-priori to observation ot , the mean and covariance of the estimated state a-posteriori to
observation ot are denoted by x+t and P+t respectively.

Next, the posterior estimate together with the transition model is used to compute the prior estimate
of the next state.

Next Mean: x−t+1 = Ax+t +But

Next Covariance: P−t+1 = AP+t AT +Ht .

If for the current time step no observation is available the update step is omitted and the next prior
directly inferred from the current prior.

2.2.1 Kernel Embedding of Distributions

There are several methods to represent probability distributions in a nonparamatric manner. One of
them, a framework surveyed by Song et al. [2013], is based on the embedding of distributions into a
Reproducing Kernel Hilbert Space (RKHS). Embedding a probability distribution into an RKHS means
representing the distribution as an element in the RKHS. Such embeddings were derived for marginal,
joint and conditional distributions as well as kernel versions of the sum, product and Bayes rule.

A Hilbert space is a space that has an inner (scalar) product 〈·, ·〉 defined and is complete with respect
to the norm induced by that inner product. Let F be a Hilbert space of functions f : X 7→ R. If for each
x ∈ X there exists an element kx(·) ∈ F satisfying the reproducing property, i.e., 〈 f (·), kx(·)〉F = f (x),
then F is an RKHS and k(x , x ′) = 〈kx(·), kx ′(·)〉F is the corresponding reproducing kernel. This kernel
can now be used to implicitly map values x , x ′ ∈ X to some feature space using a mapping φ : X 7→ F
and evaluating a inner product in that space by computing k(φ(x),φ(x ′)) = 〈φ(x),φ(x ′)〉F .

In order to embed a marginal distribution P(X ) over a random variable X the so called mean map
[Smola et al., 2007] is used,

µX = EP(X ) [φ(X )] =

∫

F
φ(x)p(x)d x .

Often one has no access to the distribution P(X ) but only to a finite amount of samples x i ∼ P(X ). In
such cases a finite sample estimator is used. The estimator of the mean map is given by

µ̂X =
1
m

m
∑

i=1

φ(xi).

Similarly to marginal distributions, joint distributions can be embedded into a tensor product (outer
product) RKHS F ⊗ F [Smola et al., 2007]. The embedding of a joint distribution of two random
variables X and Y is defined as

CX Y = EP(X ,Y ) [φ(X )⊗φ(Y )] =
∫

F×F
φ(x)⊗φ(y)p(x , y)d xd y.

Again a finite sample estimator exists, which is given by

ĈX Y =
1
m

m
∑

i=1

φ(x i)⊗φ(yi).

As a next step, conditional distributions of the form P(X |Y ) are embedded into the RKHS [Song et al.,
2009]

µX |y = EP(X |Y ) [φ(X )] =

∫

F
φ(x)p(x |y)d x .
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Note that this is not a single element in the RKHS but a family of elements with one member for each
possible value y of Y . To condition X on a particular y and obtain a single RKHS element the conditional
embedding operator CX |Y is used. This operator takes y as input and outputs the corresponding member
of the family. Formally it satisfies

µX |y = CX |Yφ(y).

Song et al. [2009] derived this conditional embedding operator as

CX |Y = CX YC−1
Y Y , hence µX |y = CX YC−1

Y Yφ(y).

Finally the kernel sum rule (marginalization) is introduced [Fukumizu et al., 2013]. A marginal distri-
bution Q(X ) can be obtained from a conditional distribution P(X |Y ) and a prior π(Y ) on the conditioning
variable Y via

Q(X ) =

∫

F
p(x |y)π(y)d y.

Embedding Q(X ) to the RKHS yields

µX = EQ(X )[φ(X )] = Eπ(Y )EP(X |Y )[φ(X )] = Eπ(Y )[CX |Yφ(Y )] = CX |YEπ(Y )[φ(Y )] = CX |YµY ,

where µY denotes the mean map of the prior π(Y ) and CX |Y can be moved outside of the expected value
Eπ(Y ) since both are linear operators.

The kernel product rule as well as the kernel Bayes rule are omitted here since they are not needed
for further derivations.

2.2.2 Kernel Kalman Filter

Based on this framework, Gebhardt et al. [2016] derived the Kernel Kalman Filter (KKF), a nonparamet-
ric version of the Kalman Filter. In order to do this they derive kernel versions of the update and the
prediction rule.

The current state estimate is modelled with embedded marginal distributions µ−X ,t and µ+X ,t . Again
µ−X ,t denotes the estimate a-priori to the observation ot and µ+X ,t denotes the observation a-posteriori to
ot . Both, the observation model and the transition model are embedded conditional distributions with
conditional operators T for the transition and CO|X for the observation. Further, the current observation
ot is embedded into an RKHS and the embedded observation denoted by φ(ot). Note that the state
estimates and observations in general are not embedded into the same RKHS and CO|X is used to map a
state estimate into the observation RKHS.

Corresponding to the update step in the classical Kalman Filter they introduce the kernel Kalman rule.
Following a recursive least squares approach they chose the posterior estimate µ+X ,t such that it minimizes
the squared distance between the true observation, embedded into the RKHS, φ(ot), and the inferred
observation, CO|Xµ

+
X ,t . This yields the following objective

min
µ+x

∑

t

�

φ(ot)− CO|Xµ
+
x

�T R−1
�

φ(ot)− CO|Xµ
+
x

�

,

with some metric R. With the recursive least squares solution the following rule is obtained

µ+x,t = µ
−
x,t +Qt

�

φ(ot)− CO|Xµ
−
x,t

�

,

where Qt corresponds to the Kalman gain in the Kalman Filter and is hence referred to as kernel Kalman
gain operator.
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The RKHS equivalent to the prediction step is obtained by using the kernel sum rule. With the embed-
ded transition model T the next prior state estimate µ−X ,t+1 is obtained from the current posterior state
estimate µ+X ,t by marginalization.

µ−X ,t+1 = T µ+X ,t .

Together those two rules yield the KKF. Like with the classical Kalman Filter the update step is omitted
if no observation is present.

2.2.3 Practical Aspects

In practice Qt , CO|X and T need to be learned from finite data sets. Due to the high, possible infinite,
dimensionality of the RKHS used, it is computationally intractable to work directly with them. However,
since all necessary calculations can be expressed using inner products the kernel can be used to work
implicitly in the RKHS, making computation tractable.

Employing the kernel makes the usage of the Gram matrix necessary. This matrix contains the evalu-
ated kernel for every pair of the n data points in the set, hence it is of size n× n. In particular a matrix
of the same size, computed from the Gram matrix, needs to be inverted in order to estimate the kernel
Kalman gain operator. This yields a runtime growing cubically in the number of data points, making it
hard to train the KKF for large data sets.

Gebhardt et al. [2016] alleviated this drawback by introducing the Subspace Kernel Kalman Filter.
However, it remains hard to train the model on a data sets with sufficiently many samples to cover the
complete state space for systems like the quad link.

2.3 Deep Learning

Deep Learning is a subfield of Machine Learning employing Neural Networks (NNs). Recently, Deep
Learning methods have been used to develop algorithms that achieve state of the art and sometimes
even human like performance in a variety of tasks like playing the game of Go [Silver et al., 2016],
image recognition [Szegedy et al., 2015], image captioning [Vinyals et al., 2015] and natural language
processing [Goldberg, 2015].

Machine Learning in general tries to find patterns and underlying structures in data and uses that
knowledge to build a model capable of solving a specific task. Such models are represented by param-
eterized functions and the parameters are optimized by another function assessing how the model is
currently performing. This process is called training or fitting the model.

Depending on the task at hand, Machine Learning approaches are categorized into supervised, un-
supervised and reinforcement learning. Supervised learning models are trained with a set of the form
D = {X , Y } = {(xi,yi)|i = 1, . . . , n} with inputs xi and corresponding desired outputs yi. For unsuper-
vised models we only have a set of inputs X = {(xi|i = 1, . . . , n}.

The performance of a Machine Learning model is significantly influenced by the way the data is rep-
resented. For an example of the importance of a good representation see Figure 2.1. Usually a good
representation is obtained by extracting features from the data and then map each data point to the fea-
ture space. Finding good features is often a cumbersome and time consuming task that requires severe
domain knowledge and can only be performed by (systematic) trial and error.

The main reason for the recent success of Deep Learning is that the task of finding suitable features is
taken away from the developer. Instead, the features are learned as part of the model directly from the
data during training.

As stated above Deep Learning models are going back to NNs, introduced by Rosenblatt [1958] and
back then referred to as Perceptrons.
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(a) Linear function trained on raw data, φ(x) = x
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(b) Linear function trained on data transformed to poly-
nomial (degree 3) feature space,
φ(x) = (x3, x2, x , 1)T

Figure 2.1: The model is tasked to learn the sin function (green) based on noisy samples (blue) using a
function linear in the parameters θ , i.e., f (x) = θ Tφ(x). The results (red) obtained with a
suitable feature map (b) are clearly better than the results obtained by just feeding in the raw
data (a).

2.3.1 Neural Networks

Originally, Neural Networks (NNs) were inspired by the brain in which neurons propagate information
from one to another in order to represent abstract situations and make complex decisions. In contrast
to the brain, where neurons can form arbitrary connections the neurons in a NN are organized in layers.
There are no connections between the neurons in a single layer and information, represented as real
numbers, flows from one layer to the next in a specific direction. Each neuron accumulates the infor-
mation received from the neurons in a previous layer, transforms it, and then propagates it to the next
layer. Classically, each neuron is connected to all the neurons in the previous and next layer, this is called
densely connected. However, modern Deep Learning approaches use a variety of specialized layers, such
as convolutional or recurrent layers for which this is not always the case.

Often the inputs themselves as well the outputs are considered to be layers, referred to as input and
output layer. All layers in between are called hidden layers. The amount of hidden layers, as well the
width, i.e., the number of neurons of each layer are hyperparameters of the model and have significant
influence on its performance. The term Deep Learning refers to a recent trend of using multiple hidden
layers. While in classical works rarely more than one hidden layer was used, Szegedy et al. [2015] for
example used 22 layers.

More formally a NN is a nonlinear, parameterized function of special form. Each neuron is a scalar
product of its input and a weight vector of trainable parameters. The result of the scalar product is then
transformed using a nonlinear activation function. While this could be any function there are several
very commonly used ones, visualized in Figure 2.2. A sketch and the formulas for a very simple NN can
be found in Figure 2.3

In practice it is more efficient to compute the values for a whole layer with a single matrix vector
multiplication by concatenating the weight vectors into a matrix. Further, often an additional neuron
is added to each layer. This neuron outputs a constant 1 and serves as a bias, allowing for constant
offsets in the representation learned by the following layer. Note that, in this work, such a bias neuron
is assumed to be present in every layer unless stated otherwise.
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(a) Sigmoid:
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(b) Hyperbolic Tangent:

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)
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(c) Rectified Linear unit (ReLU):
relu(x) =max(0, x)

Figure 2.2: Examples of common activation functions. While in early works in the field mostly the sig-
moid and hyperbolic tangent were used nowadays the ReLU is the most common activation
functions since it has some nice properties regarding optimization and does not saturate.
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vi, j

(a) Sketch of the NN as actual network of neurons. Those visual
metaphors are are often used to explain NNs. The weights wi, j
making up the weight matrix W . Similar, the weights vi, j make
up a weight matrix V.

h= σ1 (Wx)
y = σ2 (Vh)

(b) Formulas computing the values of each
layer, whereσ1 andσ2 represent the non-
linearities of each layer and the weight
matrices W and V are the trainable param-
eters.

Figure 2.3: Example of a very simple NN with one hidden layer of width two.

2.3.2 Training Deep Neural Networks

As stated above, in order to train a parameterized model mθ : X 7→ Y on a data set D = {(xi,yi)|i =
1, . . . , n}, one optimizes a function evaluating its performance. In the context of Machine Learning
such functions are often referred to as loss functions1. For the supervised methods discussed here, this
function is usually chosen to measure the distance between the output predicted by the model and the
desired output given by the dataset. The most prominent example of such a loss function is the Mean
Squared Error (MSE), which, for a single sample (x,y) ∈D, is given by

MSE(y, ŷ) =
1
N

N
∑

j=1

(y j − ŷ j)
2 =‖ y− ŷ ‖2

2,

where ŷ= mθ (x) and N denotes the dimension of Y .

1 The terms loss function, cost function and error function are used equivalently.
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Often it is assumed that the output data yi was produced by a probability distribution P and the model
is tasked with learning a distribution Q that is as close to P as possible. In such cases measures justified
by probability theory are used. Examples of such measures are the Cross Entropy (CE)

H(P,Q) = EP[− log(Q)] = −
∫

X

p(x) log q(x)d x

and the Kullback-Leibler (KL) Divergence

KL(P ‖Q) =

∫

X

p(x) log
p(x)
q(x)

d x .

Note that neither is a metric in a mathematical sense since they are not symmetric. Usually P and Q
are not explicitly known and only samples, in form of desired values in the data set or as outputs of the
model

yi ∼ P and ŷi ∼Q,

are available. In this case

H(y, ŷ) =
N
∑

j=1

y j log( ŷ j) and K L(y ‖ ŷ) =
N
∑

i= j

y j log
y j

ŷ j

are used as to approximate the Cross Entropy and the KL-Divergence based on a single sample. Since
usually not single samples but data sets are considered, the errors are summed or averaged over the
whole data set, both yielding identical results regarding the optimization.

A common way to optimize functions is gradient descent, an iterative algorithm following the negative
gradient until a local minimum is reached. For a loss function L(θ ,D) 7→ R this looks as follows

θt+1 = θt −αt
∂ L(θ ,D)
∂ θ

,

where αt denotes the learning rate, a factor scaling the gradient to ensure convergence. For large data
sets D it is infeasible to calculate the gradient for the whole set and sufficient approximations can be
obtained with only a subset. Hence a method called stochastic gradient descent is used. For this D is
split into several disjoint subsets di ⊂ D, referred to as (mini)batches, and the parameters are updated
after each batch. Optimizing once with each batch is referred to as a training epoch and the networks
are usually trained for several epochs. The update is performed according to

θt+1 = θt −αt
∂ L(θ , di)
∂ θ

.

If additional assumptions are made about αt , namely
∞
∑

t=1

αt >∞ and
∞
∑

t=1

α2
t <∞,

stochastic gradient descent provably converges to a local minimum. For practical use, a variety of more
sophisticated algorithms for stochastic gradient descent exists such as Adam [Kingma and Ba, 2014]. It
uses exponentially decaying averages over the gradients and their squares to compute adaptive learning
rates, aiming at faster convergence and avoiding getting stuck in saddle points.

It remains to calculate the gradients of the model. For (Deep) NN this is usually done using the
backpropagation algorithm [Rumelhart et al., 1986]. However, modern Deep Learning frameworks, as
used for this work, provide automatic calculation of gradients employing a technique known as automatic
differentiation. Since every computer program can be written as a sequence of elementary arithmetic
operations a derivative of that program can be obtained with the derivatives of the elementary operations
by repeated application of the chain rule for derivatives given by

d x
d y
=

d x
dw

dw
d y

.

This idea is in fact very similar to the backpropagation algorithm.
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2.3.3 Recurrent Neural Networks and Backpropagation trough Time

Often it is not possible to infer the whole system state from a single observation. As an example, imagine
a model that should learn to infer the velocity and acceleration of an object solely on visual data. That
is obviously not possible based on a single image. This makes models capable of dealing with sequential
data, i.e., data where the data points are not independent but each point may depend on previous points,
necessary. As illustrated by the example above, in such cases it is in general not sufficient to look at each
data point individually and the model has to learn the temporal dependencies between the single data
points in order to fully understand the data. Thus, the model needs to be enabled to take previously seen
data points into account in order to solve such problems.

The naive idea to deal with this would be to give the model all the information at once, e.g., by
concatenating the elements of the sequence. This however has a couple of disadvantages. First, the
concatenated input vector may become very high dimensional, since its dimensionality increases with
the length of the input sequence. This yields a high number of model parameters and hence makes
learning more difficult. Second, since the whole data sequence needs to be present before it can be given
to the model it is not possible to perform any kind of online task. Third, it is often not guaranteed that all
sequences have the same length and shorter sequences need to be padded which increases the amount
of data without adding any additional information.

A more sophisticated approach which overcomes the mentioned issues are so called Recurrent Neural
Networks (RNNs). Those are special NNs whose output at a certain time step t does not only depend on
the current input xt but also on an internal state ht−1. In the most simplest case a recurrent layer can be
formulated as follows

ht = σ(Winx+Whht−1) and yt = ht ,

with weight matrices Win and Wh, an arbitrary activation function σ and an output identical to the
hidden state. However, learning long term dependencies with this model is difficult [Bengio et al., 1994],
hence nowadays often more sophisticated recurrent models are used. Examples for such models are the
Gated Recurrent Unit (GRU) [Cho et al., 2014] and the Long Short-Term Memory (LSTM) [Hochreiter
and Schmidhuber, 1997].

In order to train such a network, a loss on the whole sequence needs to be defined. Usually this loss
is just defined as the sum of errors for each data point. Using this error, the RNN can be trained with
the standard backpropagation algorithm by a simple trick called unfolding. While unfolding the RNN, it
is rewritten as a deep standard NN with one layer for each data point in the input sequence. The layer
corresponding to timestep t produces two outputs, the internal state ht and a predicted output yt (note
that, as in the example above, they may be the same) and takes two inputs, the internal state from the
previous layer ht−1 as well as the actual input xt . This is visualized in Figure 2.4. Note however that
the weights Win and Wh are the same for all layers, this is known as weight sharing, a common trick in
Deep Learning to reduce the number of parameters and make a model invariant to the exact position of
a particular part of information. Unfolding an RNN and applying backpropagation is often referred to as
backpropagation trough time (BPTT) [Werbos, 1990]. To account for the weight sharing the losses, and
hence the gradients, are summed up over the elements of the entire sequence.

Since an update step can be performed only after the outputs for the whole sequence are computed,
training an RNN becomes more costly with increasing sequence length. One approach to deal with that
is splitting each sequence into parts of length k and training the RNN on each of this parts. However,
this prevents the model from learning dependencies reaching further back in time than k steps. To cope
with this the truncated BPTT algorithm was introduced [Williams and Peng, 1990]. The main idea of
this algorithm is to process the whole sequence, one step after another, but run BPTT not only once at
the end but every k steps. Since the internal state is not reset and exposed to the whole sequence until
the current time step, the model is capable of learning dependencies reaching further back than k time
steps.
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Winxt

yt = ht

Whht−1

Winx1 Winx2 Winx3 · · · Winxn

· · ·

y1 = h1 y2 = h2 y3 = h3 · · · yn = hn

Whh0 Whh1 Whh2 Whh3 Whhn−1

Figure 2.4: Left: The basic RNN introduced above. Right: By unfolding the RNN through time it was
transformed to a NN with weights (Win and Wh) that are shared between all time steps.
Unfolding an RNN is very similar to unwinding a loop in a program.

2.3.4 Autoencoder

As stated above many approaches rely on good representations. One common Machine Learning tool to
find such representations is the autoencoder. Note that in the context of autoencoders the representation
is often referred to as encoding. The goal of an autoencoder is to copy the input to the output. Formally,
this is described by two parameterized functions (more specific NNs), an encoder fθ : X 7→ Z and a
decoder gθ : Z 7→ X , where X denotes the input space while Z denotes the space the representations
live in, also referred to as latent space. The goal now is to find θ such that

x= gθ (z), with z= fθ (x).

While this technically is an unsupervised learning problem it can be solved by taking the inputs as
both inputs and desired outputs and train the model by optimizing one of the supervised learning cost
functions introduced above.

x z y

encoder decoder

Figure 2.5: Schematic view of an undercom-
plete autoencoder. The output y
should be a reconstruction of the
input x. The goal is to find a lower
dimensional representation (encod-
ing) z containing maximal informa-
tion about x.

However, in order to ensure that the learned latent representation is actually useful, the autoencoder
needs to be further constrained. The most common method of such a constraint is to chose Z such that
its is of a lower dimensionality than X . This forces the model to discard some of the information present
in the data and to focus on the most significant features of the data which are then contained in z. Such
an autoencoder is referred to as undercomplete.

2.4 Embed to Control (E2C)

Embed to Control (E2C) is an approach for inference in dynamical systems recently proposed by Watter
et al. [2015]. Their idea is to find a low dimensional latent representation from high dimensional
observation data using a Variational Autoencoder (VAE). Subsequently, this latent representation is used
to perform optimal control. In order for that to work, the latent space dynamics need to correspond
well with the actual observed dynamics, which is achieved by an additional constraining term in the cost
function.
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2.4.1 Variational Autoencoder

The Variational Autoencoder (VAE) was introduced by Kingma and Welling [2013]. The main difference
to a standard autoencoder is that the VAE represents elements of the latent space not as points in that
space but rather as parameterized distributions over it. In order to achieve that they assume that each
xi is generated by a random process, in which first a latent variable zi is sampled from a prior pθ (z)
and then xi is sampled from some conditional likelihood pθ (x|z). In order to encode some x to its latent
representation the posterior distribution pθ (z|x) is needed. However computation of this posterior is
often intractable since neither the true parameters θ nor the values of the latent variables zi are known.
Thus it has to be approximated using another distribution qφ(z|x). To obtain such a distribution that is
close to the true posterior the variational lower bound is maximized.

For a single xi the marginal log likelihood can be rewritten as

log(Pθ (xi)) = K L(qφ(z|xi)||pθ (z|xi)− K L(qφ(z|xi)||pθ (z)) +Eqφ(z|xi) [log pθ (xi|z)]

= K L(qφ(z|xi)||pθ (z|xi)) +L(θ ,φ,xi),

where L(θ ,φ,xi) is the variational lower bound. It bounds the log-likelihood (of xi) from below since the
KL-Divergence is always non-negative. Because the log-likelihood is fixed, maximizing this lower bound
minimizes the KL-Divergence between the true and the approximated posterior. Thus the objective
function of the VAE is given by

min
θ ,φ
−L(θ ,φ,xi) =min

θ ,φ
K L(qφ(z|xi)||pθ (z))−Eqφ(z|xi) [log pθ (xi|z)] .

The expected value term in this objective represents the expected reconstruction loss of the VAE while
the KL term acts as a regularization by constraining the approximated posterior to be close to the prior.

This objective is then optimized using stochastic gradient descent, however, since the naive Monte
Carlo estimator of the gradient suffers from high variance [Paisley et al., 2012] it can not be used.
Kingma and Welling [2013] circumvent this problem by introducing the reparameterization trick.

2.4.2 The Embed to Control Model

The first part of Embed to Control (E2C) is a VAE used to encode an observation ot to a lower dimensional
latent representation zt and reconstruct (decode) observations õt from a given latent representation zt .
Formally the encoding and decoding are given by two probability distributions

zt ∼Qφ(Z |O) =N (µt ,Σt)
õt ∼ Pθ (O|Z) = Bernoull i(pt),

learned by the VAE.
In addition to the VAE, another normal distribution is learned, this distribution represents the locally

linear transition dynamics

ẑt+1 ∼ Q̂ψ(Ẑ |Z ,ut) =N (Atµt +Btut + bt ,Ct).

To estimate the parameters At ,Bt ,bt of this model, another neural network is trained simultaneously to
the VAE. The variance of the transition is given by

Ct = AtΣtA
T
t +Ht ,

where Ht is an estimate of the covariance of the system noise which is modelled by a zero mean Gaussian
distribution N (0,Ht).
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ẑt+1 õt+1

Qφ Qψ

Qψ

Pθ

Figure 2.6: Visualization of the E2C-Model. First an observation is encoded, after the next latent state is
predicted and finally decoded to get the next predicted observation

ot zt

ut

ẑt+1 zt+1 ot+1

Qφ

Pθ

Qψ

Qψ K L
Qφ

Pθ

Figure 2.7: Information flow in the E2C model during training. The current observation is encoded and
decoded in order to train the VAE. The VAE is also trained on decoding the next latent state, as
predicted by the transition model. Last, the next observation is encoded and the obtained la-
tent representation forced to be similar to the predicted next latent state by an KL-Divergence
term in the cost function.

2.4.3 Training the Model

For training a data set of the form D = {(o1,u1,o2), · · · , (oT−1,uT−1,oT )} is used. The parameters are
optimized according to the following objective function

L(D,φ,ψ,θ ) =
∑

(ot ,ut ,ot+1)∈D

−L(φ,θ ,ot ,ut ,ot+1) +λKL
�

Qψ(Ẑ |µt ,ut) ‖Qφ(Z |ot+1)
�

. (2.1)

The first part is the negative variational lower bound, the cost function training the VAE. Note that not
only the reconstruction of the current image is learned but the model is also trained to reconstruct the
next image from the latent representation of the next state as given by the transition model.

−L(φ,θ ,ot ,ut ,ot+1) =
EQφ(zt |ot ) [− log Pθ (ot |zt)] +EQψ(ẑt+1|zt ) [− log Pθ (ot+1|ẑt+1)] + KL(Qφ(zt |ot) ‖ P(Z)). (2.2)

The second part of the cost function (2.1) places an additional constraint on the latent representation,
forcing the encoder and the transition model to produce similar results. It is vital for control that the
trajectories planned out in the latent space Z are also valid in the observation space O. This is ensured
by the similarity in the outputs produced by the encoder and the transition model since it allows the
transition model to work with its own outputs. This can be used to predict states for multiple time steps
into the future by feeding the last state predicted by the transition model and the current action back
into the transition model. The influence of this term is weighted by a scalar λ, a hyperparameter of the
model.

Figure 2.7 shows the information flow in the E2C model during training. In the case of Gaussian
distributions both the KL terms in Equations 2.1 and 2.2 can be computed analytically.
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Since the E2C model has no internal memory it only works if the observation data has the Markov
property, i.e.,

P(on|on−1,on−2, . . . ,o0) = P(on|on−1).

This is often not true for observation data, thus the Markov property has to be restored, e.g., by concate-
nating sufficiently many observations into a single input.
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3 Deep Nonparametric Kalman Filter
We propose the Deep Nonparametric Kalman Filter (DNKF), a model to perform nonparametric inference
for dynamical systems, tasked with predicting the next observations, given previous observations and ac-
tions applied. It combines ideas of both, the Kernel Kalman Filter (KKF) and Embed to Control (E2C) in
a Deep Learning setting. High dimensional, nonparametric representations of probability distributions
are used to form estimates over the system state. Instead of obtaining these representations by embed-
ding the probability distributions into a Reproducing Kernel Hilbert Space (RKHS) an encoder-decoder
structure is used to learn them directly from the data. The usage of a Deep Learning setting alleviates the
scaling problems of the KKF and allows the usage of a transition model that, unlike the KKFs transition
model, is capable of dealing with actions applied to the system.

To form the state estimates we introduce a special recurrent model, the Recurrent Kalman Layer (RKL).
The recurrent nature of that model introduces internal memory in form of the state estimate into the
model, hence, unlike E2C, the DNKF does not rely on the Markov property of the observations. Besides
that, the RKL learns linear transition and observation models, used to incorporate observations into the
estimate and predict next states. The set of all parameters of the RKL is denoted by ψ.

Since it is unreasonable to assume that the system dynamics and observation generation process are
linear in the observation space, an encoding function encφ is trained, mapping the observations into
a more suitable latent space. With that encoding function embeddings, similar to those introduced
in Section 2.2.1 are obtained. Additionally, a decoding function decθ is learned, mapping latent state
estimates, produced by the RKL, back to observations.

Note that, similar to the KKF, in general the latent observations and the latent state estimates do not
live in the same space. Hence the encoding and the decoding function do not form an autoencoder.

ot RKLψ ot+1encφ decθ

ut

Figure 3.1: Sketch of the whole model Mφ,ψ,θ . The observations, encoded by encφ , are fed into the RKL
together with the actions. Observations are reconstructed from the estimates produced by
the RKL.

3.1 Learned Embeddings

The proposed encoding and decoding functions encφ and decθ are currently modelled by densely con-
nected multilayer Neural Networks (NNs). However, depending on the type of observation at hand, more
sophisticated models, like convolutional NNs may be used.

Unlike the latent representation used in E2C the learned embeddings are very high dimensional. Due
to the high dimensionality it is possible to approximate complex, nonlinear processes with a linear model.
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Note that, due to the high latent dimension, in general neither the dimensionality of the encoded
observations nor the dimensionality of the latent estimated states is smaller than the dimensionality of
the observation and the models are hence not undercomplete. To cope with this, other regularization
methods for autoencoders, like sparsity constrains [Ng, 2011] may be used.

3.2 Recurrent Kalman Layer

We propose the Recurrent Kalman Layer (RKL), a special recurrent layer, in order to use the idea of the
KKF in a Deep Learning setting. Its internal state as well as its output is the prior state estimate µ−t .
Given the current action ut and the encoding of the current observation encφ(ot) the RKL follows the
update and predict scheme to form its estimate over the system state using formulas similar to those of
the KKF.

First the encoded observation is used to update the state estimate, forming a posterior estimate µ+t .

Update: µ+t = µ
−
t +Q

�

encφ(ot)−Cµ−t
�

This posterior is used together with the transition model and the current action to predict the next prior.

Predict: µ−t+1 = Aµ+t +But + c.

All variables in the formulas above, namely the observation model C, the parameters of the transition
model, A, B and c, as well as an additional matrix Q, corresponding to the Kalman gain, are considered
to be model parameters and are optimized during the training process.

update

predict

ut encφ(ot) µ−t

µ+t

µ−t+1

Figure 3.2: Sketch of the Recurrent Kalman Layer

Again the update step is only performed if a valid observation is available for the current time step. If
this is not the case, the posterior is just set to be the prior.

Note, that the prior and the posterior are normalized after each update and prediction step in order to
ensure numerical stability.
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3.3 Training the Model

The model is trained using a data set

D = {(oi,ui)
(m)
i=0,...,Tm

|m= 1, . . . , M}

with M sequences of observation-action pairs. The sequences are not necessarily of equal length and the
length of sequence m is denoted by Tm.

The objective of the model is to minimize the distances between given observations (ot−1, ot) and the
output of the DNKF

�

õ+t−1, õ−t
�

=Mφ,ψ,θ

�

(oi,ui)i=0···t−1

�

,

where õ+t−1 is obtained by decoding the a-posteriori estimate µ+t−1 while õ−t is obtained by decoding the
a-priori estimate µ−t .

We will show in Chapter 4 that the choice of the distance measure d impacts performance of the
model and depends on the type of observations at hand. In order to account for the recurrent parts
of the model backpropagation trough time (BPTT) is used for training. The calculated gradients are
propagated through the whole network, training all parts of the model simultaneously. This yields the
following objective for a single sequence sm ∈D,

Ł (sm,φ,ψ,θ ) =
Tm
∑

i=1

d
�

o(m)i , õ−(m)i

�

+ d
�

o(m)i−1, õ+(m)i−1

�

. (3.1)

The first part of that cost function trains the model to infer the next observation. The second part is
necessary to enforce similarity between the prior and posterior estimates by forcing both to be compatible
with the decoder. This is needed in the case when no observation is present and the prior and posterior
estimates are identical.
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4 Evaluation and Experiments
The Deep Nonparametric Kalman Filter (DNKF) is evaluated on two dynamical systems, a pendulum and
a quad link. After describing our set up in detail, the results of an evaluation of different hyperparameters
are presented. A comparison of our model with both, Embed to Control (E2C) and the Kernel Kalman
Filter (KKF) follows on data sets generated without and with noise.

4.1 Set Up

4.1.1 Data sets

Both the pendulum and the quad link were simulated with initial positions uniformly sampled from the
entire space and initial velocities of 0.

Following the experiments conducted by Watter et al. [2015], black and white images were generated
as observations for the pendulum. Each image has a resolution of 48 × 48 pixels, yielding a 2304
dimensional observation, and the pendulum is rendered as a simple line. See Figure 4.1a for example
images. Both, the training and test set, consist of 15, 000 samples, split up in 100 episodes with 150
steps each.

Similar to the pendulum, trajectories for the quad link were sampled. The endeffector position i.e., the
end point of the outermost link was used as observation, yielding a two dimensional observation. See
Figure 4.1b for an example of a whole trajectory. Both data sets consist of 60,000 samples each, split up
in 200 episodes with 300 steps each.

Due to the cubic scaling of the KKF, subsets had to be used. To make up for the disadvantage caused
by the smaller data sets the initial positions were not sampled from the entire space but from a subspace
whose size corresponded to the size of the data set. Furthermore, only sets without actions were used
since the KKF is not capable of dealing with actuated systems.

Note that neither the images nor the endeffector positions have the Markov property, since in both
cases it is impossible to infer the velocity from a single observation.

4.1.2 Implementation

Both the DNKF and E2C were implemented in Python using Tensorflow [Abadi et al., 2015], a modern
Deep Learning framework making use of highly parallel hardware and accelerators. Further, automated
differentiation is a build in feature, hence no gradients were calculated manually.

For E2C the encoder and decoder were modelled by densely connected Neural Networks (NNs) with
two hidden layers each, both with a width of 800 neurons. The transition model was also modelled by
densely connected NNs with two hidden layers, which have a width of 100 neurons each. This set up
was described by Watter et al. [2015] in their experiments with a pendulum.

Those densely connected NNs with two hidden layers were also used for the encoder and decoder
of the DNKF. Different values of their width were evaluated, together with the dimensions of the la-
tent observations and latent states used by the Recurrent Kalman Layer (RKL). Further, in order to
increase learning speed, truncated backpropagation trough time (BPTT) was used. Again, different val-
ues for k, the number of steps after which the error is truncated, were compared. The results of this
hpyerparameter evaluation can be found in Section 4.2.

21



Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

(a) Example observations of the pendulum. Each image
has a size of 48× 48 pixels
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(b) Example trajectory of the quad link endeffector po-
sition. Colour corresponding to time steps for better
visibility

Figure 4.1: Example observations

Two different loss functions were considered, the Mean Squared Error (MSE) and the Cross Entropy.
If images are used as observations, as done for the pendulum, both are possible. To justify the Cross
Entropy each pixel value p is interpreted as a Bernoulli distribution with mean p of that pixel to be black
(0) or white (1). It turned out that the Cross Entropy in fact worked better, hence it was used to train the
DNKF for the pendulum. For the endeffector positions of the quad link the Cross Entropy is unsuitable
since they are not interpreted as probability distribution, thus the MSE was used.

Both, E2C and the DNKF were trained using Adam [Kingma and Ba, 2014]. A learning rate of α =
0.0005, an exponential decay rate of the gradients average, β1 = 0.9 and exponential decay rate of the
average over the squared gradients, β2 = 0.999, were used. All weight matrices were initialized using
the uniform Glorot initialization1 as introduced by Glorot and Bengio [2010].

The KKF implementation was provided and is also written in Python.

4.1.3 Errors Measures for Evaluation

Three different errors were used to compare the models. First the current state error, measuring the
distance between input and its reconstruction. For the DNKF this error is the second term of Equation 3.1,
for E2C the first expectation term in Equation 2.2. Second, the next state error, measuring the distance
between the next inferred state and the corresponding target. For the DNKF this is the first term of
Equation 3.1, for E2C the second expectation term in Equation 2.2.

Last we used a MSE evaluation error to enable comparison of approaches with different cost functions.
This error is just the mean of the MSE of all target in the test set and the corresponding predictions. For
E2C this error is measured only for the last element of the output sequence, since all previous elements
of that sequence are part of the input and were only added to restore the Markov property.

1 Often also referred to as uniform Xavier initialization, after Glorots first name

22



4.2 Hyperparameter Evaluation

Due to the vast space of hyperparameters and the long runtime of a single experiment, only a limited
evaluation of hyperparameters could be performed.

4.2.1 Latent State Dimension

The latent state dimension was evaluated for the following values:

10,20, 40,100, 200,400, 800.

During each experiment the dimension of the latent observations was set to one half of the latent state
dimension. The number of neurons in all hidden layers, in both the encoder and decoder, was set to two
times the latent state dimension. The minimal loss was obtained for latent state dimensions of 800 for
the pendulum and 200 for the quad link. Detailed results, together with the runtime for each case, can
be found in Figure 4.2.
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(a) Pendulum: Minimum at 800 (MSE: 0.00154). Stan-
dard deviation to small to be visible for high values.
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(b) Quad Link: Minimum at 200 (MSE: 9.02 · 10−4)

Figure 4.2: Evaluation of different latent state dimensions. Evaluation MSE results averaged over 20 trials.
Error bars show two times standard deviation. For most runtime values the standard deviation
is to small to be visible.

From the smallest to the largest value of the latent state dimension, the runtime roughly increases
by a factor 3 for the pendulum and 5 for the quad link, while the dimensions increase by a factor 80.
This is due to the system used to execute the experiments, which employs two highly parallel hardware
accelerators (Nvidia Tesla k20). The usage of such hardware accelerators is common for Deep Learning
approaches and allows efficient training of models with a large amount of parameters on large data sets.

4.2.2 Truncation of BPTT

Furthermore, the number of steps after which the error is truncated and propagated back trough the
network, k, was evaluated for the values

1, 2,5, 10,15, 20,25.
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To cope with the fact that smaller values for k yield more weight updates per epoch, the models were
trained for 5 · k training epochs. As determined in the previous section, the latent space dimension was
set to 800 for the pendulum and 200 for the quad link. The results can be found in Figure 4.3. For
both, the pendulum and the quad link, the minimum was obtained for k = 25. No bigger values were
evaluated since they lead to unreasonable high runtimes.

5 0 5 10 15 20 25 30

k

0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

e
v
a
lu

a
ti

o
n
 M

S
E

0

50

100

150

200

250

300

350

400

450

a
v
g
 t

ra
in

in
g
 r

u
n
ti

m
e
 (

in
 s

)

(a) Pendulum: Minimum at 25 (MSE: 0.00209)
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(b) Quad Link: Minimum at 25(MSE: 9.26 · 10−4)

Figure 4.3: Evaluation of different values of k (number of steps between truncations). Evaluation MSE
results averaged over 20 trials. Error bars show two times standard deviation. For the runtime
the standard deviation is to small to be visible.

The parameter k has almost no influence on the runtime of a single epoch, however, as stated above,
for larger values of k more epochs are needed to train the model since fewer update steps are performed
per epoch. Because of that not the runtime per epoch is displayed in Figure 4.3 but the runtime of the
whole training process.

The high standard deviation for low values of k is explained by outliers, performing worse than the
mean. This can be seen in the corresponding box plots shown in Figure 4.4. For further experiments the
value of k = 15 was chosen for the pendulum. This value produced only slightly worse results (MSE:
0.00215) in three fifths of the time.

4.3 One Step Prediction Error

The DNKF, E2C and the KKF were compared on the task of predicting the next state on both the pendu-
lum and the quad link. While the DNKF and E2C were evaluated on data sets with and without actions,
the KKF was evaluated only on the smaller data sets without actions, as described above.

4.3.1 Pendulum

Our E2C implementation achieved slightly better results as those reported by Watter et al. [2015]. They
reported a next state prediction loss, measured with the Cross Entropy, of 89.3 for the pendulum, we
archived 67.1. Despite, the fact that is was tried to reproduce the experiments as good as possible,
using the same network architecture and latent space dimension as reported in the E2C paper, those
two values are not completely comparable since the error is highly depended on the time steps between
single observations and the magnitude of the actions applied. Both were not reported in the original
paper.
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(b) Quad Link

Figure 4.4: Evaluation of different values of k. Red horizontal line marks median, blue box marks the
first and third quartile. The difference between those is referred to as inner quartile range
(IQR). Horizontal black lines mark the minimum and maximum value that still lie in the range
between the first quartile minus the IQR and the third quartile plus the IQR. Outliers, i.e.,
points outside of that range, are marked by+. Note that both systems have outliers, especially
for low values of k, and all those outliers are worse than the mean. This causes the big
standard deviation seen in Figure 4.3.

Note that for comparison with the DNKF, these values need to be halved since E2C works with se-
quences of two consecutive images. The weighting factor of the additional constraining KL-term was set
to λ= 0.25, also according to the original paper.

Table 4.1 and Table 4.2 show the results of the evaluation. Further, Table 4.1 shows that the DNKF
works better with the Cross Entropy loss than with the MSE. By using the Cross Entropy loss results
similar to E2C were achieved in the actuated case. In the unactuated case the DNKF works slightly better
than E2C. Note that for all experiments the next state error is only slightly worse than the current state
error. The KKF performs worse than E2C and the DNKF.

Figure 4.5: Upper row: Part of true trajectory. Lower row: One step predictions, produced by the DNKF

4.3.2 Quad Link

Unlike the images used as observations for the pendulum, the endeffector positions of the quad link are
not interpretable as Bernoulli distributions. Hence, it was not possible to use the original E2C Cross
Entropy loss function. Both Cross Entropy terms were replaced by square loss functions, making it
necessary to rescale the regularization terms. However, this turned out to be problematic since on the
one hand less regularization clearly yields better results while on the other side it alleviates the similarity
between the transition models and the encoders outputs, which is one of the reasons why E2C works in
the first place. Eventually, the regularizations terms were scaled down by a factor of 100. To restore the
Markov property we used sequences of length 5 to train the model. Note the difference between the next
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Pendulum (with actions) E2C DNKF (CE) DNKF (MSE)

Current State (CE) 30.049± 0.731 28.397± 0.615 -

Next State (CE) 33.155± 0.756 34.621± 1.355 -

Evaluation Error (MSE) 0.00124± 1.17 · 10−4 0.00100± 1.77 · 10−4 0.00979± 0.00119

Table 4.1: Comparison of E2C and the DNKF on images of the actuated pendulum. The DNKF was once
trained with Cross Entropy as error and once with MSE. Results averaged over 20 trails, ± two
times standard deviation.

Pendulum (without actions) E2C KKF DNKF (CE)

Current State (CE) 28.975± 0.733 − 27.887± 0.369

Next State (CE) 31.044± 0.449 − 31.880± 0.611

Evaluation Error (MSE) 9.27 · 10−4 ± 6.04 · 10−5 0.00219± 0.00201 6.84 · 10−4 ± 8.15 · 10−5

Table 4.2: Comparison of E2C and the DNKF, evaluated on the pendulum with no actions applied. Evalu-
ation of the DNKF with MSE as loss function is omitted, since it has been already shown that it
performs worse. Results averaged over 20 trails, ± two times standard deviation.

state error, measured on the whole target sequence and the evaluation error measured only on the last
element of the target sequence.

The DNKF instead showed no difficulties working with the MSE instead of the Cross Entropy and
outperformed E2C, as shown in Table 4.3 and Table 4.4. For the DNKF the next state prediction error
and the evaluation error are the same. Note that for the DNKF the next state error is worse than the
current state error by factors of roughly 4 and 12 in the unactuated and actuated case respectively. We
try to explain this behaviour in Section 5.1.

The KKF produced results with a high variance and performs worse than the DNKF if the mean over
all 20 trails is considered. However, this high variance is caused by a few trails with poor performance
and if the medians over all trials are compared, the KKF slightly outperforms the DNKF.

Quad Link (without actions) E2C KKF DNKF (MSE)

Current State (MSE) 0.00394± 5.35 · 10−4 - 2.05 · 10−4 ± 1.38 · 10−4

Next State (MSE) 0.00246± 4.53 · 10−4 - 8.17 · 10−4 ± 2.58 · 10−4

Evaluation Error 0.00448± 0.00106 0.00510± 0.0191 8.17 · 10−4 ± 2.58 · 10−4

Evaluation Error (median) - 7.46 · 10−4 7.91 · 10−4

Table 4.3: Comparison of E2C, the KKF and the DNKF on the unactuated quad link. Results averaged
over 20 trails, ± two times standard deviation.
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Quad Link (with actions) E2C DNKF

Current State (MSE) 0.00695± 0.00141 3.58 · 10−4 ± 3.04 · 10−4

Next State (MSE) 0.00658± 0.00144 0.00420± 0.00107

Evaluation Error (MSE) 0.0179± 0.00447 0.00420± 0.00107

Table 4.4: Comparison of E2C and the DNKF, evaluated on the quad link with uniform sampled actions
applied to all four links. Results averaged over 20 trails, ± two times standard deviation.
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Figure 4.6: Left: True trajectory. Right: Predicted trajectory, the trajectory was predicted one step at a
time with observations after each step. Colour corresponding to time for better visibility

4.4 One Step Prediction Error with Noise

In real world scenarios the observations as well as the transitions of the system are often noisy, hence
experiments were conducted to see how DNKF, E2C and the KKF perform in the presence of noise.

Two forms of noise were used. First, observation noise, added on the generated observations. For the
pendulum the observation noise was added on the current angle before the image was rendered. For
the quad link the observation noise was added to the endeffector position. Second, transition noise was
added to the true state after every transition.

While the system was trained with noisy samples as well as noisy target the evaluation on the test set
was conducted using only the noisy inputs but targets free of observation noise. All noise was sampled
from zero mean Gaussian distributions with different standard deviations and the unactuated pendulum
and quad link were evaluated with different combinations of observation and transition noise. The
results can be found in Table 4.5 and Table 4.6 respectively.

First, we note that performance loss is roughly equal for both, observation and transition noise using
the pendulum, on the quad link all approaches suffered more from transition noise than from observation
noise. For the pendulum, the DNKF works best for low amounts of noise, however for increasing amount
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of noise the KKF outperforms the DNKF. In general the KKF suffers less from the added noise than the
other approaches. E2C performed slightly worse than the DNKF for all experiments.

The experiments on the quad link show that the KKF handles the noise better and outperforms the
other approaches. In fact the issue with the outliers, performing much worse than the median, reported
in Section 4.3.2 is not longer present.

observation noise transition noise E2C KKF DNKF

0.05 0.0 0.00617± 2.12 · 10−4 0.00647± 0.00722 0.00338± 3.26 · 10−4

0.1 0.0 0.00899± 1.91 · 10−4 0.00708± 0.00730 0.00646± 6.90 · 10−4

0.25 0.0 0.0122± 1.96 · 10−4 0.00740± 0.00572 0.0117± 6.25 · 10−4

0.0 0.05 0.0047± 1.39 · 10−4 0.00730± 0.00686 0.00354± 1.39 · 10−4

0.0 0.1 0.00833± 2.26 · 10−4 0.00805± 0.00666 0.00695± 1.58 · 10−4

0.05 0.05 0.00745± 2.09 · 10−4 0.00773± 0.00597 0.00512± 1.19 · 10−4

0.1 0.05 0.00971± 1.75 · 10−4 0.00742± 0.00559 0.00759± 2.30 · 10−4

0.25 0.05 0.0125± 2.70 · 10−4 0.00726± 0.00612 0.0119± 5.75 · 10−4

0.05 0.1 0.00929± 2.19 · 10−4 0.00749± 0.00479 0.00761± 2.54 · 10−4

0.1 0.1 0.0106± 1.64 · 10−4 0.00781± 0.00461 0.00912± 2.57 · 10−4

Table 4.5: Evaluation Error for noisy unactuated pendulum. First two columns show the standard devia-
tion of the Gaussian distributions the noise was sampled from. Results averaged over 10 trails,
± two times standard deviation.

4.5 Efficiency

An empirical runtime comparison of the DNKF and E2C is not reasonable, since the runtime is mainly
determined by the network architecture and the width of the individual layers for both. However, on the
one hand, during training the DNKF need only one pass trough the encoder, while E2C needs two. On
the other hand the DNKF needs more passes per weight update than E2C due to the usage of (truncated)
BPTT.

It is mentionable that in the experiments performed in Section 4.3, the DNKF needed roughly one fifth
of the update steps needed by E2C for the pendulum to achieve the reported results. For the quad link
the DNKF needed roughly one fifteenth of the update steps needed by E2C.
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observation noise transition noise E2C KKF DNKF

0.05 0.0 0.0124± 0.00118 9.00 · 10−4 ± 0.00114 0.0100± 4.32 · 10−4

0.1 0.0 0.0254± 0.00182 0.00109± 0.00143 0.0221± 8.05 · 10−4

0.25 0.0 0.0851± 0.00222 0.00153± 0.00272 0.0695± 0.00208

0.0 0.05 0.0161± 0.00171 0.00417± 0.0148 0.0137± 8.52 · 10−4

0.0 0.1 0.0555± 0.00563 0.00508± 0.0152 0.0533± 0.00456

0.05 0.05 0.0221± 0.00127 0.00466± 0.00840 0.0204± 0.00119

0.1 0.05 0.0364± 0.00185 0.00493± 0.00843 0.0333± 8.59 · 10−4

0.25 0.05 0.101± 0.00426 0.00651± 0.0111 0.0870± 0.00317

0.05 0.1 0.0625± 0.00529 0.00612± 0.0177 0.0603± 0.00456

0.1 0.1 0.0808± 0.00532 0.00672± 0.0199 0.0769± 0.00508

Table 4.6: Evaluation Error for noisy unactuated quad link. First two columns show the standard deviation
of the Gaussian distributions the noise was sampled from. Results averaged over 10 trails, ±
two times standard deviation.
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5 Conclusion
In this thesis we introduced the Deep Nonparametric Kalman Filter (DNKF), our own approach for
nonparametric inference. The Recurrent Kalman Layer, a special recurrent layer based on the formulas
of the Kernel Kalman Filter (KKF), was derived. This was combined with the approach of using an
encoder-decoder structure to find latent spaces for the system to operate in, an idea taken from the
Embed to Control (E2C) paper by Watter et al. [2015]. The usage of a Deep Learning setting alleviates
the KKFs problems with big data sets. Further, the approach is capable of performing inference for
actuated systems, since a corresponding term was added to the transition model.

Different hyperparameters were evaluated for that approach. However, due to the high computational
cost of a single model evaluation only a restricted subset of the hyperparameters could be evaluated.

In comparison with E2C we saw that the DNKF performed roughly equally well on the images of a
pendulum. However, using E2C, we were not able to achieve satisfying results with the quad link. The
DNKF on the other hand performed well with the quad link. When compared to the KKF the DNKF
performs better in cases with no noise. On the other side our experiments showed that the KKF is more
capable of dealing with noise and outperformed the DNKF on the pendulum if sufficient noise was added
and in all quad link experiments with noise.

Additionally, we were able to reproduce some of the results reported in the original E2C paper, more
particular, for the observations of a pendulum roughly the same prediction error was obtained.

5.1 Issues with the Quad Link

In section 4.3.2 a big difference between the current state error and the next state error was noted for the
quad link. This difference is absent for the pendulum. This problem may arise since the encoder-decoder
structure is not undercomplete for the quad link and it is possible to just copy the current observation
trough the encoder, update step and decoder to the output, yielding a very small current state error.

For the one step prediction evaluated in that section this does not poses a problem, however it becomes
problematic when the model is tasked with predicting multiple steps without observations. In this case
the transition model needs to work with the a-priori estimate and the model fails since that estimate is
not compatible with the learned transition model.

5.2 Inferring multiple Steps

Even without the issue stated above, which is not present for the pendulum, the model is not yet able
to predict multiple steps into the future. This is likely caused by a difference in the prior and posterior
representation that is not handleable by the transition model. It was tried to train the transition model
on performing transitions with both the prior and the posterior by adding a corresponding term to the
cost function. This term measures the distance between a decoded prediction obtained by transitioning
the prior and the next state observation. This however prevented the model from learning anything but
averaging over all images, yielding the same output for every input, this output is shown in Figure 5.1.

5.3 Future Work

Once the above mentioned issues are resolved it remains to evaluate the DNKF on more complex and
real world systems. In order to find suitable latent representations for such systems, more sophisticated
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(a) Average image over test set (b) Results produced by DNKF with modified cost func-
tion. The result is almost identical for all inputs

Figure 5.1: When the DNKF is trained with the modified cost function discribed in Section 5.2 it learns to
average over all pictures.

encoder-decoder structures, such as deeper Neural Network (NN) and convolutional NN, need to be
used.

Additionally, in the introduction it was stated that inference is an important aspect of control. It
remains to evaluate how the models learned by the DNKF perform when employed to solve a controlling
task, especially in comparison with E2C, whose purpose is not inference but control. For example the
model learned from the pendulum observations can be combined with a linear quadratic regulator in
order to solve tasks like a pendulum swing up.
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