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Abstract— One of the key challenges for learning manipula-
tion skills is generalizing between different objects. The robot
should adapt both its actions and the task constraints to the
geometry of the object being manipulated. In this paper, we
propose computing geometric parameters of novel objects by
warping known objects to match their shape. We refer to the
parameters computed in this manner as warped parameters,
as they are defined as functions of the warped object’s point
cloud. The warped parameters form the basis of the features
for the motor skill learning process, and they are used to
generalize between different objects. The proposed method was
successfully evaluated on a pouring task both in simulation and
on a real robot.

I. INTRODUCTION

In order to perform tasks in everyday environments, robots
will need to be capable of manipulating a wide range of
different objects. As objects of the same type may have
different shapes and sizes, the robot will have to adapt
its actions to the geometry of the specific object that it is
manipulating. The shape of objects is particularly important
when manipulating liquids, e.g., pouring a glass of water,
as liquids conform to the shape of their container. The robot
must therefore take into consideration a container’s geometry
when using it in a pouring task.

Although containers come in a wide variety of shapes
and sizes, the important differences can usually be defined
by a few geometric parameters [1], [2]. For example, the
volume of a container indicates how much fluid it can hold,
regardless of whether it has a spherical, or cylindrical shape.
A robot can generalize pouring actions between different
containers by using these geometric parameters. However,
the robot will not be provided with the geometric parameters
for most of the novel objects that it encounters. While a
human may annotate the geometric information for a couple
of objects, the robot will usually need to compute these
parameters on its own.

In this paper, we investigate using warped parameters to
generalize pouring skills between different objects. A warped
parameter is defined as a function on the points of a known
object’s point cloud. For example, a warped parameter may
compute the volume of a set of points’ convex hull. When
the robot encounters a novel object, it warps the point cloud
of the known object to the new object’s shape. As a result of
the warping, the value of the warped parameter changes to
match the geometry of the new object. Once the geometric
parameters have been computed, the robot can use them
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Fig. 1. The robot performs a pouring task with two previously unknown
objects. The pouring action was learned from human demonstrations using
a taller cup and a wider container to pour into.

to generalize actions and task constraints between different
objects.

In Section II, we explain the process of computing the
warped parameters. In Section III, we describe how the robot
can learn pouring actions and task constraints that generalize
between objects using the warped parameters. The proposed
method was successfully evaluated both in simulation and
on the robot shown in Fig. 1. The results of the experiments
are detailed in Section IV.

Related Work

Several previous works have used warping to generalize
manipulations between objects. Hillenbrand et al. [3], [4]
used warping to map contact points onto novel objects, in
order to transfer grasps between objects. A similar approach
was used by Rainer et. al [5], [6] for transferring coordinate
frames of task constraints between objects. However, the
size and shape of the constraint regions were not adapted
to the new object’s geometry. Rather than warping only the
points on the object, Schulman et al. [7] computed warping
functions for the entire scene. The warping was then applied
to the demonstrated trajectory of the source scene in order to
obtain a trajectory for the current scene. These approaches
focus on mapping specific points from the source scene to
the target scene, and are therefore especially well-suited for
contact-based manipulations. Warped parameters can be used



to model more general features of the objects, such as areas
and volumes.

Several methods have also been proposed for learning
to perform pouring tasks. Pastor et al. [8] learned dy-
namic motor primitives (DMPs) for pouring from human
demonstrations, and used these to generalize to different cup
placements. Similarly, Muehlig et al. [9] encoded demon-
strated bimanual pouring trajectories using Gaussian mixture
models. Rozo et al. [10] proposed learning a controller for
pouring tasks based on the observed forces. The work on
learning pouring from demonstration has mainly focused on
learning with the same set of objects. In comparison, we
propose learning in a feature space defined by the warped
parameters, in order to automatically generalize between
objects.

Some work has also been done on generalizing pour-
ing actions between different objects using reinforcement
learning. Kroemer et al. [11] learned a pouring DMP from
human demonstrations, and then used a trial-and-error ap-
proach to learn the location of a novel container’s opening.
The opening was detected using a shape-similarity kernel.
Tamosiunaite et al. [12] used reinforcement learning to learn
the shape of the pouring DMP, as well as the goal point.
Reinforcement learning was also used to adapt the learned
motion to novel objects, without explicitly considering the
differences in geometry.

II. GENERALIZATION WITH WARPED PARAMETERS

In this section, we describe how a robot can compute
geometric parameters of an object by warping a known
object to match its shape. The object models and the warping
process used in this paper are described in Sections II-A to
II-C. The computation of the warped parameters for pouring
tasks is described in Section II-D.

A. Geometric Object Models
In order to generalize manipulations to a novel object,

the robot first computes correspondences between a known
source object Os and the unknown target object Ot. An
object Oi is modeled as a set of ci points located at positions
pij 2 R3 with corresponding normals nij 2 R3, where
j 2 {1, ..., ci}.

Objects often consist of multiple parts, and a manipulation
may only depend on the shape of a part of an object. Hence,
geometric parameters often describe the shape of a part rather
than the whole object. We therefore also assign each point
pij a vector lij of length ⇢ with binary labels, which indicate
which of the ⇢ object parts the point corresponds to. The
labels of the target object Ot are initially unknown, but can
be computed using the warping process.

An example of an annotated cup can be seen in Fig. 2. The
first part is the CONTAINER, which holds the liquids. The
second part is the RIM around the opening. We also label
the HANDLE as a dummy part. As not all containers have
handles, it is not used to define any warped parameters for
the pouring task, and is only included to help align objects
during the warping process.
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Fig. 2. The top row shows the point cloud of the source object, annotated
by a human user. The middle row shows the point clouds of two target
objects. The points were labelled using a classifier based on local features.
This intial estimate is only used to compute a coarse alignment with the
source object. The point clouds were pre-aligned for this figure to show more
clearly how the labels change during the warping process. The bottom row
shows the final results of the label mapping approach.

B. Warping

Given a source object and a target object, the robot can
compute correspondences between the two objects. These
correspondences are determined by warping the shape of
the source object onto that of the target object. There are
various methods for computing 3D warpings between object
[13], [14], and the proposed approach does not depend on
a specific warping algorithm. We therefore employ a basic
warping algorithm for finding correspondences between the
containers. The warping process consists of two stages: 1)
object alignment, and 2) point mapping

In the first stage, the source object is coarsely aligned
with the target object, such that their corresponding object
parts are close together. This alignment is accomplished
by computing a coordinate system based on the objects’
parts. The origin of the coordinate frame is the mean of the
container points. The first axis is given by the direction to the
mean of the rim points, and the second axis is the orthogonal
direction to the mean of the handle points. The third axis is
computed by the cross product of the first two axes. As the
part labels of the target object lt are unknown, an initial
estimate of the labels is computed using logistic regression.
One classifier is trained for each of the three object parts.
Each point pti is classified based on the local distribution



of points in its neighborhood. The features used to describe
the local distribution of points include the eigenvalues of the
covariance matrix, and the distance from the point pti to the
mean of the neighborhood points. The classifiers were trained
on the labelled points of the source object. An example of
the initial labeling can be seen in Fig. 2. The coordinate
frame of the object is estimated using this initial labeling of
points. Once the two objects are aligned, the source object
was scaled in each direction such that the variances of its
container part matched those of the target object. We denote
the aligned source objects and target objects by ˜Os and ˜Ot

respectively.
In the second stage of the warping algorithm, the points

from the source object ˜Os are mapped onto the target
object ˜Ot. This step is similar to the approach proposed by
Hillenbrand [15]. Each point of the aligned source object is
mapped to the mean of the k nearest neighbors in the aligned
target object. In our experiments, we set k = 1. Hence, the
warped source point pwi, with corresponding normal nwi

and labels lwi, is given by

pwi = ptj , nwi = ntj , and lwi = lsi,

s.t. j = argmin

��
˜

psi � ˜

ptj

�� and ˜

n

T
si ˜ntj > 0.

Thus, each source point is mapped to the closest target point
with a normal pointing in the same direction. The warped
object and its point cloud are denoted by Ow.

C. Point Mapping vs. Label Mapping
The warping process defines a new position and normal

for each of the cs point of the source object Os. The location
of these new points can be used to define warped parameters,
as detailed in the next section. We refer to this approach as
point mapping, as the points of the source object are mapped
onto the target object.

However, if the source object has considerably fewer
points than the target object, then some details of the target
object may not be captured by the warped object. This issue
can be addressed by warping the target object to match the
source object. The alignment and scaling of the objects is
performed as before. However, the points of the target object
are mapped onto the source object. The label of each of the
target points is then determined using a k-nearest neighbors
classifier. In our experiments, we again used k = 1, such
that

pwi = pti , nwi = nti , and lwi = lsj ,

s.t. j = argmin

��
˜

psi � ˜

ptj

�� and ˜

n

T
si ˜ntj > 0.

We refer to this approach as label mapping, as the labels of
the source object are mapped onto the target object. When
using multiple neighbors k > 1, the point is assigned to a
part if the majority of its k neighbors belong to that part.

The benefit of using the label mapping approach is that
it guarantees that all of the points of the target object are
used for computing the warped parameters. However, when
using label mapping, points can only be referred to by their
label and not as individual points. In comparison, when using

point mapping, one can refer to individual points, e.g., pw72,
which correspond to specific points on the source object.
The bottom row of Fig. 2 shows an example of using label
mapping.

D. Warped Parameters
Having computed the correspondences between the known

source object and the novel target object, the robot can
compute the warped parameters for the target object. A
warped parameter is defined as a function on the warped
point cloud f(Ow). Warped parameters can be used to define
geometric reference parameters, such as lengths, areas, and
volumes, of an object’s part. Warped parameters can also be
used to define task frames.

For pouring, the task frame is defined by the lip point of
the first container, and the center of the second container’s
opening. The center of the opening is defined as the mean
of the rim points. The lip point is defined as the rim point
that is the closest to the other container. A pouring motion
is defined by the trajectory of the held container’s lip point
relative to the center of the second container’s opening. The
trajectory includes the relative 3D position and the tilt of
the first container about its lip point. The other two rotation
dimensions are usually assumed to be zero. If there is no
second container, the lowest rim point is defined as the lip
point.

The geometric reference parameters for pouring include
the radius of the opening, the volume of the container, the
height of the container, and a reference angle for tilting the
cup. The radius of the opening is given by the mean distance
between the rim points and the center of the opening. The
volume of the container is given by the volume of the
container points’ convex hull. The height of the container
is given by the range of all of the points along the first
dimension. A tilt reference angle is defined by the amount
that the cup must be rotated about the lip point, such
that half of the container’s volume is above the lip point.
As the warping process reshapes the points of the source
object, the estimates of the reference parameters will change
accordingly. In this manner, the warped parameter function
defines how the parameter’s value is grounded in the object’s
geometry.

As the above examples show, warped parameters can be
used to define various object properties, and can even build
on each other. These parameters can then be automatically
computed for new objects using the warping process.

III. LEARNING WITH WARPED PARAMETERS

In this section, we describe how a robot can learn pouring
actions and task constraints that generalize to new objects
using the warped parameters.

A. Learning Task Constraints
When performing a pouring task, the liquid should remain

in the cup while it is being transported, and it should only be
poured out if it will be transferred to another container. These
task constraints correspond to phase transitions [16] and can
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Fig. 3. The figure shows the ROC curves for the learned classifiers for both the pouring experiment and the filling experiment. The dashed lines indicate
the performance when the classifier is applied to data from the same object that was used for training the classifier. The solid lines indicate the performance
when the classifiers are applied to novel objects, for which they had no training data. A classifier is generally considered to perform better if it gets closer
to the top left corner. Classifiers were trained using features based on the warped parameters computed using both the label mappings and point mappings
approaches. The standard features approach did not use the reference values given by the warped parameters.

be fulfilled by learning to predict when the held container
will start to pour and when the poured liquid will fill the
second container. The conditions for pouring and filling
are learned by training a classifier for each condition. The
classification is performed using logistic regression, which is
a form of probabilistic classifier. The probability of pouring
yp = 1 from the first container is given by

p(yp = 1|xu) = (1 + exp(�!

T
'(x)))

�1

where '(x) is a vector of features describing the state of
the container x, and the weight vector ! is computed from
training data using iterative reweighted least squares. The
features '(x) are of the form ↵/↵r, where ↵ is a variable
and ↵r is a reference value defined by a warped parameter.
For predicting pouring, the features include the tilt angle
of the cup divided by the tilt reference angle, and the fluid
volume divided by the volume of the container. The resulting
features are dimensionless quantities that automatically adapt
to the geometry of the container.

For predicting when the poured liquid increases the fluid
volume in the second container yf = 1, we expand the set of
features to include both objects and their relative positions.
The vertical distance between the containers is divided by
the height of the first container. The horizontal distances
between the containers are divided by the radius of the
second container. These features allow the robot to learn
when the poured liquid will miss the second container, as
well as predict when the container will overflow.

B. Learning Motor Primitives in Warped Spaces
The proposed warping approach can also be used to learn

motor primitives that adapt to the shape of the objects
being manipulated. Motor primitives are often used to define
desired trajectories that can be easily adapted to different
situations. In order to model distributions of trajectories, we

use the probabilistic motor primitives (ProMPs) [17]. These
motor primitives encode correlations between the different
dimensions of the trajectory, and can be conditioned on the
initial state of the objects.

The learned motor primitive defines a desired trajectory
in the task space described in Section II-D. Similar to the
features used to generalize task constraints, the trajectories
are defined as dimensionless quantities. The vertical distance
between the objects is divided by the height of the held
container, and the tilt angle is divided by the reference tilt
angle. The horizontal distances are divided by the radius of
the second container.

The motor primitives are learned by scaling the demon-
strated trajectories according to the warped parameters of
the objects used in the demonstrations. In order to execute
a pouring action, the robot samples a trajectory from the
ProMP, and rescales it according to the current objects’
warped parameters.

IV. EXPERIMENTS

The proposed method was implemented and evaluated
both in simulation and on a real robot. The robot, shown
in Fig. 1, consists of two Kuka light weight robot arms,
each equipped with a five-fingered DLR hand [18]. The robot
observes the table-top scene from above using a Microsoft
Kinect camera. Ten different cups and bowls were scanned
from multiple views. 3D mesh models were generated using
an implicit surface representation and marching cubes [19].

A. Simulated Pouring and Filling Experiments
In the first experiment, we evaluated how well task

constraints generalize between objects when using warped
parameters. The objects were simulated using the Bullet
physics engine [20] together with Fluids 2 for incorporating
smoothed particle hydrodynamics [21].
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Fig. 4. The plots show the distribution over trajectories learned by the
ProMPs in the generalized space. The blue line indicates the mean trajectory,
and the shaded regions correspond to +/- two standard deviations. The black
horizontal lines indicate when the value is one. The tilt is one when the cup
is tilted such that half of the container’s volume is above the lip points.
The X and Y values are one when the lip point is one radius away from
the second container’s center. The Z value is one when the vertical distance
between the cup and the container is the same as the height of the cup. The
red region indicates when the X-Y position of the cup’s lip point is within
one radius of the container’s center.

Each object was filled 1000 times with a random amount
of liquid, and tilted by a random angle around the lip point.
If the volume of the fluid in the cup decreased, the trial was
labelled as pouring yp = 1. Otherwise it was labelled as not
pouring yp = 0. The classifiers were trained on sets of 50

samples. The classifiers were tested on two test sets: the 950

other samples from the same object, and the 9000 samples
from the other objects. The latter dataset is used to test how
well the classifiers generalize between different objects.

A similar procedure was used for the filling experiment.
However, the cup used for pouring always contained 10

particles at the start of the trial, and the second container
was filled by a random amount. The cup was always tilted by
120

�. The relative positions of the cups were varied between
trials. A trial was considered as successful yf = 1 iff none
of the particles ended up outside of the second container.

For each training set, three classifiers were computed.
The first two classifiers were trained using the warped
parameters from the point mapping and the label mapping
approaches respectively. The features used for training the
classifiers were described in Section III-A. As a benchmark,
we also evaluated the classifiers without using the warped
parameters. In this case, all of the reference values ↵r were
set to one, regardless of the objects being manipulated, and
the relative positions of the objects were defined by their
centers.

The results of the pouring and filling experiments can be
seen in Fig. 3. As one would expect, the classifiers generally
achieved similar levels of performance when evaluated on the

training object. The standard features performed considerably
worse in the filling experiment, as different cups were used
for pouring even though the second container remained the
same. The ROC curves show that the performance of all
three classifiers decreases when generalizing to novel objects.
However, the drop in performance is considerably less when
using the warped parameters. The features based on the
warped parameters are therefore better at separating the posi-
tive and negative examples across different objects. While the
two warping methods performed similarly well on the filling
experiment, the label mapping approach performed better in
the pouring experiment, detecting more than 50% of the true
positives with almost no false positives. The results show that
the warping parameters can be used to reliably generalize the
constraints of the pouring task between different containers.

B. Robot Pouring Experiment

In the second experiment, the robot used warped parame-
ters to generalize pouring actions between different objects.
The robot was provided with ten demonstrations of a pouring
task using kinaesthetic teaching. All of the demonstrations
were performed with the same two objects shown in the left
picture of Fig. 5. For safety reasons, the task was performed
with gel balls rather than an actual liquid. The cup was half
full at the start of each trial. Using the ten demonstrations, the
robot learned a ProMP for pouring, as described in Section
III-B. The learned distribution over trajectories is shown
in Fig. 4. The robot was then given the task of pouring
with different objects. The robot successfully learned to pour
from a shorter cup into a bigger bowl, a smaller cup, and
a square bowl, as shown in Fig. 5. Only a couple of gel
balls were spilled during the experiments. A video of the
robot performing the pouring task is also provided in the
supplementary material.

As the cups were half-full, pouring usually commenced
when the tilt value went above one. Fig. 4 shows that the
distribution over trajectories remains safely below this value
until the lip point is above the opening. When moving the
cup back, most of the liquid has been poured out, and hence
the cup can be tilted more. The pictures in Fig. 5 show that
the cup was often placed close to the rim of the second
container, which indicates that the robot was able to adapt
the learned trajectory to the geometry of the object being
manipulated.

C. Future Work

The autonomy of the robot can be increased by learning
warped parameters. The points could be labelled by using an
unsupervised approach to segmenting the objects into parts.
A set of generic geometric functions could then be applied to
each part in order to generate a library of warped parameters.
Feature selection methods could then be applied to select a
suitable set of warped parameters for the given task.

The focus in this paper was on learning pouring skills
from a single object. The generalization between objects
therefore relies on using the warped parameters to construct
dimensionless features for the robot. However, given data
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Fig. 5. The pictures show the key results of the real robot experiment. The robot was provided with multiple demonstrations of the pouring task using
kinaesthetic teaching, as shown on the left. Using the warped parameters approach, the robot successfully generalized the demonstrated actions to novel
objects with different shapes and sizes, as shown on the right.

from multiple objects, the robot can also learn how to gen-
eralize between objects. In this case, the warped parameters
could be treated as separate features that describe the object.
For example, ProMPs can be used to learn the correlations
between the trajectory parameters and the warped object
parameters. Object-specific trajectories can be obtained by
conditioning on the current object parameters. This approach
would even allow the robot to learn that only some segments
of the trajectory depend on the object parameters. However,
learning ProMPs in this manner would require additional
training trajectories with different objects. These trajectories
could be obtained from human demonstrations, or by adapt-
ing trajectories using reinforcement learning [12].

V. CONCLUSION

We proposed using warped parameters to generalize pour-
ing skills between different objects. Warped parameters are
functions defined on the point cloud of a known object. The
parameter can be computed for a novel object by warping
the known object’s point cloud to match the geometry of the
novel object.

The proposed method was successfully evaluated both in
simulation and on a real robot pouring task. The experiments
showed that the warped parameters can be used to generalize
task constraints and motor primitives between containers of
different shapes and sizes
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