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Abstract— The design of gaits and corresponding control
policies for bipedal walkers is a key challenge in robot loco-
motion. Even when a viable controller parametrization already
exists, finding near-optimal parameters can be daunting. The
use of automatic gait optimization methods greatly reduces the
need for human expertise and time-consuming design processes.
Many different approaches to automatic gait optimization have
been suggested to date. However, no extensive comparison
among them has yet been performed. In this paper, we present
some common methods for automatic gait optimization in
bipedal locomotion, and analyze their strengths and weaknesses.
We experimentally evaluated these gait optimization methods
on a bipedal robot, in more than 1800 experimental evaluations.
In particular, we analyzed Bayesian optimization in different
configurations, including various acquisition functions.

I. INTRODUCTION

Bipedal locomotion is not robust, fast or energetically
efficient [11] compared to wheeled or quadrupedal locomo-
tion [25]. However, bipedal locomotion in robotics possesses
various advantages: 1) high versatility with a wide range
of gaits, from walking in rough terrains to fast running;
2) bipedal robots can naturally make use of environments
designed for humans (e.g., stairs) without requiring architec-
tonic modifications.

Key challenges in bipedal locomotion include balance
control, foot placement, and gait optimization. In this pa-
per, we focus on black-box gait optimization, i.e., finding
good parameters for the gait of a biped, without the need
of a dynamics model. Hence, we assume that a suitable
controller to generate the desired gait has already been
designed, but that appropriate gait parameters for the con-
troller still need to be found. Due to the partially unpre-
dictable effects and correlations among the gait parameters,
gait optimization is often an empirical, time-consuming and
strongly robot-specific process. In practice, gait optimization
often translates into a trial-and-error process where choos-
ing the parameters becomes either an educated guessing
by a human expert or a systematic search, such as grid
search. As a result, gait optimization may require con-
siderable expert experience, engineering efforts and time-
consuming experiments. Additionally, the effectiveness of
the resulting gait parameters is limited by the circumstances
and human insights speculated during the search process.
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Fig. 1: The bio-inspired dynamical
bipedal walker Fox used for the
comparative evaluation of the gait
optimization methods.

Therefore, a change
in the environment
(e.g., different floor
surfaces), a variation
in the hardware re-
sponse (e.g., perfor-
mance decline, sub-
stitution of a compo-
nent or differences in
the calibration) or the
choice of a perfor-
mance criterion (e.g.,
walking speed, en-
ergy efficiency, ro-
bustness), which dif-
fers from the one used
during the controller
design process, can
require searching for
new and more appro-
priate gait parameters.

By formulating the
search for appropriate
gait parameters as an
optimization problem, it is possible to automate gait opti-
mization. Automatic gait optimization is a valuable and prin-
cipled approach to designing controllers and reduces the need
for engineering expert knowledge. To date, various automatic
gait optimization methods have been used in locomotion
to design efficient gaits including: gradient descent meth-
ods [27], Bayesian optimization [18], [28], [5], genetic algo-
rithms [6], particle swarm optimization [20] and others [12].
In the context of robotics, and specifically gait optimization,
the number of experiments that can be performed on a real
system is small. Each experiment can be costly, requires a
long time, and inevitably leads to wear and tear of the robot’s
hardware. Hence, it is crucial for the chosen optimization
method to limit the number of experiments to perform while
reliably finding near-optimal parameters. In the gait opti-
mization literature, the results of the proposed methods are
frequently presented without evaluating alternative methods.
Additionally, each proposed method typically is evaluated on
customized hardware. Therefore, any comparison inferred by
a reader can give only a limited insight into the performance
of different gait optimization methods. Furthermore, only
rarely the characteristics, advantages and limitations of each
method are clearly presented.

In this paper, we present an experimental evaluation and



comparison of common automatic optimization methods in
the context of gait optimization. In Section II, we formal-
ize gait search as an optimization problem and introduce
some popular optimization methods: grid search, pure ran-
dom search, Bayesian optimization and gradient-descent-
based methods. Furthermore, we discuss the properties and
characteristics of the different methods. In Section III, we
present the experimental set-up and the results obtained using
the bio-inspired dynamical bipedal walker Fox shown in
Figure 1. We conclude in Section IV with some final remarks
and possible future directions for gait optimization. Clearly,
the experimental results obtained with the optimization meth-
ods considered in this paper are more generally applicable
in robotics, for example, in grasping, imitation learning and
robot-human interaction.

II. METHODS FOR GAIT OPTIMIZATION

The search for appropriate parameters of a controller
can be formulated as an optimization problem, such as the
minimization

minimize
θ∈RD

f (θ) (1)

of an objective function f (·) with respect to the param-
eters θ. In the case of gait optimization, the objective
function f encodes a performance criterion, such as walking
speed, energy efficiency or robustness, while θ are the
parameters of the gait controller. Hence, evaluating the
objective function f for a given set of parameters requires a
physical interaction with the robot.

The considered gait optimization problem has the follow-
ing properties:

1) Zero-order objective function. Each evaluation of
the objective function f returns only the value
of the function f (θ), but no gradient information
∇θf = df (θ) /dθ with respect to the parameters. The
use of first-order optimization methods, which make
use of gradient information, is generally desirable in
optimization as it leads to faster convergence than
zero-order methods. Thus, it is common for zero-
order objective functions to approximate the gradient
using finite differences. However, finite differences
requires evaluating the objective function f multiple
times. Since each evaluation requires interactions with
the robot, the number of robot experiments quickly
becomes excessive, rendering first-order methods (e.g.,
the whole family of gradient descent-based methods)
unsuitable for our task.

2) Stochastic objective function. The evaluation of the
objective function is inherently stochastic due to noisy
measurements, variable initial conditions and system
uncertainties (e.g., slack). Therefore, any suitable opti-
mization method needs to take into consideration that
two evaluations of the same parameters θ can yield
two different values f1(θ) 6= f2(θ).

3) Global optimization. Ideally, we strive to find the
global minimum of the objective function in (1). How-
ever, no assumption can be made about the presence of

Method Order
optimizer

Global
optimizer

Re-usability
evaluations

Stochasticity
assumption

Grid Search Zero-order Global Limited No*
Pure Random Search Zero-order Global Yes No*
Gradient-descent Family First-order Local No No
Bayesian Optimization Zero-order Global Yes Yes

TABLE I: Comparison of various gait optimization methods.
(*) extensions exist for stochastic optimization, but they are
impractical in terms of number of evaluations required.

multiple local minima or the convexity of the objective
function.

These characteristics make this family of problems a chal-
lenging optimization task. Table I shows the methods com-
monly used to solve such a family of problems in the context
of gait optimization. In the following, we introduce and
analyze these optimization methods.

A. Grid Search

Grid search is a widely adopted exhaustive optimization
method, which evaluates the parameters along a (typically)
regular grid. Each evaluation of the parameters is carried
out independently of all the others evaluations. Therefore,
grid search is a global zero-order optimization method as
it can optimize non-convex objective functions and does
not require gradients ∇θf . As a result, the underlying
objective function f does not need to be differentiable or
even continuous.

Due to the curse of dimensionality [9], the required num-
ber of evaluations grows exponentially with respect to the
number of parameters. Given the parameters θ ∈ RD, and
assuming a grid with p evaluations along each parameter’s
covariate, the number of evaluations n required is

n = pD , (2)

which can rapidly become infeasible.
Since each evaluation of the objective function can be

performed independently of the others, grid search can be
easily parallelized. Hence, grid search is attractive in contexts
where it is possible to parallelize the evaluations (e.g.,
using multiple robots on which to perform experiments).
Classical grid search does not explicitly consider the case
of stochastic objective functions, in which case it can fail
to converge. Extensions exist that can deal with stochastic
optimization [10], but they are impractical due to the need
to evaluate each set of parameters multiple times, therefore,
requiring an even higher numbers of evaluations.

Once the optimization is complete, grid search does not
naturally allow for adding new evaluations. New evaluations
would require to either redefine the grid and lose the past
evaluations, or fill the gaps from the previous grid and
typically lose the regular structure of the grid.

B. Pure Random Search

Pure random search [3] selects the parameters θ to evalu-
ate by sampling from a bounded uniform distribution. Pure
random search maintains most of the positive properties of
grid search: zero-order global optimization, straightforward



parallelization. Despite its simplicity pure random search is
an attractive approach due to the statistical guarantees of
global convergence. Given n evaluations and an optimum
having a relative space a (i.e., size of the space of the
optimum with respect to the size of the overall parameters
space), the probability S of finding the global optimum is

S = 1− (1− a)n . (3)

Typically, such probabilistic convergence guarantees require
an impractical (i.e., tending to infinite) number of evalu-
ations. However, pure random search often performs sur-
prisingly well in finding good approximate solutions, even
compared to more complicated and modern optimization
approaches, e.g., in high-dimensional problems where many
irrelevant dimensions exist [1].

Similarly to grid search, pure random search does not
explicitly consider the case of stochastic objective functions,
in which case it can fail to converge. Also for pure random
search, there are extensions which can deal with stochastic
optimization [7], but they are impractical due to the even
higher numbers of evaluations required. Adding new evalua-
tions, if an optimization proved unsatisfactory, can be easily
done by sampling new parameters and evaluating them as
well.

C. Gradient-descent Family

Gradient-descent-based optimization is a wide family of
optimization methods. They are based on gradient de-
scent (GD), sometimes called “steepest descent”, which is a
first-order iterative optimization method. At each iteration t,
a set of parameters θ is selected based on the update rule

θt+1 = θt + εt∇θtf , (4)

where the learning rate εt (also called step size) is a
free parameter and ∇θtf is the gradient of the objective
function with respect to the parameters θt. The selection
of εt is an important choice that can considerably affect the
optimization process. While a constant εt can be used, it
would lead to an inefficient optimization, given that it would
have to be tuned based on the particular specifics of the
problem we want to optimize. A second possibility is the
use of an adaptive step size (e.g., one that decreases through
time). An appropriate adaptive learning rate toward the end
of the optimization stabilizes the optimization process in a
near-optimal minimum, rather than zig-zagging around. A
common choice is to select an optimal ε for each iteration
using a linesearch. Other methods belonging to the gradient-
descent family are conjugate gradients and L-BFGS [4].

There are important limitations of gradient-descent meth-
ods for the formulated optimization problem. 1) Computing
the gradient ∇θtf is undesirable in our case as it increases
the number of evaluations required. 2) Gradient-descent
methods are local: since they follow the gradient, they
only find the minimum in whose basin of attraction the
optimization started. Hence, the initialization of the parame-
ters θ0 becomes crucial and global optima are rarely found.
Gradient-descent methods are occasionally used for global

Algorithm 1: Bayesian optimization

T ←− if available: {θ, f (θ)}1

Prior ←− if available: Prior of the GP model2

while optimize do
Train GP model from T3

Compute response surface f̂ (·)4

Compute acquisition surface α (·)5

Find θ∗ that optimizes α (·)6

Evaluate f at θ∗7

Add {θ∗, f (θ∗)} to T8

optimization by running multiple optimizations initialized
by different parameters θ0. However, this technique clearly
requires many more evaluations, and therefore is impractical.
Since each new set of parameters θt+1 depends only on the
previous set of parameters θt, gradient-descent methods do
not allow for any re-use of past evaluations.

D. Bayesian Optimization

Bayesian optimization is an iterative model-based global
optimization method [16], [14], [21], [2]. In iterative model-
based global optimization methods, after each evaluation of
the objective function f , a model that maps parameters θ to
corresponding function evaluations f (θ) is built. From the
resulting model the response surface f̂ (·) is predicted and
used for a “virtual” optimization process

minimize
θ∈RD

f̂ (θ) . (5)

In this context, “virtual” indicates that optimizing the re-
sponse surface f̂ (·) with respect to the parameters θ does not
need interactions with the real system, but only evaluations
of the learned model. Only when a new set of parameters θ∗

has been selected from the virtual optimization process of the
response surface f̂ , they are evaluated on the real objective
function f . The resulting value of the objective function,
together with the corresponding parameters {θ∗, f (θ∗)}, are
used to update the model of the objective function.

A variety of different models, such as linear functions
or splines [14], have been used in the past to model f .
In Bayesian optimization, probabilistic models are used.
The use of a probabilistic model allows to model noisy
observations and to explicitly take the uncertainty about the
model itself into account. Additionally, such a probabilistic
framework allows to use priors that encode available expert
knowledge or information from related systems, such as
optimal parameter priors to changes in the system, e.g.,
after replacing a motor or changing the walking surface. In
this paper, we use Gaussian processes (GPs) as probabilistic
model for Bayesian optimization.

When using a probabilistic model, the response sur-
face f̂ (·) in Equation (5) is a probability distribution. There-
fore, the response surface f̂ cannot be optimized directly.
Instead, an acquisition function α (·) is necessary for the
virtual optimization of the probabilistic GP. The purpose of



the acquisition function is two-fold: 1) It maps the GP onto
a single surface called the acquisition surface α (θ), which
is subsequently optimized1. Thereby, the minimization of the
objective function from Equation (1) can be rephrased as the
minimization of the acquisition surface

minimize
θ∈Rd

α (θ) . (6)

2) The GP expresses model uncertainty, which is used to
trade off exploration and exploitation in the optimization. In
Bayesian optimization, as summarized in Algorithm 1, a GP
model θ 7→ f (θ) is learned from the data set T = {θ, f (θ)}
composed by the parameters θ and the corresponding mea-
surements f (θ) of the objective function (Line 3 of Algo-
rithm 1). This model is used to predict the response surface f̂
(Line 4 of Algorithm 1) and the corresponding acquisition
surface α (θ) (Line 5 of Algorithm 1), once the response
surface f̂ (·) is mapped through the acquisition function α (·).
Using a global optimizer, the minimum θ∗ of the acquisition
surface α (θ) is computed (Line 6 of Algorithm 1) without
any evaluation of the objective function, e.g., no robot
interaction is required, see Equation (6). This minimum θ∗

is evaluated on the robot (Line 7 of Algorithm 1) and,
together with the resulting measurement f (θ∗), added to
the dataset T (Line 8 of Algorithm 1). Additionally, past
evaluations can be used to initialize the dataset T (Line 1 of
Algorithm 1), as well as the prior of the GP model (Line 2
of Algorithm 1).

1) Gaussian Process Model for Objective Function: To
create the model that maps θ 7→ f(θ), we make use of
Bayesian non-parametric Gaussian Process regression [22].
Such a GP is a distribution over functions

f ∼ GP (mf , kf ) , (7)

fully defined by a prior mean mf and a covariance func-
tion kf . As prior mean, we choose2 mf ≡ 0, while the
chosen covariance function kf is the squared exponential
with automatic relevance determination and Gaussian noise

kf (θp,θq) = σ2
f exp(−1

2 (θp−θq)TΛ−1(θp−θq))+σ2
wδpq

(8)

with Λ = diag([l21, ..., l
2
D]). Here, li are the characteristic

length-scales, σ2
f is the variance of the latent function f(·)

and σ2
w the noise variance. The GP predictive distribution is

p(f(θ)|T,θ) = N
(
µ(θ), σ2(θ)

)
, (9)

where the mean µ(θ) and the variance σ(θ) are respectively
computed as

µ(θ) = kT∗K
−1y , σ2(θ) = k∗∗ − kT∗K

−1k∗ . (10)

Given n training inputs X = [θ1, ...,θn] and corresponding
training targets y = [f(θ1), ..., f(θn)], we define the training

1The correct notation would be α
(
f̂ (θ)

)
, but we use α (θ) for notational

convenience.
2The use of a more informative prior allows to make use of expert

knowledge.

data set T = {X,y}. Moreover, K is the matrix composed
of Kij = k(θi,θj), k∗∗ = k(θ,θ) and k∗ = k(X,θ).

A practical issue, for both GP modeling and Bayesian
optimization, is the choice of the hyperparameters of the GP
model. The hyperparameters of a GP model are the parame-
ters of the covariance function, in our case, the characteristic
length-scales li, the variance of the latent function σ2

f and the
noise variance σ2

w. In gait optimization, these hyperparame-
ters are often fixed a priori [18]. There are suggestions [17]
that fixing the hyperparameters can considerably speed up the
convergence of Bayesian optimization. However, manually
choosing the value of the hyperparameters requires extensive
expert knowledge about the system that we want to optimize,
which is often an unrealistic assumption. Additionally, it is
unclear if fixing the hyperparameters provide an advantage
that balances the risk of incorrectly approximate the real
hyperparameters. An alternative common approach, which
we employ in our experiments, is to automatically select the
hyper-parameters by optimizing with respect to the marginal
likelihood [22].

2) Acquisition Function: A number of acquisition func-
tions α (·) exists, such as probability of improvement [16],
expected improvement [19], upper confidence bound [8] and
entropy-based improvements [13]. Experimental results [13]
suggest that expected improvement on specific families of ar-
tificial functions performs better on average than probability
of improvement and upper confidence bound. However, these
results do not necessarily hold true for real-world problems
such as gait optimization, where the objective functions are
more complex to model. Probability of improvement [18],
expected improvement [28] and upper confidence bound [5]
have all been previously employed in gait optimization.
However, no experimental comparison has been carried out
in gait optimization yet, and it is still unclear why one of
them should be chosen over the others.

a) Probability of Improvement (PI): Introduced by
Kushner [16], the acquisition function PI is defined as

α (θ) = Φ

(
T − µ(θ)

σ(θ)

)
, (11)

where Φ(·) is the normal cumulative distribution function
and T the target value. The target value T is often the
minimum of all explored data plus, optionally, a positive
constant (for a study of its effects, see [17]). PI is a function
bounded by the interval [0, 1]. Hence, since the normal
cumulative distribution function is monotonically increasing,
to minimize PI is sufficient to minimize

α (θ) =
T − µ(θ)

σ(θ)
. (12)

Intuitively, PI computes the probability (cumulative distribu-
tion) of the response surface in θ to be better than the target
value T .

b) Expected Improvement (EI): Mockus [19] intro-
duced EI, which can be seen as an extension of probability



of improvement. EI is formulated as

α (θ) = σ[uΦ (u) + φ (u)]; u =
T − µ(θ)

σ(θ)
, (13)

where φ(·) is the normal probability density function.
c) Upper Confidence Bound (UCB): UCB [8] is defined

as

α (θ) = µ(θ)− κσ(θ). (14)

The choice of the free parameter κ is crucial as it deter-
mines the trade-off rate between exploration and exploitation.
GP-UCB [26] suggests to automatically select κ according
to

κ =

√
2 log

(
nD/2+2π2

3δ

)
, (15)

where δ is the number of past evaluations of the objective
function f and D the dimensionality of the parameters θ.
Additionally, automatically selecting κ allows to estimate
regret bounds [26].

3) Optimizing the Acquisition Surface: Once the acquisi-
tion surface α (θ) is computed (Line 5 of Algorithm 1), it is
still necessary to find the parameters θ∗ of its minimum (Line
6 of Algorithm 1). To find this minimum, we use a standard
global optimizer. Note that the global optimization problem
in Equation (6) is different from the original global optimiza-
tion problem defined in Equation (1). First, the measurements
in Equation (6) are noise free because the objective function
in Equation (14) is an analytical model. Second, there is no
restriction in terms of how many evaluations we can perform.
Evaluating the acquisition surface only requires interactions
with the model, but not with a physical system, such as a
robot. Third, we can compute the derivatives of any order,
either with finite differences or analytically. Therefore, we
are no longer restricted to zero-order optimization methods,
and any global optimizer can be used. In our experiments we
used DIRECT [15] to find the approximate global minimum,
followed by L-BFGS [4] to refine it.

III. COMPARATIVE EVALUATION ON THE Fox ROBOT

In this section, we first introduce the bio-inspired dy-
namical bipedal walker Fox used as our robotic evaluation
platform. Afterward, we describe the experimental set-up and
give details for each of the optimization methods employed.
Finally, we present the comparison of the experimental
evaluations and discuss it.

A. Experimental Set-up

To validate our Bayesian gait optimization approach we
used the 2-D dynamic walker Fox, shown in Figure 1. This
robot consists of a rudimentary trunk, two legs, made of
a rigid segment connected by a knee joint to a telescopic
leg spring, and two spherical feet with touch sensors [23].

Forward

90°

90° 270°

270°

135° 205°

60°

185°

Fig. 2: Hip and knee angle refer-
ence frames (red dashed) and rota-
tion bounds (blue solid). The hip
joint angles’ range lies between
135◦ forward and 205◦ backward.
The knee angles range from 185◦

when fully extended to 60◦ when
flexed backward.

Fox is equipped
with low-cost metal-
gear DC motors at
both hip and knee
joints. Together they
drive four actuated
degrees of freedom.
Moreover, there
are six sensors on
the robot: two on
the hip joints, two
on the knee joints,
and one under each
foot. The sensors
on the hip and knee
joints return voltage
measurements
corresponding to
angular positions of
the leg segments. The
touch sensor under
each foot returns
binary ground contact
signals. The walker
is mounted on a boom that enforces planar, circular motion.
An additional sensor in the boom measures the angular
position of the walker, i.e., the position of the walker on the
circle.

The controller of the walker is a finite state ma-
chine (FSM) with four states (see Figure 3): two for the
swing phases of each leg [24]. These states control the
actions performed by each of the four actuators, which
were extension, flexion or holding of the joint. The tran-
sition between states is regulated by the contact sensors
and thresholds based on the angles of the joints. For the
optimization process, we identified four parameters of the
controller crucial for the resulting gait; More parameters
would make a comparison with grid search unfeasible, due to
the excessive number of evaluations required. These four gait
parameters consist of thresholds values of the FSM (two for
each leg), and directly influence the position of the hips. The
remaining parameters were chosen such that only a small set
of parameters space would lead to a properly walking gait. To
achieve a stable gait in this parameters space it was necessary
to make use of the inertia of the legs to compensate the low
torques applied.

B. Performance Metric

A common metric used in gait optimization is the average
walking velocity v̄ = ∆x/∆t, with ∆x being the walked
distance during the time ∆t. However, this metric can be
misleading since fast gaits can also be sensitive to intrinsic
perturbations that lead to falls. Therefore, the objective
function f to be minimized was defined as

f (θ) = − 1

N

N∑
i=1

v̄i(θ) , (16)



Contact with Left Foot Contact with Right Foot

LH=Flex
LK=Ext
RH=Ext
RK=Hold

LH=Flex
LK=Flex
RH=Ext
RK=Hold

LH=Ext
LK=Hold
RH=Flex
RK=Flex

LH=Ext
LK=Hold
RH=Flex
RK=Ext

Fig. 3: Fox’ controller is a finite state machine with four
states. Each of the four joints, left hip (LH), left knee (LK),
right hip (RH) and right knee (RK), can perform one of three
actions: flexion (Flex), extension (Ext) or holding (Hold).
When a joint reaches the maximum extension or flexion,
its state is transparently changed to holding. The transition
between the states and the torque applied during flexion and
extension are determined by the controller parameters θ.

i.e., the negative mean of the average walking velocity v̄
over N = 3 experiments on the robot for a given set of
gait parameters θ. Minimizing the performance criterion in
Equation (16) maximizes the walking distance. This criterion
does not only guarantee a fast walking gait, but also reliabil-
ity since the gait must be robust to noise and initial configu-
rations across multiple experiments. The chosen parameters
space is sufficiently large that only a small percentage of
the possible parameters values can achieve stable walking,
while for most of the configurations the robot falls down
after one or two steps. Each experiment was initialized from
similar initial configurations, and each experiment consisted
of 12 seconds starting from the moment when the foot of the
robot first touched the ground. For grid search optimization,
we used 3 evaluations along each of the four dimensions
for a total of 81 evaluations (from Equation (2)). For com-
parability, we performed for all other methods the same
number of evaluations. To initialize Bayesian optimization,
we used the first three evaluations from pure random search
(i.e., uniformly randomly sampled sets of parameters), thus,
leaving 78 evaluations to be selected. Performing a whole
cycle of optimization (i.e., 78×3 = 234 evaluations) consists
of 46 minutes of robot walking time and typically required
between 6 and 9 hours of hands-on experimental time.

C. Experimental Results

The maximum walking speed of Fox evaluated during the
gait optimization process for the different methods is shown
in Figure 4a. The optimization process of GP-UCB is limited
to 57 evaluations due to a mechanical failure that forcefully
interrupted the experiment. Values of the objective function
below 0.1 m/s indicate that the robot fell down after a single
step. Values between 0.1 and 0.15 m/s indicate that the

robot could walk for multiple steps but showed systematic
falls. Between 0.15 m/s and 0.25 m/s only occasional falls
occurred. Above 0.25 m/s the achieved gait was robust and
did not presented any fall. From the results, we see that both
grid search and random search performed poorly, finding a
maximum that can only barely walk. We notice that Bayesian
optimization using any of the different acquisition functions
performed considerably better. Bayesian optimization using
PI and GP-UCB achieved robust gaits with similar walking
speed, while GP-UCB being slightly faster in finding the
maximum. On the other hand, Bayesian optimization using
EI did not lead to robust gaits. The reason of this result were
the inaccuracies of the model of the underlying objective
function. In fact, the automatically selected hyperparameters
had overly long length-scales (see Equation (8)), which
resulted in an inappropriate model and, thus, evaluating
parameters of little interest.

This result is unexpected as EI is considered a versatile
acquisition function, and there are experimental results [13],
which suggest that EI on specific families of artificial func-
tions performs better than GP-UCB and PI. We speculate
that these results do not necessarily apply to complex real-
world objective functions, such as the one we optimized.
For example, if the objective function does not possess a
single natural length-scale, but multiple length-scales. In
particular, during the empirical evaluation, we observed that
EI behaved excessively greedily, exploring the parameters
space insufficiently. In turn, this insufficient exploration
resulted in overly long length-scales and an inappropriate GP
model. Therefore, we hypothesize that in case of an objective
function which is complicated to model, the EI acquisition
function might not perform as well as for easier artificial
functions.

As a second comparison, we studied the effects of man-
ually fixing hyperparameters. Thereby, we manually fixed
the hyperparameters of the GP models to reasonable values,
based on our expert knowledge. Figure 4b shows the per-
formance of the different acquisition functions when using
the manually fixed hyperparameters. From these results, it
can be observed that all the different acquisition functions,
when using the fixed hyperparameters, found similar sub-
optimal solutions. The reason is that for all three acquisition
functions with fixed hyperparameters, one parameter reached
only a sub-optimal value. This observation suggests that, at
least for that one parameter, the wrong length-scales pre-
vented the creation of an accurate model and, therefore, the
optimization process was hindered. As a confirmation of this
hypothesis, using all the evaluations performed, we trained
a GP model and automatically selected the hyperparameters
using the marginal likelihood. The resulting values of the
hyperparameters were, in some cases, half of the manually
selected values, therefore, suggesting that the chosen length-
scales were a rough approximation of the real ones. Both GP-
UCB and PI using fixed hyperparameters performed worse
than the respective cases with automatic hyperparameters
selection because the longer length-scales limited the ex-
ploration of these acquisition functions. In contrast, for EI
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Fig. 4: The maximum walking speed of Fox evaluated during the gait optimization process. (a) Bayesian optimization
performed better than both grid and random search. BO using the GP-UCB acquisition function performed best, achieving a
fast and robust gait in less than 30 evaluations. (b) Bayesian optimization of various acquisition functions are shown for fixed
hyperparameters. The use of imprecise fixed hyperparameters led to sub-optimal solutions for all the acquisition functions.

Method Maximum during
optimization

Grid search 0.148
Pure random search 0.142
BO: PI 0.328
BO: EI 0.232
BO: GP-UCB 0.337
BO: PI (fixed Hyp) 0.254
BO: EI (fixed Hyp) 0.266
BO: GP-UCB (fixed Hyp) 0.255

TABLE II: Maximum average walking speeds [m/s] found
by the different optimization methods. Bayesian optimization
using GP-UCB with automatic hyperparameters selection
found the best maximum of all methods. Nevertheless, the
maximum obtained using PI is qualitatively similar.

the use of fixed hyperparameters was beneficial. In fact, the
fixed length-scales were smaller than the automatically se-
lected ones and, therefore, more exploration was performed.
The hyperparameters of the GP model directly influence
the amount of exploration performed by the acquisition
functions. Hence, fixing the hyperparameters using expert
knowledge can be an attractive choice, since forcing the right
amount of exploration can speed up the optimization process.
However, the presented experimental results also show that
a poor choice of hyperparameters can potentially harm the
optimization process by limiting the exploration and leading
to sub-optimal solution.

In Table II, we present the comparison of the optimum
found by all the evaluated methods. Variations of up to
0.04 m/s can depend on the presence of noise in the exper-
iments. Additionally, it should be noticed that the real noise
of the objective function is not Gaussian. In fact, config-
urations of the parameters that produce periodic falls after
a single step or stable gaits, typically behave consistently
across various experiments and, therefore, present smaller
noise (0.01 m/s). For parameters that produce unstable gaits
with occasional falls the noise can be larger, typically up

to 0.04 m/s. A visual representation between two of the
parameters of the parameter space as predicted using the
data collected from all the over 1800 evaluations is shown
in Figure 5. It can be noticed that this space is complex and
non-convex, and, therefore, unsuitable for local optimization
methods (e.g., gradient-based methods).

The GP modeling capabilities are often overlooked when
evaluating Bayesian optimization’s performances, with all
the emphasis on the use of different acquisition functions.
Following the results of our experimental evaluation, we
speculate that for complex objective functions there exists a
strict and yet unexplored connection between the exploration
properties of the acquisition function and the capabilities of
GP modeling. The performance of an acquisition function
depends on the capabilities of properly modeling the func-
tion, and vice-versa a proper modeling take place only when
the acquisition function evaluate relevant parameters.

IV. DISCUSSION & CONCLUSION

Gait optimization is a key research topic relevant for
efficient bipedal locomotion. However, due to the presence
of ad-hoc solutions and different hardware, the proposed
optimization methods had not yet been thoroughly compared
to other methods. In this paper, we presented a survey of
some gait optimization methods and discussed their strengths
and limitations. To compare the different gait optimization
methods, we performed over 1800 evaluations on a real
bipedal walker. Experimental results show that Bayesian
optimization performed considerably better than grid or
random search. In the context of Bayesian optimization,
we firstly compared different acquisition functions. While
GP-UCB had the best performances, EI greedily chose
the parameters to evaluate and therefore performed poorly.
Secondly, we compared the manually fixing hyperparameters
against automatically selecting them. The results showed that
manually fixing the hyperparameters can strongly influence
the outcome of the optimization process. These experimental
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Fig. 5: Intensity map of the model of the parameters space,
computed using all the evaluations performed from the
different optimization methods, along two of the parameters.
The presence of multiple local minima motivate the needs
of using global optimization methods.

results show interesting insights of the different acquisition
functions and into the difficulties of modeling complex
objective functions.

Bayesian optimization is a promising method for efficient
optimization, especially in fields like locomotion where only
few evaluations can be performed before wearing out the
hardware. Future research in Bayesian optimization should
focus on obtaining more accurate and appropriate response
surface models. Since the experimental noise is often not
constant, a logical extension would be the use of het-
eroscedastic GP models. Additionally, further studies are
required to fully understand the joint influence of different
acquisition functions and models, in the case of hard to
model complex objective functions.
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