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Abstract. One of the key challenges in robotic bipedal locomotion is finding gait
parameters that optimize a desired performance metric, such as robustness or en-
ergy efficiency. Typically, gait optimization requires extensive robot experiments
and specific expert knowledge. Instead, we propose to apply data-driven machine
learning to automate and speed up the process of gait optimization. In particular,
we use Bayesian optimization to efficiently find gait parameters that optimize the
desired performance metric. As a proof of concept we demonstrate that Bayesian
optimization is near-optimal in a classical stochastic optimal control framework.
Moreover, we validate our approach to Bayesian gait optimization on a low-cost
but sensitive real bipedal walker and show that good walking gaits can be effi-
ciently found by Bayesian optimization.
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1 Introduction

Bipedal walking and running are versatile and fast locomotion gaits. Despite its high
mobility, bipedal locomotion is rarely used in real-world robotic applications. Key chal-
lenges in bipedal locomotion include balance control, foot placement, and gait opti-
mization. In this paper, we focus on gait optimization, i.e., finding good parameters for
the gait of a robotic biped.

Due to the partially unpredictable effects and correlations among the gait parame-
ters, gait optimization is often an empirical, time-consuming and strongly robot-specific
process. In practice, gait optimization often translates into a trial-and-error process
where choosing the parameters is either an educated guess by a human expert or a sys-
tematic search, such as grid search. As a result, gait optimization may require consider-
able expert knowledge, engineering effort and time-consuming experiments. Addition-
ally, the effectiveness of the resulting gait is restricted by the assumptions made during
the controller design process, regarding the environment, the hardware and the perfor-
mance criteria. Therefore, a change in the environment (e.g., different floor surfaces),
a variation in the hardware response (e.g., decline in performances of the hardware, re-
placement of a motor or differences in the calibration) or the choice of a performance
criterion (e.g., walking speed, energy efficiency, robustness), which differs from the
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Fig. 1: The bio-inspired dynamical bipedal
walker Fox. Using Bayesian optimization,
we found reliable and fast walking gaits
with a velocity of up to 0.45 m/s.

one used during the controller design
process, often require searching for new,
more appropriate, gait parameters.

The search for appropriate gait pa-
rameters can be formulated as an opti-
mization problem. Such a problem for-
mulation in conjunction with an appro-
priate optimization method allows to au-
tomate the search for optimal gait param-
eters. Therefore, it is a valuable and prin-
cipled approach to designing controllers
and reduces the need for engineering ex-
pert knowledge. To date, automatic gait
optimization methods have been used
for designing efficient gaits for locomo-
tion. Optimization methods used in the
past for gait optimization include gradi-
ent descent methods [1] and genetic al-
gorithms [2]. However, gradient descent
based methods [1] might not find the
optimal solutions for objective function
with multiple local minima, and the com-
putation of the gradient is required. Fur-
thermore, most global optimization ap-
proaches are impractical to apply to sen-

sitive robots as they require a large number of interactions with the real robot. For
example, in genetic algorithms multiple sets of parameters from the population must be
evaluated for each iteration, therefore, requiring impractical number of evaluations [2].
Since a large number of interactions can wear the robot out, extensive experiments may
be economically infeasible or require an impractical amount of time. Hence, it is essen-
tial to reduce the number of interactions required to find good parameters.

To overcome this practical limitation on the number of possible interactions, we
propose to use Bayesian optimization for efficient bipedal gait optimization. Bayesian
optimization is a state-of-the-art global optimization method [3,4,5] that can be applied
to problems where it is vital to optimize a performance criterion while keeping the
number of evaluations of the system small, e.g., when an evaluation requires an expen-
sive interaction with a robot. Bayesian optimization has been successfully applied to
sensor-set selection [6] and gait optimization for quadrupeds [7] and snake robots [8].
Bayesian optimization makes efficient use of the past interactions by learning a proba-
bilistic model of the function to optimize. Subsequently, the learned model is used for
finding optimal parameters without the need to evaluate the expensive function again.
By exploiting the learned model, Bayesian optimization, therefore, often requires fewer
interactions than other optimization methods [4]. Bayesian optimization can also make
good use of prior knowledge, such as expert knowledge or data from related environ-
ments or hardware, by directly integrating it into the prior of the learned model. More-
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over, unlike most optimization methods, it can re-use any collected interaction data set,
e.g., whenever we want to change the performance criterion.

In this paper, we demonstrate that Bayesian optimization is a promising approach
for gait optimization. In Section 3.1, as a proof of concept, we apply Bayesian optimiza-
tion to a well-studied stochastic optimal control task, i.e., stochastic Linear-Quadratic
Regulation (LQR) [9], where a known analytical optimal solution is available. We
demonstrate that Bayesian optimization successfully finds near-optimal solutions for
the stochastic LQR problem quickly, reproducibly and reliably. In Section 3.2, we show
that Bayesian optimization can be used for imitation of trajectories in the context of
bipedal walking. Given a reference trajectory we find controller parameters that result in
a gait that closely resembles the reference trajectory. In Section 3.3, we apply Bayesian
optimization to gait optimization for robotic bipedal locomotion. Experimental results
on the bio-inspired biped Fox (Figure 1) demonstrate that Bayesian optimization finds
good gait parameters in a small number of experiments. Moreover, the learned con-
troller results in a better gait compared to previous hand-crafted controllers. The use of
an efficient gait optimization method for bipedal locomotion greatly alleviates the need
for extensive parameter search and reduces the requirement of expert knowledge.

2 Efficient Gait Optimization

The search for appropriate parameters for a controller and/or trajectory representation
can be formulated as an optimization problem, such as the minimization

minimize
θ∈Rd

f(θ) (1)

of an objective function f with respect to the parameters θ. In the case of gait opti-
mization, θ are the parameters of the gait controller, while the objective function f is
a performance criterion, such as the walking speed, energy consumption or robustness.
Note that evaluating the objective function f for a given set of parameters requires a
physical interaction with the robot.

The considered gait optimization problem has the following properties:

1. Zero-order objective function. When evaluating the objective function f the value
of the function f(θ) is available, but not the gradient information df(θ)/dθ with
respect to the parameters. The use of gradient information is generally desirable
in local optimization as it leads to faster convergence than zero-order methods.
Thus, it is common to approximate the gradient using finite differences. However,
finite differences requires evaluating the objective function f multiple times. Since
each evaluation requires interactions with the robot, the number of robot experi-
ments quickly becomes excessive, rendering the whole family of efficient gradient
descent-based methods (e.g., gradient descent, conjugate gradient, LBFGS [10])
undesirable for our task.

2. Stochastic objective function. The evaluation of the objective function is inher-
ently stochastic due to noisy measurements and variable initial conditions. There-
fore, any suitable optimization method needs to take into consideration that two
evaluations of the same parameters θ can yield two different values f1(θ) 6= f2(θ).
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3. Global solution. Ideally, we strive to find the global minimum of the objective
function. However, no assumption can be made about the presence of multiple local
minima or about the convexity of the objective function.

All these characteristics make this family of problems a very challenging optimiza-
tion task. A classical way of dealing with this family of problems is to evaluate the
objective function f at an evenly-spaced grid in the parameter space. Sequentially, the
grid search is refined in the most promising intervals of the space. Another possibility
is to use random search, which can perform well [11], e.g., when the objective function
has an intrinsic lower dimensionality. However, both methods typically require an im-
practical number of function evaluations/robot interactions to find good gait parameters.
In contrast, Bayesian optimization [3] naturally deals with this family of optimization
problems and finds solutions in a small number of evaluations of the objective function.

2.1 Bayesian Optimization

Algorithm 1: Bayesian optimization

D ←− if available: {θ, f(θ)}1

Prior←− if available: Prior of the model2

while optimize do
Train a model from D3

Compute response surface f̂(θ)4

Compute acquisition surface α(θ)5

Find θ∗ that optimizes α(θ)6

Evaluate f at θ∗7

Add {θ∗, f(θ∗)} to D8

Bayesian optimization, as summa-
rized in Algorithm 1, is an it-
erative model-based global opti-
mization method [3,4,5,12,13]. Af-
ter each evaluation of the objective
function f , a model of f is built (line
3 of Algorithm 1). In particular, the
model maps parameters θ to corre-
sponding function evaluation f(θ).
From the resulting model the re-
sponse surface f̂(θ) is computed
(line 4) and used for a “virtual” opti-
mization process

minimize
θ∈Rd

f̂(θ) . (2)

In this context, “virtual” indicates that optimizing the response surface f̂(θ) with re-
spect to the parameters θ does not need interactions with the real system, but only eval-
uations of the learned model. Only when a new set of parameters θ∗ has been selected
from the virtual optimization process of the response surface f̂(θ), they are evaluated
on the real objective function f (line 7). The new data {θ∗, f(θ∗)} is used to update the
model of the objective function (line 8).

A variety of different models, such as linear functions or splines [4], have been used
in the past to map θ 7→ f(θ). However, the use of a probabilistic model allows to
model noisy observations and to explicitly take the uncertainty about the model itself
into account. Additionally, such a probabilistic framework allows to use priors that
encode available expert knowledge or information from related systems, such as optimal
parameter priors to a change in the system, e.g., after replacing a motor or changing the
walking surface. In this paper, we use Gaussian processes (GPs) as the probabilistic
model for the Bayesian optimization.
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Fig. 2: Example of the Bayesian optimization process for minimizing an unknown 1-D
objective function f (red curve). The 95% confidence of the model prediction is rep-
resented by the blue area. The optimization is initialized with 4 previously evaluated
parameter θ. The value of the next parameter to be evaluated is represented by the green
dashed line. At each iteration, the model is updated using all the previously evaluated
parameters (red dots). After a few iterations, Bayesian optimization found the global
minimum of the unknown objective function.

When using a probabilistic model, the response surface f̂(θ) is a probability distri-
bution and cannot directly be optimized. Instead, the acquisition function α(·) is used
for the virtual optimization of the probabilistic GP. The purpose of the acquisition func-
tion is two-fold. First, it maps the GP onto a single surface, the acquisition surface α(θ)
to be optimized.6 Second, the GP expresses model uncertainty, which is used to trade
off exploration and exploitation. Thereby, the minimization of the objective function
from Equation (1) can be rephrased as the minimization of the acquisition surface

minimize
θ∈Rd

α(θ). (3)

As summarized in Algorithm 1, in Bayesian optimization, a GP model θ 7→ p(f(θ)) is
learned from the parameters θ to the corresponding measurements f(θ) of the objective
function (line 3 of Algorithm 1). This model is used to predict the response surface f̂(θ)
(line 4 of Algorithm 1) and the corresponding acquisition surface α(θ) (line 5 of Algo-
rithm 1), once the response surface f̂(θ) is mapped through the acquisition function α.
Using a global optimization technique, the minimum θ∗ = argminθ α(θ) of the acqui-
sition surface α is computed (line 6 of Algorithm 1) without any evaluation of the ob-
jective function, e.g., no robot interaction, see Equation (3). The current minimum θ∗ is

6The correct notation would be α(f̂(θ)), but we use α(θ) for notational convenience.
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evaluated (line 7 of Algorithm 1) and, together with the resulting measurement f(θ∗),
added to the dataset D (line 8 of Algorithm 1). Additionally, past evaluations can be
used to initialize the dataset D (line 1 of Algorithm 1), as well as the prior of the GP
model (line 2 of Algorithm 1).

Figure 2 illustrates the Bayesian optimization process for a 1-D function. The hori-
zontal axis represents the parameter space. The red curve shows the true, but unknown,
objective function f and the blue area represents the 95% confidence bound of the GP
model of f . The GP model is trained on a small data set, represented by the red dots.
From this model the acquisition function is computed. The minimum of the acquisition
function determines the next parameter set θ to be evaluated (dashed green line). Subse-
quently, the GP model of the objective function is updated, and the process is restarted.
After a few iterations, Bayesian optimization found the global minimum.

2.2 Gaussian Process Model for Objective Function

To create the model that maps θ 7→ f(θ), we make use of Bayesian, non-parametric
Gaussian Process regression [14]. Such a GP is a distribution over functions

f(θ) ∼ GP (mf , kf ) (4)

and fully defined by a meanmf and a covariance function kf . As prior mean we choose
mf ≡ 0, while the chosen covariance function kf is the squared exponential with
automatic relevance determination and Gaussian noise

k(θp,θq) = σ2
f exp(−1

2 (θp−θq)
TΛ−1(θp−θq))+σ2

wδpq

with Λ = diag([l21, ..., l
2
D]). Here, li are the characteristic length-scales, σ2

f is the vari-
ance of the latent function f and σ2

w the measurement noise variance. The GP predictive
distribution at a test input θ∗ is

p(f(θ∗)|D,θ∗) = N
(
µ(θ∗), σ

2(θ∗)
)
, (5)

µ(θ∗) = k
T
∗K

−1y , σ2(θ∗) = k∗∗ − kT∗K
−1k∗ . (6)

Given n training inputs X = [θ1, ...,θn] and corresponding training targets y =
[f(θ1), ..., f(θn)], we define the training data set D = {X,y}. Moreover, K is the
matrix composed as Kij = k(θi,θj), k∗∗ = k(θ∗,θ∗) and k∗ = k(X,θ∗). In our
experiments, we compute the hyperparameters of the covariance function by maximum
a posteriori (MAP) estimates [14].

2.3 Acquisition Function

A number of acquisition functions α(θ) exist, such as probability of improvement [3],
expected improvement [15], upper confidence bound [16] and entropy-based improve-
ments [17]. In this paper, we use the upper confidence bound (UCB) where the acquisi-
tion surface is defined as

α(θ) = µ(θ)− κσ(θ) , (7)
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where κ is a free parameter that trades off exploration and exploitation. We determine κ
automatically according to the GP-UCB [18,19] algorithm, which also allows to com-
pute regret bounds. An extensive comparison of other acquisition functions with the
biped considered in Section 3.3 can be found in [20].

2.4 Optimizing the Acquisition Surface

Once the acquisition surface in Equation (7) is computed (line 5 of Algorithm 1), it is
still necessary to find the parameters θ∗ of its minimum (line 6 of Algorithm 1). To find
this minimum, we use a standard global optimizer. Note that the global optimization
problem in Equation (3) is different from the original global optimization problem de-
fined in Equation (1). First, the measurements in Equation (3) are noise free because the
objective function in Equation (7) is an analytical model. Second, there is no restriction
in terms of how many evaluations we can perform: Evaluating the acquisition surface
only requires to evaluate the model, but no interactions with the physical system (e.g.,
the robot). Third, we can compute the derivatives of any order, either with finite dif-
ferences or analytically. Therefore, we are no longer restricted to the use of zero-order
optimization methods. As a result, any global optimizer that fulfills these characteris-
tics can be used. In particular, in our experiments we used DIRECT [21] to find the
approximate global minimum, followed by LBFGS [10] to refine it.

3 Experimental Setup & Results

In this section, we present the experiments performed and results obtained to validate
Bayesian optimization for automatic gait optimization. First, we evaluate Bayesian op-
timization on a classical stochastic optimal control problem: a discrete-time stochastic
linear-quadratic regulator (LQR). Since an optimal solution to the stochastic LQR sys-
tem can be computed analytically, we evaluate the quality of the solution found by
Bayesian optimization to this baseline. Second, we apply Bayesian optimization to a
trajectory imitation problem in the context of bipedal walking. Given a reference trajec-
tory, we demonstrate that Bayesian optimization finds suitable parameters of rhythmic
motor primitives (RMPs) to replicate the trajectory. We consider the case of demon-
strated gait trajectories of a simulated biped. Third, we present and discuss the ex-
perimental results of Bayesian optimization applied to gait optimization for bipedal
locomotion on the robot shown in Figure 1.

3.1 Proof of Concept: Stochastic Linear-Quadratic Regulator

The linear-quadratic regulator is a classical stochastic optimal control problem. The
discrete-time stochastic LQR problem consists of a linear dynamical system

xt+1 = Atxt +Btut +wt, t = 0, 1, ..., N − 1 , (8)

and a quadratic cost

J = xTNQNxN +
∑N−1

t=0

(
xTt Qtxt + u

T
t Rtut

)
, (9)
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Table 1: Performance of Bayesian optimization compared to the exact solution for the
stochastic LQR problem.

Cost incurred by the analytical solution -5.57 ± 0.01
Cost incurred by Bayesian optimization -5.54 ± 0.01

Number of evaluations

O
bj

ec
tiv

e 
fu

nc
tio

n

20 40 60 80 100 120 140 160 180 200
-7

-6

-5

-4
Bayesian Optimization

Analytical Solution

Fig. 3: Average over 50 experiments of best parameters find during the minimization
process for a stochastic LQR using Bayesian optimization. The average objective value
function (red curve) during the optimization process and the average analytical solution
(green dashed line) are shown.

where the noise wt ∼ N
(
0,Σ

)
and the matrices At, Bt, Qt ≥ 0 and Rt > 0 are

given and, in this paper, assumed to be time invariant. The objective is to find controls
u0, . . . ,uN−1 that minimize Equation (9). The control signal ut is a linear function of
the state xt, computed for each time step as

ut = Ltxt ,

whereLt is a gain matrix. An analytical optimal solution to minimize the quadratic cost
J exists for the stochastic linear-quadratic regulator [9].

To assess the performance of Bayesian optimization, we consider a stochastic LQR
system with x ∈ R2, u ∈ R4. The stationary gain matrix L ∈ R4×2 defines a set
of 8 free parameters to be determined by Bayesian optimization. We compare our so-
lution with the corresponding analytical solution for the stationary gain matrix L. For
Bayesian optimization, we define the objective function as

f(θ) = log(J/t) , (10)

where the parameters θ to optimize are the stationary gain matrixL ∈ R4×2. To initial-
ize Bayesian optimization, 15 uniformly randomly sampled gain matrices L were used.
Moreover, the initial state x0 ∼ N

(
0, I

)
and the matricesA,B,Q andR were fixed.

We performed 50 independent experiments: For each experiment, we selected the
best parameters found after 200 steps of Bayesian optimization. These parameters were
then evaluated on the stochastic LQR system 100 times. Table 1 shows the mean value
for the objective function and its standard deviation for both the analytical solutions
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Fig. 4: Example of Bayesian optimization for a stochastic LQR. The objective value
function (red curve) and the 95% confidence of the model prediction (blue area) are
shown during the optimization process, additionally, the analytical solution (green
dashed line) is shown as a reference.

and the ones obtained through Bayesian optimization. We conclude that Bayesian opti-
mization finds near-optimal solutions for the stochastic LQR problem. Additionally, as
shown in Figure 3, the average over the 50 experiments of the best parameters find so far
in the optimization process suggests that Bayesian optimization reliably quickly finds a
near-optimal solution. In Figure 4, an example of the minimization process of Bayesian
optimization for the stochastic LQR problem is shown. The objective function is shown
as a function of the number of evaluations. Each evaluation requires to compute the
objective function f in Equation (10) for the current parameters θ = L. The analytical
minimum is shown by the green dashed line, the shaded area shows the 95% confidence
bound of the predicted objective function p(f(θ)) for the parameters selected in the ith
evaluation. The red line shows the actual measured function value f(θ). Initially, the
model was relatively uncertain. With an increasing number of experiments the model
became more certain, and the optimization process converged to the optimal solution.

We conclude that Bayesian optimization can efficiently find gain matrices L that
solve the stochastic LQR problem. Additionally, with Bayesian optimization it is possi-
ble to find stationary solutions for cases with a short time horizonN where no analytical
optimal solution is available: The algebraic Riccati equation is not applicable for lim-
ited time horizonsN , and the discrete time Riccati equation, which can be applied, does
not produce a stationary solution.

3.2 Bayesian Optimization for Trajectory Imitation

In the following, we apply Bayesian optimization to learning gaits for bipedal robots
based on trajectory imitation. Given a reference trajectory, the objective is to find gait
parameters such that the biped’s trajectory closely resembles the desired reference tra-
jectory. Gait trajectories are modeled by rhythmic motor primitives. The parameters of
the rhythmic motor primitives are typically found by imitation learning [22]. In this
paper, we pose this type of trajectory imitation as a Bayesian optimization problem to
find the rhythmic motor primitives parameters.

Rhythmic Motor Primitives (RMPs) are parametrizable dynamical systems that model
and generate rhythmic trajectories [23]. RMPs have been used to model and learn
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bipedal trajectories [22,24] and other rhythmic trajectories, such as drumming [25] and
ball paddling [26]. An RMP models a rhythmic trajectory as a modulated limit cycle

τ2q̈ = αz(βz(g − q)− τ q̇)︸ ︷︷ ︸
Attractor function

+θψr︸︷︷︸
Forcing function

, (11)

where q, q̇ and q̈ can be the joint angles of a robot and their first and second-order
derivatives. The attractor function is a limit cycle with timing constants αz and βz . The
time period of the rhythmic action is τ and can be extracted by frequency analysis of
the demonstrations. The amplitude signal r is used to modulate or scale the amplitude
of the learned trajectory. The parameter g is the baseline of the rhythmic trajectory.
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Fig. 5: Gait imitation using Bayesian opti-
mization. Example of desired trajectory τ
including random noise (blue circle curve)
compared with the trajectory generated by
the RMP with optimized parameters (red
crosses curve). The two curves are almost
identical.

The forcing function modulates the at-
tractor function to generate the desired
trajectory. The forcing function consists
of weight vectors θ and nonlinear basis
function ψ. To model a trajectory using
RMPs, we optimize the weight vectors
that modulate the attractor function, such
that the RMP generates the desired refer-
ence trajectory.

The biped used in simulation is an
under-actuated three link biped (two
links for limbs and one for torso) with
five degree of freedom, two of which are
actuated. The dynamics are given in [27].
The demonstrated trajectories τ for the
limbs were assumed sinusoidal between
+10 ◦ to−10 ◦, such that at each time in-
stant they were equal in magnitude but opposite in sign. The torso’s desired trajectory
was assumed constant, bending forward at +30 ◦. We used RMPs with 5 basis functions
to model each of the trajectories. In this set-up, we optimized only the RMP weight vec-
tors θ in Equation (11). For optimizing the RMP weights we defined the objective

f(θ) = exp
(
‖τ − RMP(θ)‖2

)
, (12)

which penalizes the distance between the trajectory generated by the model RMP(θ)
and a noisy demonstrated trajectory τ . Equation (12) was evaluated using 10 cycles
of the trajectory. Bayesian optimization converged after about 50 evaluations. The re-
sulting trajectory, generated by the optimized RMP parameters, closely resembled the
desired reference trajectory as shown in Figure 5. Using the generated parameters the
biped walked smoothly.

While other approaches (such as least squares and locally weighted regression) exist
to solve trajectory imitation for RMPs, the result presented suggests that also Bayesian
optimization is suitable for trajectory imitation. Given a trajectory, using Bayesian op-
timization we can learn the parameters of an RMP to replicate it.
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Fig. 6: Fox controller is a finite state ma-
chine with four states. Each of the four
joints, left hip (LH), left knee (LK), right
hip (RH) and right knee (RK), can per-
form one of three actions: flexion (Flex),
extension (Ext) or holding (Hold). When
a joint reaches the maximum extension
or flexion, its state is changed to holding.
The transition between the states and the
control signals applied during flexion and
extension are determined by the controller
parameters θ.

Forward

90°

90° 270°

270°

135° 205°
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Fig. 7: Hip and knee angle reference
frames (red dashed) and rotation bounds
(blue solid). The hip joint angles’ range
lies between 135◦ forward and 205◦ back-
ward. The knee angles range from 185◦

when fully extended to 60◦ when flexed
backward.

3.3 Gait Optimization for a Bio-Inspired Biped

In the following set-up, we consider the case where a reference trajectory is no longer
available. Instead, gait parameters for a biped are learned directly to maximize walking
speed and robustness. In this section, we introduce the hardware of the bipedal robot
Fox, see Figure 1, used to evaluate Bayesian gait optimization. Moreover, we present
experimental results of the gait optimization and analyze the quality of the learned gaits.

Hardware and Controller Description To validate our Bayesian gait optimization
approach we used the 2-D dynamic walker Fox, shown in Figure 1. This robot consists
of a trunk, two legs made of rigid segments connected by knee joints to telescopic leg
springs, and two spheric feet with touch sensors [28]. Fox is equipped with low-cost
metal-gear DC motors at both hip and knee joints. Together they drive four actuated
degrees of freedom. Moreover, there are six sensors on the robot: two on the hip joints,
two on the knee joints, and one under each foot. The sensors on the hip and knee joints
return voltage measurements corresponding to angular positions of the leg segments, as
shown in Figure 7. The touch sensors return binary ground contact signals. The walker
is mounted on a boom that enforces planar, circular motion. An additional sensor in the
boom measures the angular position of the walker, i.e., the position of the walker on the
circle.
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The controller of the walker is a finite state machine (FSM), shown in Figure 6, with
four states: two for the swing phases of each leg [29]. These states control the actions
performed by each of the four actuators, which were extension, flexion or holding of
the joint. The transition between states is regulated by thresholds based on the angles
of the joints.

For the optimization process, we identified eight parameters of the controller which
are crucial for the resulting gait. These gait parameters consist of four thresholds values
of the FSM (two for each leg) and the four control signals applied during extension and
flexion (separately for knees and hips). It is important to notice that a set of parameters
that proved to be efficient with some motors could be ineffective with a different set of
motors (e.g., if one or more motors are replaced), due to slightly different mechanical
properties. Therefore, gait optimization techniques are essential for this robot.

Gait Optimization Results We applied Bayesian optimization to find suitable parame-
ters for a walking gait of Fox. The objective function f to be minimized in the Bayesian
optimization was

f(θ) = − 1

N

N∑
i=1

Vi(θ) , (13)

i.e., the negative mean walking velocities Vi over N = 3 experiments with the robot for
a given set of gait parameters θ. Minimizing the performance criterion in Equation (13)
maximizes the walking distance in the given time horizon. Moreover, this criterion does
not only guarantee a fast walking gait but also reliability, since the gait must be robust
to noise and the initial configurations across multiple experiments. Each experiment
was initialized from similar initial configurations and consisted of the first 12 seconds
starting from the moment when the foot of the robot touched the ground. To initialize
Bayesian optimization, three uniformly randomly sampled parameter sets were used.

In Figure 8, the Bayesian optimization process for gait learning is shown. Initially,
the learned GP model could not adequately capture the underlying objective function.
Average velocities below 0.1 m/s typically indicate a fall of the robot in the first step.
Large parts of the first 60 experiments were spent to learn that the control signals ap-
plied on the hips had to be sufficiently high in order to swing the leg forward (i.e.,
against gravity and friction). Once this knowledge was acquired, the produced gaits
were typically capable of walking but were rather unstable and fell after few steps. Af-
ter 80 experiments, the model became more accurate (the function evaluations shown
in red lied within the 95% confidence bound of the prediction), and Bayesian optimiza-
tion found a stable walking gait. The resulting gait7 was evaluated for a longer period
of time, and it proved sufficiently robust to walk continuously for 2 minutes without
falling, while achieving a mean velocity of 0.45 m/s. This mean velocity was close to
the maximum velocity this hardware set-up can achieve [28]. Notably, the parameters
obtained trough Bayesian optimization that correspond to the values of the thresholds
were slightly asymmetrical for the two legs. The superior performances of asymmetri-

7Videos are available at http://www.ias.tu-darmstadt.de/Research/Fox.

http://www.ias.tu-darmstadt.de/Research/Fox
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Fig. 8: Average walking speed during the gait optimization process of Fox using
Bayesian optimization. The objective value function (red curve) and the 95% confi-
dence of the model prediction (blue area) are shown during the optimization process.
Three evaluations are used to initialize Bayesian optimization and are not shown in the
plot. After 80 evaluations, Bayesian optimization finds an optimum corresponding to a
stable walking gait with an average speed of 0.45 m/s.

cal parameters, was already observed during previous hand-tuning of gait parameters
and probably originated from the smaller radius of the walking circle for the inner leg.

From our experience with the biped Fox, hand-tuning the gait parameters can be a
very time-consuming process. Using a (uniform) grid search is infeasible as the number
of required experiments would be N8 where 8 is the number of free parameters that
we consider and N is the resolution along each parameter dimension. In the most basic
case, when we evaluate each parameters only two points, the final number of evalua-
tions would be 28 = 256, which is already twice the number of evaluations Bayesian
optimization needed. Additionally, only a small part of the parameter space leads to
walking gaits and the influence of the parameters is not trivial. Hence, more than two
points for each free parameter would be required. Expert manual parameter search typ-
ically yielded inferior gaits compared to the ones obtained by Bayesian optimization, in
both walking velocity and robustness. Additionally, Bayesian optimization sped up the
parameter search from days to hours.

4 Conclusion

Gait optimization for bipedal locomotion is a time-consuming and complex task. Man-
ual gait optimization is an empirical process, which requires extensive experience and
knowledge. Automatic optimization methods circumvent the need for expert knowl-
edge, but might instead require a larger number of robot interactions. In a context such
as bipedal locomotion, where interacting with the robot can be expensive in terms of
wearing out or time, these automatic methods become impractical. In this paper, we
proposed to use Bayesian optimization to alleviate both these issues by automatically
optimizing gaits in only a small number of interactions with the robot.

As a proof of concept, we have shown that Bayesian optimization applied to a
stochastic LQR problem can find near-optimal stationary solutions. Moreover, we have
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demonstrated that Bayesian optimization can be successfully applied for trajectory imi-
tation. Given a desired reference trajectory, Bayesian optimization found parameters for
rhythmic motor primitives that accurately reproduced it. Finally, we applied Bayesian
optimization to gait optimization for a real bio-inspired dynamic bipedal walker. Even
in the presence of severe noise, our approach automatically found good gaits in a small
number of experiments with the bipedal robot. The resulting performance was supe-
rior to manually designed gaits. From a practical perspective, Bayesian optimization
allowed us to find good gait parameters in hours, whereas manual parameter search
required days.

In practice, Bayesian optimization has some limitations. First, Bayesian optimiza-
tion is currently limited to optimizing 10–20 parameters. The reason for this limita-
tion is that model building with high-dimensional parameters spaces but only sparse
data is very challenging. Second, the goodness of the optimization strongly depends
on the quality of the learned model. In future, we will explore Bayesian optimization
for higher-dimensional problems and studies of multiple acquisition functions and im-
provements of the expressiveness of the GP model. Moreover, we will develop a contin-
uation of efficient bipedal gait design, such as the evaluation of various gait performance
criteria (especially robustness) and comparisons of learned gaits with human gaits.
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