
Noname manuscript No.
(will be inserted by the editor)

Probabilistic Inference for Determining Options in
Reinforcement Learning

Christian Daniel · Herke van Hoof · Jan
Peters · Gerhard Neumann

Received: date / Accepted: date

Abstract Tasks that require many sequential decisions or complex solutions are
hard to solve using conventional reinforcement learning algorithms. Based on the
semi Markov decision process setting (SMDP) and the option framework, we pro-
pose a model which aims to alleviate these concerns. Instead of learning a single
monolithic policy, the agent learns a set of simpler sub-policies as well as the ini-
tiation and termination probabilities for each of those sub-policies. While existing
option learning algorithms frequently require manual specification of components
such as the sub-policies, we present an algorithm which infers all relevant compo-
nents of the option framework from data. Furthermore, the proposed approach is
based on parametric option representations and works well in combination with
current policy search methods, which are particularly well suited for continuous
real-world tasks. We present results on SMDPs with discrete as well as continuous
state-action spaces. The results show that the presented algorithm can combine
simple sub-policies to solve complex tasks and can improve learning performance
on simpler tasks.

1 Introduction

Solving tasks which require long decision sequences or complex policies is an im-
portant challenge in reinforcement learning (RL). The option framework [38]
is a promising approach to simplify the complexity of such tasks. In the option
framework, a reinforcement learning (RL) agent can choose between actions and
macro-actions, which are carried out over multiple time steps [28, 38].

C. Daniel 1,2 · H. van Hoof1 · J. Peters1,3 · G. Neumann1

E-mail: Christian.Daniel@de.bosch.com

1 Technische Universität Darmstadt
Hochschulstrasse 10, 64289 Darmstadt, Germany

2 Bosch Corporate Research, Cognitive Systems
Robert-Bosch-Campus 1, 71272 Renningen, Germany

3 Max-Planck-Institut für Intelligente Systeme
Speemannstraße 38, 72076 Tübingen, Germany

2 Christian Daniel et al.

Using these macro-actions, the agent has to make less decisions to solve a task.
Furthermore, even if macro-actions are based on simple policies, the combination
of multiple macro-actions can represent more complex solutions than the simple
policies would allow for on their own. For example, if a given task requires a
nonlinear policy, a combination of multiple linear sub-policies might still be able
to solve this task. Such an automated decomposition of complex solutions can
simplify the learning problem in many domains.

Based on the SMDP setting [30], the option framework [37] incorporates such
macro actions. An option consists of a sub-policy, an initiation set and a ter-
mination probability. After an option is initiated, actions are generated by the
sub-policy until the option is terminated and a new option is activated. While
the option framework has received considerable attention [28, 38, 8], to date most
algorithms either require the manual specification of the activation policies or sub-
policies. Algorithms for autonomous option discovery typically depend on discrete
state-action spaces [20, 18, 34] with exceptions such as the work of Konidaris et
al. [14]. Furthermore, many existing algorithms first explore a given MDP and
learn suitable options afterwards [22, 33]. Hence, they are not aimed at leveraging
the efficiency of options in the initial stages of learning but rather aim at transfer-
ring the options to new tasks. These approaches are powerful in scenarios where
options can be transferred to similar tasks in the future. In contrast, the approach
suggested in this paper aims at directly learning suitable options for the problem
at hand while also being applicable in continuous state-action spaces.

In continuous state-action spaces, policy search (PS) methods which optimize
parametrized policies have been shown to learn efficiently in simulated and real
world tasks [24, 13]. Thus, the compatibility of the proposed option discovery
framework with PS methods such as PoWER [13] and REPS [29] is an important
goal of this paper. In the discrete setting, the framework can equally be combined
with a wide range of methods such as as Q-Learning [41] and LSPI [16]. Further-
more, many complex tasks can be solved through combinations of simple behavior
patterns. The proposed framework can combine multiple simple sub-policies to
achieve complex behavior if a single sub-policy would be insufficient to solve the
task. These simpler sub-policies are easier to learn which can improve the overall
learning speed.

To arrive at a general framework which works in discrete and continuous set-
tings and requires minimal prior knowledge, we propose a probabilistic formulation
of the option framework where all components are represented by distributions.
To learn these options from data, we propose a probabilistic inference algorithm
based on the expectation maximization algorithm [2] to determine the options’
components. The resulting algorithm offers three key benefits

1. It infers a data-driven segmentation of the state-space to learn the initialization
and termination probability for each option.

2. It is applicable to discrete as well as continuous state-action spaces.
3. It outperforms monolithic algorithms on discrete tasks and can solve complex

continuous tasks by combining simpler sub-policies.

Together, these contributions allow for learning of options from data with minimal
prior knowledge.

Probabilistic Inference for Determining Options in Reinforcement Learning 3

1.1 Problem Statement

We consider the option framework within the MDP setting with states s ∈ S,
actions a ∈ A, option indices o ∈ O, and termination events b ∈ B. Every option
consists of a sub-policy π(a|s, o) and a termination policy π(b|s, ō), where b encodes
a binary termination event and ō is the index of the previously active option.
Furthermore, one global activation policy π(o|s) governs the activation of options
following a termination event. This activation policy π(o|s) replaces the initiation
set used in classical algorithms and defines a probability of initiating an option in
a given state. A new option can only be activated if the previously active option
ō is terminated. Thus, the agent uses the same option for multiple time steps if it
is not terminated. The option transition model is given as

p(o|s, b, ō) =

{
π(o|s) if b = 1,

δo=ō if b = 0,
(1)

and ensures that option ō remains active until a termination event occurs. After
each termination, a new option will be sampled according to π(o|s).

In Section 2, we show how to learn a hierarchical policy defined by the options
given a set of demonstrated trajectories, i.e., how to solve the imitation learning
problem. We formulate the option framework as a graphical model where the index
of the executed option is treated as latent variable. Subsequently, we show how
an EM algorithm can be used to infer the parameters of the option components.
In Section 3 we extend the imitation learning solution to allow for reinforcement
learning, i.e., for iteratively improving the hierarchical policy such that it maxi-
mizes a reward function.

2 Learning Options From Data

The goal of this paper is to determine sub-policies, termination policies and the
activation policy from data with minimal prior knowledge. All option components
are represented by parametrized distributions, governed by the parameter vec-
tor θ = {θA, θO, θB}. The individual components are given as binary classifiers
for the termination policies for each option π(b|s, o = i; θiB), one global multi-
class classifier for the activation policies π(o|s; θO) and the individual sub-policies
π(a|s, o = i; θiA). We use the notation π(·) to denote option components, which
we will ultimately aim to learn and p(·) for all other distributions. Our goal is
to estimate the set of parameters θ = {θA, θO, θB}, which explain one or more
demonstrated trajectories τ = {τ1, . . . , τT } with τt = {st,at}. Crucially, the ob-
servations τ do not contain the option indices o nor the termination events b but
only states s and actions a. Both, the option index and the termination events
are latent variables. While the proposed method learns all option components
from data, it requires a manual selection of the total number of desired options.
Future work could replace this requirement by, for example, sampling the number
of options through a Dirichlet process.

For this Section, we ignore the optimality of the resulting trajectories and focus
on the imitation learning problem, i.e., how to recover hierarchical policies from
trajectory observations. We propose a probabilistic option framework, where all

4 Christian Daniel et al.

bt otot-1 bt+1

t+1t+1

ot+1

tats asa

B O

A

t-1 t t+1

t-1

Fig. 1: The graphical model of the proposed framework. The termination policy
π(b|s, o) decides whether to keep executing the previously active option or to
terminate its execution. After a termination event, the activation policy π(o|s)
samples a new option and the sub-policy π(a|s, o) samples an action. Arrows
from st,at to st+1 are not shown to reduce clutter as we do not aim to model
the transition probability distribution. Shaded nodes indicate observed variables,
while clear nodes indicate the hidden variables. The model parameters θB , θO, θA
are shown in rounded square boxes.

option components are represented as distributions. We can then recover distribu-
tions over the latent variables using probabilistic inference techniques.

2.1 The Graphical Model for Options

To apply these probabilistic inference techniques, we need to specify how the vari-
ables in our model interact with each other. Figure 1 shows a graphical model of
the proposed setting and the resulting hierarchical policy can be given as

π(a|s, ō; θ) =
∑
o∈O

∑
b∈B

π(b|s, ō; θB)π(o|s, b, ō; θO)π(a|s, o; θA). (2)

The graphical model in Fig 1 shows that the following operations occur in every
time step. First, the termination policy π(b|s, ō; θB) samples a termination event
b. According to Equation (1) the previously active option ō remains active if no
termination occurs. Otherwise, the activation policy π(o|s; θO) samples a new
option index o based on the current state s. Finally, the sub-policy π(a|s, o; θA)
samples an action a based on the state s.

2.2 Expectation Maximization for Options

The graphical model for the option framework is a special case of a hidden Markov
model (HMM). The Baum-Welch algorithm [2] is an EM algorithm for estimating
the parameters of a HMM. We will now state the Baum-Welch algorithm for our
special case of the option model, where we consider the special case of a single
trajectory for improved clarity. The extension to multiple trajectories, however, is
straightforward.

Probabilistic Inference for Determining Options in Reinforcement Learning 5

In our graphical model, the latent variables {o1:T , b1:T } are given by trajec-
tories of the option index and the termination event. EM algorithms optimize a
lower-bound of the marginal log-likelihood

log p(τ |θ) ≥
∑

o1:T ,b1:T

p(o1:T , b1:T |τ, θold) log p(o1:T , b1:T , τ |θ) = Q(θ, θold). (3)

The lower-bound is maximized iteratively. In the expectation (E-) Step, we com-
pute the posterior probabilities of the latent variables using our current estimate
of the parameters θold. In the maximization (M-) Step, we maximize Q(θ, θold)
w.r.t θ to obtain a new estimate of the parameter vector. As the lower-bound is
tighter after every E-Step, the EM algorithm is guaranteed to converge to a local
maximum of the marginal log-likelihood.

As we are dealing with time series, we can leverage the structure of the trajec-
tory distribution

p(o1:T , b2:T , τ |θ) = π(o1|s1; θO)π(a1|o1, s1; θA) (4)

T−1∏
t=1

π(bt+1|st+1, ot; θB)π(ot+1|st+1, bt+1, θO)π(at+1|st+1, ot+1; θA)p(st+1|at, st).

After substituting Eq. (4) into Eq. (3) and rearranging terms, the lower bound
decomposes in a sum over the time steps, i.e.,

Q(θ, θold) =

T−1∑
t=1

∑
ot

∑
bt+1

p(ot, bt+1|τ ; θold) log π(bt+1|st+1, ot; θB)

+
T∑
t=1

∑
ot

p(ot|τ ; θold) log π(at|st, ot; θA),

+
T∑
t=1

∑
ot

p(ot, bt = 1|τ ; θold) log π(ot|st; θO). (5)

The posterior probabilities p(ot, bt+1|τ ; θold), p(ot|τ ; θold) and p(ot, bt = 1|τ ; θold)
can be recovered from two posterior belief distributions

ξt(ot:t+1, bt:t+1) = p(ot:t+1, bt:t+1|τ ; θold), (6)

and

γt(ot, bt) = p(ot, bt|τ ; θold). (7)

Consequently, we need to infer only the posteriors γt and ξt in the E-Step, and
not the probability p(o1:T , b1:T |τ) of a whole trajectory.

6 Christian Daniel et al.

2.2.1 Expectation Step.

During the expectation step, the responsibilities

γt(ot, bt) = z−1
t αt(ot, bt)βt(ot, bt), (8)

and

ξt(ot:t+1, bt:t+1)=z−1
t αt(ot, bt)βt+1(ot+1, bt+1)

p(at+1, ot+1, bt+1|st+1, ot; θ
old), (9)

can be determined using forward messages αt(ot, bt) and backward messages βt(ot, bt),
where zt is the normalization constant of γt(ot, bt). Given the option model, the
forward messages

αt(ot, bt) = p(a1:t, ot, bt|s1:t; θ
old)

can be computed recursively by

αt(ot, bt) =
∑
ot−1

∑
bt−1

αt−1(ot−1, bt−1)p(at, bt, ot|st, ot−1; θold), (10)

with α1(o1, b1) = p(a1, b1, o1|s1; θold). Based on these forward messages, the back-
ward messages

βt(ot, bt) = p(at+1:T , |st+1:T , bt, ot; θ
old) (11)

are computed recursively by

βt−1(ot−1, bt−1) =
∑
ot

∑
bt

βt(ot, bt)p(at, bt, ot|st, ot−1, bt−1; θold), (12)

with βT (oT , bT) = 1.

2.2.2 Maximization Step.

Given the distributions over latent variables and the observed state-action samples,
the parameters θ can be determined by maximizing Equation (5). Since Q(θ, θold)
is decoupled, independent optimization can be performed for the sub-policies, ter-
mination policies and the activation policy.

Termination Policies. For optimizing the termination models, we have to consider
the first term of the lower bound which is given by

QiB(θB , θ
old) =

∑
t

∑
bt+1

p(ot = i, bt+1|τ ; θold) log π(bt+1|st+1, ot; θB) (13)

for each time step t and a single option ot = i. This term can be rewritten as

QiB(θB , θ
old) =

∑
t

wB,i(t)
(
tB,i(t) log p(bt+1 = 1|ot = i; θB)+

(
1− tB,i(t)

)
log
(
1− p(bt+1 = 1|ot = i; θB)

))
, (14)

Probabilistic Inference for Determining Options in Reinforcement Learning 7

where wB,i(t) is a weight and tB,i(t) defines the target probability of the termi-
nation event. Equation (14) resembles a weighted cost function for logistic regres-
sion [3] where the weights are given by

wB,i(t) = p(ot = i|τ ; θold) =
∑
bt

γ(ot = i, bt).

The target probability of the termination event is given by

tB,i(t)= p(bt+1 = 1|ot = i, τ ; θold)=

∑
ot+1,bt

ξt(ot = i, ot+1, bt, bt+1 = 1)

p(ot = i|τ ; θold)
.

Using these target probabilities and weights, standard techniques can be used to
fit, for example, a sigmoidal classifier for each termination policy [3].

Activation Policy. The case of the activation policy π(o|s; θO) follows the argu-
ment of the termination policies. Similarly to the termination policies, we consider
the relevant term of the lower bound

QO(θO, θ
old) =

T∑
t=1

∑
ot

p(ot, bt = 1|τ ; θold) log π(ot|st; θO), (15)

to extract weights

wO(t) = p(bt=1|τ ; θold) =
∑
o

γt(ot, bt),

and target probabilities

tO(t) = p(ot|τ, bt=1; θold) =
γt(ot, bt)∑
o γt(ot, bt)

.

While there exists an individual termination policy for each option, in our im-
plementation, only a single global activation policy governs the initialization of
all options. Thus, only one multi-class classifier has to be learned. Here, having
one global classifier is a design decision and other alternatives are feasible. Given
the weighted target probabilities of the activation policy, standard methods can
be used to fit a multi-class classifier [3].

Sub-Policies. Finally, the sub-policies have to be fit. The relevant terms of the
lower bound are given by

QA(θA, θ
old) =

T∑
t=1

∑
ot

p(ot|τ ; θold) log π(at|st, ot; θA), (16)

such that the weights are given by

wA,i(t) = p(ot = i|τ ; θold) =
∑
bt

γt(ot = i, bt).

Here, it is worth noticing that the weights for the sub-policies are identical to
the weights of the termination policies. However, the target values are different.
For the sub-policies the target values are given directly by the observed actions
at, given the observed states st. Given the weighted state-action pairs, stochastic
policies, such as linear Gaussian policies, can be fit to the data.

8 Christian Daniel et al.

Feature Representations of the State. The above derivations are given in their most
general form, where each option component depends directly on the state s. In
practice, it may often be beneficial to train the individual components on a feature
transformation φ(s) of the state. Such features might, for example, be polynomial
expansion of the state variable or a kernelized representation. When using feature
representations, different representations can be chosen for the individual option
components.

3 Probabilistic Reinforcement Learning for Option Discovery

The results in the previous section allow us to recover a hierarchical policy from
state-action observations, i.e., to perform imitation learning with hierarchical poli-
cies. In this section, we extend these results to allow for reinforcement learning.
Using the hierarchical policy, the agent aims to maximize the expected reward

J(π) = Eπ
∞∑
t=0

γtr(st,at), (17)

where γ is the discount factor. We will show how probabilistic inference based
methods can be combined with EM algorithm of Section 2 to learn a reward
maximizing hierarchical policy.

3.1 Probabilistic Reinforcement Learning Algorithms

There exist several algorithms which use probabilistic inference techniques for com-
puting the policy update in reinforcement learning [7, 39, 13, 29]. More formally,
they either re-weight state-action trajectories or state-action pairs according to
the estimated quality of the state-action pair and, subsequently, use a weighted
maximum likelihood estimate to obtain the parameters of a new policy π∗.

A common approach is to use an exponential transformation of the advantage
function A(s,a) = Q(s,a)− V (s), where Q(si,ai) is the Q-function and V (si) is
the value function, to reweight the state-action distribution [29, 5]. The resulting
desired state-action distribution p(s,a) is then given by

p(s,a) ∝ q(s,a) exp

(
Q(s,a)− V (s)

η

)
,

where q(s,a) is the sampling distribution which is typically obtained by sam-
pling from the old policy π̃(a|s). The parameter η is a temperature parameter
that is either optimized by the algorithm [29, 5] or manually set [39, 13]. A
new parametrized policy π∗ can then be obtained by minimizing the expected
Kulback-Leibler divergence between the re-weighted policy update p(a|s) and the

Probabilistic Inference for Determining Options in Reinforcement Learning 9

new parametric policy π∗ [40], i.e.,

π∗ = argminπEp(s) [KL (p(a|s)||π(a|s))]

= argmaxπ

∫
p(s,a) log π(a|s) ds da+ const

= argmaxπ

∫
q(s,a) exp

(
Q(s,a)− V (s)

η

)
log π(a|s) ds da+ const

≈ argmaxπ
∑

(si,ai)∼q(s,a)

w(si,ai) log π(ai|si), (18)

where

w(si,ai) = exp

(
Q(si,ai)− V (si)

η

)
defines a weighting for each state action pair. It can now be easily seen that
Equation 18 is equivalent to a weighted maximum likelihood estimate for the
policy π∗. Specifically, we could use standard maximum likelihood techniques
to fit, for example, a linear Gaussian policy to the observed state-action sam-
ples {si,ai}, reweighted by the the weights w(si,ai), which would minimize the
Kullback-Leibler divergence in Eq. (18).

We will employ different RL algorithms in the continuous and discrete set-
ting to compute these weightings. For the continuous experiments, we will use
the HiREPs [5] algorithm. While other algorithms are equally feasible [39, 13, 29],
HiREPS is able to actively separate sub-policies if options are available by ensuring
that different sub-policies generate distinct behaviors in similar states. Ensuring
such versatility of the sub-policies is achieved by constraining the entropy of re-
sponsibilities for each option, i.e.,

H
(
p(a|s, o)

)
> κ, (19)

where κ is manually set. Furthermore, HiREPS limits the KL divergence of state-
action distributions induced by policy updates such that

KL
(
p(s,a)||q(s,a)

)
< ε, (20)

where ε is equally set manually. Values for κ and ε are usually set close to 1.
For discrete environments, we can equally employ standard reinforcement learn-

ing techniques to obtain the Q-function Q(s,a) and value function V (s). In our
experiments, we employed standard Q-learning [41] and LSPI [16] to obtain those
quantities. In the discrete case, the temperature parameter η was set to 1.

3.2 Combining EM and Probabilistic Reinforcement Learning

As we have seen, the only difference between imitation learning and probabilis-
tic reinforcement learning algorithms is the use of a weighted maximum likeli-
hood (ML) estimate instead of a standard ML estimate. We can now combine the
expectation maximization algorithm for discovering parametrized options with
probabilistic reinforcement learning algorithms by weighting each time step in the
maximization step of the EM algorithm.

10 Christian Daniel et al.

Since the reinforcement learning weights wt = w(st,at) are independent of
all latent variables, the derivations in Section 2 remain largely unaffected. The
integration of the reinforcement learning weights affects only the maximization
step. In the M-Step, all sample weights for the individual option components ob-
tained by the EM algorithm are multiplied by the RL weights. Thus, we obtain
the following combined weights of each sample

w̃B,j(t) = wt p(ot = j|τ ; θold),

w̃O(t) = wt p(bt=1|τ ; θold),

w̃A,j(t) = wt p(ot = j|τ ; θold).

Since the RL weightings only depend on the observed variables, we fortunately
do not have to devise a new RL algorithm but can rely on a wide range of existing
methods to provide the RL weights wt. Here, the weights wt could alternatively
be obtained through other means, in non-RL settings. However, since we are inter-
ested in solving a reinforcement learning problem, we refer to them as RL weights.
Thus, the proposed framework acts as an interface between existing RL algorithms
and the policy updates. While traditional methods use the RL weights wt to per-
form, for example, a maximum likelihood update of a monolithic policy π(a|s),
the proposed method estimates all elements of the option framework by fitting the
hierarchical policy to the weighted state-action samples.

The information flow of the proposed algorithm is shown in Table 1.

4 Related Work

Options as temporally extended macro-actions were introduced by Sutton et al.
[38]. While previous research leveraged the power of temporal abstraction [11,
28, 38], such efforts did not improve the sub-policies themselves. Improving the
sub-policies based on the observed state-action-reward sequences is known as intra-
option learning. Intra-option learning is a consequence of having Markov options
and allows for updating all options that are consistent with an experience. While
it is a desired property of option learning methods, it is not realized by all existing
methods. Sutton et al. [37] showed that making use of intra-option learning can
drastically improve the overall learning speed. Yet, the algorithms presented by
Sutton et al. [37] relied on hand coded options and were presented in the discrete
setting.

Options are also used in many hierarchical RL approaches, where they either
extend the action space or are directly extended to sub-tasks, where the overall
problem is broken up into potentially simpler sub-problems. Dietterich [8] proposed
the MAXQ framework which uses several layers of such sub-tasks. However, the
structure of these sub-tasks needs to be either specified by the user [8], or they rely
on the availability of a successful trajectory [21]. Barto et al. [1] rely on artificial
curiosity to define the reward signal of individual sub-tasks, where the agent aims
to maximize its knowledge of the environment to solve new tasks quicker. This
approach relies on salient events which effectively define the sub-tasks.

Stolle and Precup [35] first learn a flat solution to the task at hand and,
subsequently, use state visitation statistics to build the option’s initiation and
termination sets. Mann and Mannor [18] apply the options framework to value
iteration and show that it can speed up convergence.

Probabilistic Inference for Determining Options in Reinforcement Learning 11

Input: Number of sub-policies O, number of iterations L, number of episodes per iteration
M , reinforcement learner fRL(s,a, r).

Initialize π(a|s, o; θold
A),π(o|s; θold

O) and π(b|s, ō; θold
B).

for l← 1 to L (# iterations)
Collect samples
for i← 1 to M (# episodes)

Sample initial state si,t from environment.

Sample b ∼ π(b|s, ō; θold
B)

if b = 1

Sample option o ∼ π(o|s; θold
O),

Sample action a ∼ π(a|s, o; θold
A).

Observe reward ri,t(ai,t, si,t) and
next state si,t+1.

Compute Sample Weights:
w̃(s,a)← fRL(s,a, r) .

Calculate Lower Bound:
Compute Messages:

αt(ot, bt)← p(a1:t, ot, bt|s1:t; θ
old)

βt(ot, bt)← p(at+1:T , |st+1:T , bt, ot; θ
old)

Compute responsibilities:

γt(ot, bt) ← αt(ot, bt)βt(ot, bt)z
−1
t

ξt(ot:t+1, bt:t+1)← αt(ot, bt)βt+1(ot+1, bt+1)

p(at+1, ot+1, bt+1|st+1, ot; θ
old)z−1

t
Compute weights wB,o, wA,o, and wO and
target values tB,o and tG .

Update Policy:
with weights, target values and state-action pairs.

Output: Policies π∗(a|s, o), π∗(o|s) and π∗(b|s, o).
Table 1: Learning options from experience. Termination events, options and actions are sam-
pled from from the current policies. Subsequently, the distribution over latent variables is
computed and weights fRL are proposed by the RL algorithm The next policies are deter-
mined according to the update equations in the method section.

Option discovery approaches often aim to identify so called bottleneck states,
i.e., states the agent has to pass pass through on its way from start to goal. McGov-
ern and Barto proposed to formulate this intuition as a multiple-instance learning
problem and solve it using a diverse density method [19]. Other approaches aim
to find such bottleneck states using graph theoretic algorithms. The Q-Cut [22]
and L-Cut [33] build transition graphs of the MDP and solve a min cut problem
to find bottleneck states. Silver and Ciosek [32] assume a known MDP model to
propose an option model composition framework, which can be used for planning
while discovering new options. Niekum and Barto [25] present a method to cluster
subgoals discovered by existing subgoal discovery methods to find skills that gen-
eralize across tasks. In the presented paper, we do not assume knowledge of the
underlying MDP and, further, present a framework which is also suitable for the
continuous setting.

In continuous state-action settings, several sub-task based approaches have
been proposed. Ghavamzadeh and Mahadevan [10] proposed the use of a policy
gradient method to learn subtasks while the selection of the sub-tasks is realized
through Q-Learning. Morimoto and Doya [23] proposed to learn how to reach
specific joint configurations of a robot as sub-tasks, such that these options can
later be combined to learn more complicated tasks. In both approaches, the sub-

12 Christian Daniel et al.

tasks have to be pre-specified by the user. Wingate et al. [42] use policy priors to
encode desired effects like temporal correlation. Levy and Shimkin [17] propose
to extend the state space by the option index, which allows for the use of policy
gradient methods. In our proposed method, this option index is a latent variable
which is inferred from data. The use of a latent variable allows our methods to
update all options with all relevant data points. Konidaris and Barto [14] use the
option framework to learn chaining of skills. This approach requires that the agent
can reach the goal state before constructing the series of options leading to the
goal state.

A concept similar to the options framework has been widely adapted in the
field of robot learning. There, temporal abstraction is achieved through the use
of movement primitives [27, 4]. Instead of learning policies over state-torque map-
pings to control robots, the agent learns parameters of a trajectory generator
[13, 12]. Based on a Beta-Process Autoregressive HMM proposed by Fox et al. [9],
Niekum et al. [26] proposed a method to segment demonstrated trajectories into a
sequence of primitives, addressing the imitation learning problem. Ranchod et al.
[31] extend the work of Fox et al. [9] to allow skill discovery in the inverse reinforce-
ment learning setting. There, the task is to recover reward functions which lead to
a skill based solution of a task. Compared to the proposed method, methods based
on or similar to the Beta-Process Autoregressive HMM allow to extract skills or
segments without a priori knowledge of the total number of skills. However, such
methods are computationally expensive and have not been shown to work in the
loop together with reinforcement learning methods.

Sequencing multiple primitives can be viewed as an approximation to the op-
tions framework for robot learning and allows more challenging tasks to be solved
[36, 6]. Robot learning approaches often benefit from substantial task knowledge
in the form of task demonstrations. Furthermore, a key benefit of these methods
is the ability to offer a simple parametrization of complex behaviors, which also
inspired the proposed approach. However, existing robot learning methods usually
do not allow for intra-option learning from the complete trajectory data [5] and
the individual primitives are generally of fixed duration [13].

5 Evaluation

The evaluation of the proposed framework is separated in two parts. We first eval-
uated the imitation learning capabilities and, subsequently, proceeded to evaluate
different reinforcement learning tasks as well as comparing the proposed methods
to other option learning frameworks.

5.1 Imitation Learning

We started our evaluations with an imitation learning task. The evaluation of
the imitation learning capabilities allowed us to ensure that the foundation of the
proposed framework performs as expected.

For the imitation learning task, we evaluated the underpowered pendulum
swing-up task. In this task, the agent exerted torques on the rotational joint of a
pendulum and had to swing-up the pendulum into the upright position. However,

Probabilistic Inference for Determining Options in Reinforcement Learning 13

−2 0 2

−20

0

20

Angle

A
n
g
u
la
r
V
el
o
ci
ty

Original Policy

Observed Trajectories

−200

0

200

T
o
rq
u
es

O1

O2

O3

(a) NoisyHandCodedPolicy (b) Single Trajectory

Fig. 2: a) The hand coded policy consists of three bands, where the center band realizes a
stabilizing controller and the outer bands accelerate the pendulum to enable a swing-up. b)
One trajectory sample generated with the hand coded policy.

O2
O3

O3

−2 0 2

−20

0

20

Angle

A
n
g
u
la
r
V
el
o
ci
ty

Inferred Policy

Observed Trajectories

Reproduced Trajectories

−500

0

500

T
o
rq
u
es

(a) Inferred Policy

0 5 10 15 20

EM Iterations

L
o
g
L
ik
el
ih
o
o
d

Imitation Learning

(b) LogLikelihood

Fig. 3: a) The policy learned through imitation learning. Red circles show the observations and
blue diamonds show trajectories generated using this learned policy. The plot shows that the
learned policy uses only two of three available options. Option 2 realizes the stabilizing policy
and Option 3 realizes the accelerating policy. b) A qualitative plot showing the development
of the log likelihood of the observed data under the learned policy for ten trials. The results
show that convergence is usually reached after about five EM iterations.

the torques were limited such that the agent was not strong enough to perform a
swing-up directly. Instead, the agent had to first perform a pre-swing to build up
sufficient kinetic energy. The pendulum had a length of 0.5m, a mass of 10kg and
a friction coefficient of 0.2Ns/m. The pendulum was internally simulated with a
frequency of 10kHz. The agent controlled the pendulum at a frequency of 33Hz.
The agent could exert at most 30Nm of torque and each episode had 100 time
steps. This continuous task had two state variables, the angle and the velocity of
the pendulum, where we used a periodic representation of the angle.

To generate observations, we provided a hand-coded policy which is shown
in Fig. 2a. This policy was designed to generate noisy actions within ±300Nm.
However, the torques on the system were capped to the torque limit of 30Nm. The

14 Christian Daniel et al.

−2 0 2

−20

0

20

A
n
g
u
la
r
V
el
o
ci
ty

−2 0 2

Angle

Inferred Termination Probabilities

−2 0 2

0.2

0.4

0.6

0.8

1

Fig. 4: Visualization of the Inferred Termination Policies for options one (left) through three
(right). As shown in Fig. 3a, the first option is not used in the final policy and the agent
learned to almost always terminate the first option. The third option learned a symmetric
termination policy which terminates once the pendulum has sufficient energy to be ‘pulled up’
to the upright position. Interestingly, the second option learned a non-symmetric termination
policy, possibly due to the relatively small number (five) of noisy demonstrations.

much larger range of desired torques was chosen to simplify the programming of
the controller. This policy could successfully perform a pendulum swing-up if the
pendulum was initially hanging down with zero velocity. An example trajectory
generated by this hand coded policy is shown in Fig. 2b.

Based on five observed trajectories, we used the proposed framework to learn a
policy with three options. However, the resulting policy, shown in Fig. 3a, learned
to reproduce an effective policy using only two of the three available policies. Gen-
erally, we would not necessarily expect that the options recovered by the proposed
algorithm exactly match the options of the demonstrator. The algorithm only aims
at reproducing the observed behavior but is free to choose the internal structure of
the hierarchical policy. Equally, in the RL case, we would not expect the proposed
algorithm to learn options that are ‘human-like’. Specifically, we would not ex-
pect that a robotic agent would use the same solution decomposition as a human
operator.

Fig. 3a shows that the trajectories generated with this imitated policy closely
resemble the observed trajectories. Fig. 4 shows the inferred termination policies
of the different options. The results show that options will only be terminated once
they are outside of their region of ‘expertise’. Option one has a high termination
probability in most regions, however, Fig. 3a shows that the final policy is actu-
ally not using this option. Fig. 3b shows the development of the log likelihood of
the observed data under the imitated policy. The results show that convergence
typically has been reached after about five iterations of the EM algorithm. In the
imitation learning case, the learned solution is only valid if the system is initiated
in a state which is similar to those states that were previously demonstrated. Out-
side of this region, the imitation learning solution will not be able to successfully
solve the task and a reinforcement learning solution is required. In the proposed
method, the activation policy will learn to initiate sub-policies according to their
responsibility of state-space region. If, for example, the sub-policies are modeled
as Gaussians and have infinite support, they have non-zero responsibility for all
states and could, theoretically, be activated. If, however, a different class of proba-

Probabilistic Inference for Determining Options in Reinforcement Learning 15

bility distributions is more task-appropriate and has limited support, it would not
be activated outside of its support region.

In this task, the activation policy was a soft-max distribution based on a
squared expansion of the state features. The termination policies were represented
by sigmoidal functions based on the same features as the activation policy. The
sub-policies, however, were represented as linear Gaussian policies based directly
on the state features.

5.2 Reinforcement Learning

We present results on three discrete state-action tasks as well as one continuous
state-action task. In the discrete state action task settings, we compare to two ex-
isting option learning algorithms, namely the Q-Cut algorithm [22] as well as the
L-Cut algorithm [34]. Both algorithms aim to find bottleneck states by solving a
max flow/ min cut problem on the transition graph. After identifying such bottle-
neck states, options are generated which lead to these states. The main difference
between these two algorithms is that Q-Cut aims to solve a global graph parti-
tioning problem, while L-Cut aims to solve a local problem, based on transitions
observed in one episode. The main difference to the proposed algorithm is that we
do not aim to identify bottleneck states, but instead aim to automatically learn
a decomposition of the problem that is suitable to the class of available option
components.

For all evaluations, we tested each setting ten times and report mean and
standard deviation of the results.

5.2.1 Discrete Tasks.

The discrete environments were given by three different gridworlds as shown in
Figures 5b, 5d and 5f. The first world shown in Fig 5b represents the two rooms
scenario [19], where the agent has to find a doorway to travel between two rooms.
In the second world shown in Fig 5b, the agent has to traverse two elongated
corridors before entering a big room in which the target is located. Finally, in the
third world show in Fig. 5f no traditional bottleneck states appear, but the agent
has to navigate around two obstacles. Furthermore, in this world optimal paths
can lead around either side of the first obstacle.

In all experiments, the agent started in the lower level corner of the respec-
tive grid and had to traverse the grid while avoiding two obstacles to reach the
goal at the opposite end. The actions available to the agent were going up, left,
right and down. Transitions were successful with a probability of 0.8. Unsuccess-
ful transitions had a uniform probability of ending up in any of the neighboring
cells. The transition to each accessible field but the goal field generated a reward
signal of −1. After reaching the goal, the agent received a reward of +1 for every
remaining step of the episode, where each episode had a length of 500 time steps.
If the agent tried to walk into an obstacle or to leave the field, it remained in the
current position.

For the discrete tasks we used a tabular feature encoding for the flat policy. For
the hierarchical policy, we used the tabular features for the activation and termi-

16 Christian Daniel et al.

0 1 2 3

·105

0

200

400

#Transitions

S
te
p
s
to

G
o
a
l

Two Rooms

Ours-LSPI

Ours-QLearning

LCut

QCut

(a) Two Rooms Comparison

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10
Start

Obstacle

Goal

(b) Two Rooms Setup

0 0.5 1 1.5 2

·105

0

200

400

#Transitions

S
te
p
s
to

G
o
a
l

Corridor World

(c) Corridor World Comparison

0 1 2 3 4 5 6 7 8 9 10
0
1
2
3
4
5
6
7
8
9

10

(d) Corridor World Setup

0 2 4

·105

0

200

400

#Transitions

S
te
p
s
to

G
o
a
l

Obstacle World

(e) Obstacle World Comparison

0 5 10 15 20
0

5

10

15

20

(f) Obstacle World Setup

Fig. 5: b,d,f) Setups of the discrete world task. The agent has to cross fields of varying sizes
while avoiding the obstacles on its way to the goal. Outlined triangles show trajectories learned
using the proposed approach in combination with LSPI. The colors differentiate between active
options. Since the transition dynamics were stochastic, the transitions did not always follow the
selected actions. a,c,e) Learning performances of the different algorithms on the discrete world
tasks. The results show that the L-Cut and Q-Cut generally had similar performance, where Q-
Cut outperformed L-Cut in the first two worlds. However, in the relatively open obstacle world,
L-Cut outperformed Q-Cut since Q-Cut was not able to find suitable bottleneck states. In all
worlds the proposed approach outperformed both L-Cut and Q-Cut when using Q-Learning.
Changing the RL algorithm to LSPI further increased the learning performance.

Probabilistic Inference for Determining Options in Reinforcement Learning 17

0 200 400

−200

−100

0

100

#Episodes

A
v
er
a
g
e
R
et
u
rn

Influence of Available Options

2 Options

4 Options

8 Options

20 Options

(a) Obstacle World #Options

0 20 40 60 80 100

−500

0

500

#Episodes

A
v
er
a
g
e
R
et
u
rn

Influence of EM Iterations

EM-Iters: 1

EM-Iters: 2

EM-Iters: 3

(b) Obstacle World #EM Iterations

Fig. 6: a) Evaluation of the proposed algorithm on a gridworld task. With an increased
number of options the performance of the algorithm also increases. With eight options, optimal
asymptotic performance is reached, however adding even more options further improves the
learning speed. b)The number of EM iterations in the RL case does not have a large effect on
the performance. More EM iterations improve the performance only marginally.

0 100 200 300 400

−100

0

100

Episodes

A
v
er
a
g
e
R
et
u
rn

Gridworld Termination Prior

priorTerminate: 0.1

priorTerminate: 0.3

priorTerminate: 0.5

priorTerminate: 0.7

priorTerminate: 1

(a) Obstacle World Termination Prior

0 20 40 60 80 100

−500

0

500

#Episodes

A
v
er
a
g
e
R
et
u
rn

Effect of Termination Events

With Terminations

Without Terminations

(b) Obstacle World Terminations

Fig. 7: a) The effect of the termination prior (initialization of termination policies) using eight
options. Changing the initial value of the termination probabilities within a reasonable range
around 0.5 has only a small effect on the learning process. Very low values will lead to decreased
performance. b) The effect of completely disabling terminations. Without terminations, the
performance of the algorithm decreases.

nation policies. The sub-policies were state-independent multinomial distributions
over the four actions.

In the discrete setting, we present results of two different RL learning methods,
Q-Learning [41] and LSPI [16], in combination with the proposed framework and
converted the resulting Q functions into RL weights as described in Section 3.
However, especially when using Q-Learning, the resulting policy updates can be
very different and may de-stabilize the learning process. To stabilize the learning
process, we use a learning rate α for our policy updates such that

π̃(a|s, ō) = απ(a|s, ō) + (1− α)π̂(a|s, ō),

18 Christian Daniel et al.

where π(a|s, ō) is the resulting policy of the EM update and π̂(a|s, ō) is the pre-
vious policy. Alpha was set to 0.1 in the experiments. Alternatively, the learning
rate of Q-Learning itself could be decreased. However the proposed scheme yields
better performance.

Comparison To Existing Methods. In the comparative results to related work we
follow the therein established method of reporting ‘steps to goal’ as qualitative
measure. In the remaining evaluations of our algorithm we report the average
return, which may in some cases be more informative since our reward functions
also punish ‘falling off’ the board. The results in Fig. 5 show that in all experiments
the proposed framework learned solutions faster than both the Q-Cut as well as
the L-Cut methods. Comparing the use of Q-Learning and LSPI in the proposed
framework, the results show that LSPI leads to convergence considerably faster
than Q-Learning. Since the structure of the individual action policies learned by
the proposed approach was given simply as a distribution over the four possible
actions, the converged sub-policies usually always select only one action. This
simplicity of the sub-policies is a key factor to accelerate the overall learning speed.
While we do not present results of comparisons to primitive-based methods such as,
for example, using Q-Learning directly, both of the methods that we did compare
to have shown to outperform Q-Learning. Thus, we compared to such primitive-
based methods indirectly. In our experience, both Q-Cut and L-Cut outperform
Q-Learning when not using experience replay. However, in our internal evaluations
on the tasks presented in this paper, Q-Learning with experience replay resulted
in performance levels similar to Q-Cut and L-Cut, but worse than the proposed
method.

Influence of Available Options. After comparing to existing methods, we further
evaluated the properties of the proposed framework. All remaining evaluations
were performed using LSPI in the obstacle world. In our experience, these results
were representative of both using Q-Learning as well as performing them in differ-
ent tasks. Fig. 6a shows the influence of available options. In theory this task can
be solved optimally with only two options, where one will always go right and one
will always go up. However, the results show that making more options available
to the algorithm improved both asymptotic performance as well as speed of con-
vergence. Adding more than 20 options did not further increase the performance.

Influence of EM Iterations. The proposed EM style of computing policy updates
can be costly and, generally, requires several iterations as also seen in the imi-
tation learning case in Fig. 3b. However, in the RL setting, subsequent policies
are expected to be similar and, thus, a small number of EM iterations should be
sufficient. The results in Fig. 6b show that this intuition holds true in our evalua-
tions. In our experience, performing even more EM iterations did not change the
result. However, when using very few rollouts per iteration, the effect of perform-
ing multiple EM iterations can be more pronounced. However, even when a small
number of EM iterations is sufficient, introducing these additional computations
results in a noticeable computational overhead in continuous task. Here, especially
the number of options is an important factor influencing the runtime of the EM
algorithm. In our experience, the addition of the EM algorithm would lead to ap-
proximately twice the overall computational requirements. However, this factor is

Probabilistic Inference for Determining Options in Reinforcement Learning 19

0 500 1,000

350

400

450

Episodes

A
v
er
a
g
e
R
et
u
rn

Underpowered Pendulum Swingup

Flat Policy

2 Options

3 Options

4 Options

5 Options

(a) Pendulum Number of Options

−2 0 2
−20

−10

0

10

20

Position

V
el
o
ci
ty

Hierarchical Policy

T
o
rq
u
es

−2 0 2
−20

−10

0

10

20

O2

O3

O1

O4

O3O3

O2O2

(b) Hierarchical Policy

Fig. 8: (a) Evaluation of the proposed algorithm on the underpowered pendulum swingup
task. A flat linear policy is insufficient to solve the task, only the combination of multiple
linear policies is sufficiently expressive. Using two or three options, the task can be solved but
stabilization depends on bang-bang control. With four or more options, the policy is sufficiently
expressive to incorporate high torque signals for the swing-up and finely tuned sub-policies for
stabilization. (b) Visualization of the hierarchical policy composed of four options. Options
2 and 3 learned a bang-bang control scheme and options 1 and 4 learned to stabilize the
pendulum around the upright position. (Best viewed in color).

of course highly dependent on the RL method used. In the discrete tasks that we
evaluated, the computational overhead due to the EM iterations was negligible.

Influence of Termination Events. Finally, we evaluated the influence of the prob-
abilistic terminations. In the proposed framework, the sub-policies have to be ini-
tialized and, thus, a prior for the termination policies has to be set. Fig. 7a shows
the effect of changing this prior. The results show that the proposed framework is
robust to wide range of these initializations.

We also evaluated the effect of disabling the probabilistic termination sub-
policies. In this case, the algorithm could still learn multiple options but no ter-
mination policies. Thus, each option could not be active for more than one time
step but terminated after every step. The results in Fig. 7b show that learning
without terminations slowed down the convergence speed. In our experience, this
effect was strongly linked to the stochasticity of the transitions. The higher this
stochasticity was, the stronger the benefit of the termination policies became.

5.2.2 Continuous Task.

After evaluating our algorithm on several discrete tasks, we returned to the con-
tinuous pendulum-swingup task described in the imitation learning section of the
results. As before, the task is to swing-up an underpowered pendulum. To solve
this task the agent has to learn to first perform a pre-swing to build up kinetic en-
ergy and then use the momentum to fulfill the task. Furthermore, in the presented
task two solutions are possible, performing the swing-up clock-wise or counter-
clock-wise. To provide a reinforcement learning signal for the continuous task, we
employed the Hierarchical Relative Entropy Policy Search (HiREPS) algorithm [5],

20 Christian Daniel et al.

Pendulum Swingup Trajectory

(a) Trajectory

0 20 40 60 80 100
−2

0

2

4

Timestep

A
n
g
le

Markers Indicate Active Option

(b) Trajectory in state space

Fig. 9: (a) Visualization of swingup trajectory color coded by the currently active option.
The pendulum is initially hanging down with a small rotation. First option 2 performs a pre-
swing and, subsequently, option 3 accelerates the pendulum until options 1 and 4 start the
stabilization process. Around timestep 15, option 4 is active for a short time, but the kinetic
energy at that point is insufficient for a direct swingup. (Best viewed in color).

where we used Fourier basis features as described by Konidaris et al. [15] to repre-
sent the value function. For the value function a feature expansion of the fifth order
was used. For the activation policy as well as the termination policies, a squared
feature expansion was used. The individual sub-policies worked directly on the
state observations, using only an additional constant offset. Thus, the sub-policies
were linear controllers. In the pendulum swing-up task, a single linear controller is
insufficient and, thus, the proposed approach had to combine multiple sub-policies
to achieve the necessary non-linear behavior required for a swing-up.

The results in Figure 8a show that while a single linear policy was insufficient to
solve this task, it could be solved using two options. Adding more options further
improved the resulting hierarchical policy. The visualization of the resulting policy
in Figure 8b shows that with more options, the algorithm learned a control scheme
where options two and three were used to swing up the pendulum, and options one
and four incorporated a linear stabilization scheme around the upright position
of the pendulum. Figure 9a shows a trajectory generated by the resulting policy.
Starting from the bottom, the pendulum was first accelerated by options two and
three. The plot shows that in-between options two and three, option four was active
for a few time steps. However, the kinetic energy at that point was insufficient to
fully swing up the pendulum. After the pendulum almost reached the upright
position around time step 40, the stabilizing options took over control. Since all
option components are stochastic distributions, some option switches still occur
even after the pendulum is stabilized. Since the effect of switching into a different
option in the stable position for a single time step could easily be balanced by
activating the stabilizing option in the next time step, the agent did not have a
strong incentive to learn to avoid such behavior. Letting the algorithm run for
more iterations might further improve this behavior.

5.2.3 Limitations.

While the experiments show that the presented method worked well in the scenar-
ios that were evaluated, we also want to make explicit the assumptions made in

Probabilistic Inference for Determining Options in Reinforcement Learning 21

this paper. Primarily, the proposed method expects that the number of required
options is known a priori. In our experience, this requirement is rather benign in
practice, as the algorithm can be initialized with an excessive amount without de-
terioration in quality of the solution. However, adding more options does increase
the computational requirements. Thus, approaches for automatically generating a
task-appropriate number of options is an important aspect of future work. Fur-
thermore, we introduced a damping factor α = 0.1 on the policy update for the
discrete setting, which we found to be especially important when using Q-Learning
as the underlying RL method. In our experience, the recommended value of α de-
pends on the RL method used as well as the task under consideration. Methods
such as LSPI will generally work well with larger values of α.

6 Conclusion & Future Work

In this paper, we presented a method to estimate the components of the option
framework from data. The results show that the proposed method is able to learn
options in the discrete and continuous setting. In the discrete setting, the algorithm
performs better than two related option-discovery algorithms which are based on
exploiting bottle-neck states. Instead of relying on bottle-neck states, the proposed
algorithm achieves its performance by combining options with simpler sub-policies.

In the continuous setting, the results show that the algorithm is able to solve
a non-linear task using a combination of options with only linear sub-policies. In
this setting, a single linear policy is insufficient for solving the task. Furthermore,
the framework allows for parametrized policies and, thus, state-of-the-art policy
search methods developed for flat policies can be used to learn hierarchical policies.

The presented approach infers the option’s structure, such as the activation
policy and termination policies, from data. However, the number of options still
has to be set a-priori by the practitioner. While the results show that setting
a relatively large number of options typically yields good performance, learning
the number of options is an important aspect of future work. Finally, while the
presented framework estimates the most likely termination policies, finding a way
of enforcing fewer terminations might further improve learning performance.

22 Christian Daniel et al.

References

1. A.G. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning of hierarchi-
cal collections of skills. Proceedings of the International Conference on Developmental
Learning (ICDL), 2004.

2. L. E. Baum. An equality and associated maximization technique in statistical estimation
for probabilistic functions of markov processes. Inequalities, 3:1–8, 1972.

3. Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag New York, 2006.

4. B. Da Silva, G. Konidaris, and A.G. Barto. Learning parameterized skills. In Proceedings
of the International Conference on Machine Learning (ICML), 2012.

5. C. Daniel, G. Neumann, and J. Peters. Hierarchical Relative Entropy Policy Search.
In Proceedings of the International Conference on Artificial Intelligence and Statistics
(AISTATS), 2012.

6. C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Learning Sequential Motor Tasks. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
2013.

7. P. Dayan and G. E. Hinton. Feudal reinforcement learning. In Advances in neural infor-
mation processing systems, pages 271–271. Morgan Kaufmann Publishers, 1993.

8. T. G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function
decomposition. Journal of Artificial Intelligence Research (JAIR), 13:227–303, 2000.

9. E. B. Fox, M. I. Jordan, E. B. Sudderth, and A. S. Willsky. Sharing features among
dynamical systems with beta processes. In Advances in Neural Information Processing
Systems (NIPS), pages 549–557, 2009.

10. M. Ghavamzadeh and S. Mahadevan. Hierarchical Policy Gradient Algorithms. In Pro-
ceedings of the International Conference for Machine Learning (ICML), 2003.

11. L. P. Kaelbling. Hierarchical learning in stochastic domains: Preliminary results. In
Proceedings of the International Conference on Machine Learning (ICML), 1993.

12. S. Kajita, K. Kanehiro, F. andi Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa. Biped Walking Pattern Generation by using Preview Control of Zero-
Moment Point. In Proceedings of the IEEE International Conference of Robotics and
Automation (ICRA), 2003.

13. J. Kober and J. Peters. Policy Search for Motor Primitives in Robotics. Machine Learning,
pages 1–33, 2010.

14. G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems (NIPS), 2009.

15. G. Konidaris, S. Osentoski, and P.s. Thomas. Value function approximation in reinforce-
ment learning using the fourier basis. Conference on Artificial Intelligence (AAAI), 2011.

16. M. Lagoudakis and R. Parr. Least-Squares Policy Iteration. Journal of Machine Learning
Research, 4:1107–1149, December 2003.

17. K. Y. Levy and N. Shimkin. Unified inter and intra options learning using policy gradient
methods. In Recent Advances in Reinforcement Learning, pages 153–164. Springer, New
York City, 2012.

18. T. A. Mann and S. Mannor. Scaling up approximate value iteration with options: Better
policies with fewer iterations. In Proceedings of the International Conference on Machine
Learning (ICML), 2014.

19. A. McGovern and A. G. Barto. International conference on machine learning (icml).
Computer Science Department Faculty Publication Series, page 8, 2001.

20. A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. International Conference on Machine Learning (ICML), page 8,
2001.

21. N. Mehta, S. Ray, P. Tadepalli, and T. G. Dietterich. Automatic discovery and transfer of
MAXQ hierarchies. In Proceedings of the International Conference on Machine Learning
(ICML), 2008.

22. I. Menache, S. Mannor, and N. Shimkin. Q-cut - dynamic discovery of sub-goals in re-
inforcement learning. In Proceedings of the European Conference on Machine Learning
(ECML), 2002.

23. J. Morimoto and K. Doya. Acquisition of stand-up behavior by a real robot using hierar-
chical reinforcement learning. Robotics and Autonomous Systems, 36(1):37–51, 2001.

Probabilistic Inference for Determining Options in Reinforcement Learning 23

24. Andrew Ng and Adam Coates. Autonomous Inverted Helicopter Flight via Reinforcement
Learning. Experimental Robotics IX, 1998.

25. S. Niekum and A. G. Barto. Clustering via dirichlet process mixture models for portable
skill discovery. In Advances in Neural Information Processing Systems (NIPS), 2011.

26. S. Niekum, S. Osentoski, G.D. Konidaris, and A.G. Barto. Learning and generalization
of complex tasks from unstructured demonstrations. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2012.

27. A. Paraschos, C. Daniel, J. Peters, and G Neumann. Probabilistic movement primitives.
In Advances in Neural Information Processing Systems (NIPS), 2013.

28. R. Parr and S. Russell. Reinforcement learning with hierarchies of machines. Advances in
Neural Information Processing Systems (NIPS), 1998.

29. J. Peters, K. Mülling, and Y. Altun. Relative Entropy Policy Search. In Proceedings of
the National Conference on Artificial Intelligence (AAAI), 2010.

30. M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
Wiley, New York, 1994.

31. P. Ranchod, B. Rosman, and G. Konidaris. Nonparametric bayesian reward segmentation
for skill discovery using inverse reinforcement learning. In Intelligent Robots and Systems
(IROS), 2015, pages 471–477. IEEE, 2015.

32. D. Silver and K. Ciosek. Compositional Planning Using Optimal Option Models. In
Proceedings of the International Conference on Machine Learning (ICML), 2012.

33. Ö. Simsek and A. G. Barto. Skill characterization based on betweenness. In Advances in
Neural Information Processing Systems (NIPS), 2008.

34. Ö. Simsek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the International Conference on
Machine Learning (ICML), 2005.

35. M. Stolle and D. Precup. Learning options in reinforcement learning. In Abstraction,
Reformulation, and Approximation, pages 212–223. Springer, New York City, 2002.

36. F. Stulp and S. Schaal. Hierarchical Reinforcement Learning with Movement Primitives. In
Proceedings of the IEEE International Conference on Humanoid Robots (HUMANOIDS),
2012.

37. R. S. Sutton, D. Precup, and S. Singh. Intra-option learning about temporally abstract
actions. In Proccedings of the International Conference on Machine Learning (ICML),
1998.

38. R. S. Sutton, D. Precup, and S. Singh. Between MDPs and Semi-MDPs: A Framework
for Temporal Abstraction in Reinforcement Learning. Artificial Intelligence, 112:181–211,
1999.

39. E.. Theodorou, J. Buchli, and S. Schaal. A generalized path integral control approach to
reinforcement learning. Journal of Machine Learning Research, 11:3137–3181, 2010.

40. H. van Hoof, J. Peters, and G. Neumann. Learning of non-parametric control policies
with high-dimensional state features. In Proceedings of the International Conference on
Artificial Intelligence and Statistics (AISTATS), 2015.

41. Christopher J. C. H. Watkins and Peter Dayan. Q-Learning. Machine Learning, 8(3-4):
279–292, 1992.

42. D. Wingate, N. D. Goodman, D. M Roy, L. P. Kaelbling, and J. B. Tenenbaum. Bayesian
policy search with policy priors. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 2011.

