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Abstract
Many reinforcement learning (RL) tasks, especially in robotics, consist of multiple sub-tasks that
are strongly structured. Such task structures can be exploited by incorporating hierarchical policies
that consist of gating networks and sub-policies. However, this concept has only been partially ex-
plored for real world settings and complete methods, derived from first principles, are needed. Real
world settings are challenging due to large and continuous state-action spaces that are prohibitive
for exhaustive sampling methods. We define the problem of learning sub-policies in continuous
state action spaces as finding a hierarchical policy that is composed of a high-level gating policy to
select the low-level sub-policies for execution by the agent. In order to efficiently share experience
with all sub-policies, also called inter-policy learning, we treat these sub-policies as latent variables
which allows for distribution of the update information between the sub-policies. We present three
different variants of our algorithm, designed to be suitable for a wide variety of real world robot
learning tasks and evaluate our algorithms in two real robot learning scenarios as well as several
simulations and comparisons.
Keywords: Reinforcement Learning, Policy Search, Hierarchical Learning, Robot Learning, Mo-
tor Skill Learning, Robust Learning, Structured Learning, Temporal Correlation, HiREPS, REPS

1. Introduction

Employing robots in unpredictable environments, such as in hospitals, disaster sites or households,
requires robotic agents to autonomously learn new tasks and adapt to new environments. Such
robots will need to acquire new skills through trial and error, also known as reinforcement learn-
ing (Sutton and Barto, 1998), as well as being able to generalize their skills to solve a large variety
of tasks. However, successful implementation of reinforcement learning (RL) methods on real robot
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tasks is challenging for multiple reasons. Most importantly, real robots have high dimensional and
continuous state-action spaces which is difficult to deal with for many RL methods. Furthermore,
evaluations on real robots are resource intensive and, hence, the methods need to be sample efficient.
Methods should also not fully explore the state-action space due to the risk of damaging the robot
or its environment. Finally, real robot RL does not allow resetting of the state to arbitrary initial
conditions as is required for many RL methods.

While presenting additional challenges, robot tasks also offer some advantages over traditional
RL settings as many real world motor tasks are heavily structured. Exploiting the environment’s
structure can drastically simplify the learning problem. First, the solutions of many tasks lie within
a tube of the solution space (Peters and Schaal, 2006), such that learning can be given a head
start by demonstrating a sub-optimal solution. Local RL methods can, subsequently, be used to
improve upon this demonstration. Second, the motor commands for many motor tasks exhibit strong
temporal correlations. Such correlations allow for a hierarchical decomposition of the task into a
sequence of elemental movements, often also referred to movement primitives (Schaal et al., 2003;
Ijspeert and Schaal, 2003), options (Sutton et al., 1999b) or motor templates (Neumann and Peters,
2009). For example, a tennis game can be decomposed into a sequence of single strokes, e.g.,
a backhand strokes, forehand strokes, lobs, volleys and a serve. Finally, many motor tasks can
be solved in multiple, often incompatible, ways. Identifying and representing such solutions as
separate sub-policies to be used by the agent increases the versatility as well as the robustness of the
learned policy. Additionally, it simplifies the use of local learning methods. In this paper, we extend
our work on a robot learning framework (Daniel et al., 2012a,b), (Daniel et al., 2013) that can take
advantage of such structured environments by identifying multiple sub-policies for a given task and
learning to adapt, sequence and combine these sub-policies.

We base our learning algorithm on the Relative Entropy Policy Search (REPS) algorithm (Peters
et al., 2010). In REPS, the exploitation-exploration trade-off is balanced by bounding the loss of
information between policy updates. Such a bound results in a smoother and more stable learning
process that avoids wild exploration of the state action space, as required by the robotics domain. We
extend the REPS algorithm such that we can use sub-policies as building blocks of a hierarchical
policy to exploit the temporal correlations inherent to many tasks. We formulate the problem of
inferring such a hierarchical policy as a latent variable estimation problem, where the index of the
sub-policy that has generated a given action is modeled as a latent variable. The policy update is
now performed in two steps. In the Expectation step, we compute the responsibilities of the latent
variables, i.e., the probabilities that the individual sub-policies have generated the observed state
action pairs. The sub-policies are kept fixed in the E-step. Subsequently, the responsibilities are
used to update the hierarchical policy containing the sub-policies with the REPS algorithm in the
Maximization step. We show that such an Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) improves a lower bound of the original REPS optimization problem and that the lower
bound is tight after each expectation step.

Our algorithm also allows for using prior knowledge to constrain the structure of the estimated
hierarchical policy. For example, we often want the sub-policies to represent individual, distinct
solutions. In many cases, these solutions may be incompatible, i.e., the solution space may not
be convex. Therefore, the set of sub-policies should be separable in the solution space. Adding
a constraint that avoids such an overlap ensures that the policy search algorithm does not average
over multiple modes of the solution space, which may result in a poor performance of the resulting
policy (Neumann, 2011).
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We will discuss different variants of the Hierarchical REPS (HiREPS) approach with increas-
ing complexity. We start our discussion with the contextual, continuous-armed bandit case where
the episode ends after executing all actions belonging to one sub-policy. sub-policies are selected
according to a gating policy π(o|s) and define a distribution over the action given the state for a
predetermined time horizon. Subsequently, we show how to extend this framework to the finite
horizon setting, where the agent sequences multiple sub-policies to achieve his goal. Finally, we
present the infinite horizon formulation of HiREPS, where the agent keeps executing sub-policies
until either the task is fulfilled or a random reset occurs.

1.1 Related Work

Policy search (PS) is a class of RL methods which have been shown to fulfill the requirements of
robot RL and is widely used in real robot learning. In applications, PS methods are often preferred
over other traditional RL methods such as value-based methods, since they do not require the explicit
estimation of a value function. Estimating a value function often requires the agent to fill the state
and action space with samples, which is infeasible in robot RL. Therefore, most PS methods are
commonly local methods and improve only locally on an initial, sub-optimal solution.

Particular properties of PS methods have been highlighted by several papers. Bagnell and
Schneider (2003) show their strong convergence guarantees, Sutton et al. (1999a) discuss their ap-
plication in combination with function approximators and Stone (2001) improved the possibilities
of incorporating domain knowledge. Backing up the theoretical strength of policy search methods,
several authors have demonstrated impressive application results. Bagnell and Schneider (2001) use
policy search methods to autonomously control helicopters, Rosenstein (2001) learns robot weight-
lifting, Kohl and Stone (2003) demonstrates learning of a quadrupedal walking behavior and Kober
et al. (2008) successfully learn the ball in a cup (also known as Kendama) game. Endo et al. (2008)
show the application of PS methods on a biped locomotion and Kormushev et al. (2010) PS to learn
how to flip a pan-cake with a robot arm.

Important advances in the area of policy search methods have included pair-wise policy com-
parisons (Strens, 2003), policy gradient methods (Baxter and Bartlett, 2001; Sutton et al., 1999a)
and natural policy gradient methods (Bagnell and Schneider, 2003; Peters and Schaal, 2006). More
recently, Kober et al. (2008) presented probabilistic policy search approaches based on expectation
maximization. Using EM like methods for reinforcement learning was initially pioneered by Dayan
and Hinton (1997). Toussaint et al. (2006) showed how an EM like method can be used not only
for MDPs but also partially observed MDPs. Deisenroth (2010) developed a model-based policy
search method based on probabilistic modeling. Theodorou et al. (2010) showed a policy improve-
ment algorithm inspired by path integrals and Peters et al. (2010) proposed a PS method that limits
the loss of information between policy updates. Recently, Levine and Abbeel (2014) and Schul-
man et al. (2015) have shown how policy search methods can be combined with neural networks to
learn complicated tasks in high dimensional domains. As these results show, current methods are
well suited to learn single tasks in isolation. Nevertheless, they frequently fail to scale up to more
complex motor tasks as they cannot exploit the hierarchical structure inherent to many tasks.

A common way of representing a hierarchical task structure is to use the concept of options.
Options are temporally extended actions and were first introduced by Sutton et al. (1999a) as a
way of reducing task complexity. They consist of three components, an action-selection policy,
an initiation set that defines in which states an option can be initiated and a termination condition
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which defines the probability of terminating an option in a given state. Typically, options extend the
action space of the agent, i.e., the agent can still take the primitive actions which are active for one
time step, and, in addition, the agent can choose the options as temporally extended actions. The
use of options can significantly improve the learning speed as the options can be used to connect
parts of the state space that are otherwise only reachable with a long action sequence (Sutton et al.,
1999a). Consequently, the state space becomes easier to explore and, hence, the learning problem
gets simplified. Formally, learning with options can be formulated as learning a Semi-Markov
Decision Process (SMDP). SMDPs are not fully Markovian, as the selected option does not only
depend on the current state, but also on the active option in the previous time step.

Unlike in the simplest setup where the set of options is given and fixed during learning, it is often
also desirable to learn useful options for a given task. In this case, the data efficiency for learning the
options can be significantly improved by leveraging all information collected during the execution
of one option, also denoted as intra-option learning (Sutton et al., 1998). The state transitions
generated by a certain option can also be used to update other options in an off-policy learning
setup. Levy and Shimkin (2012) proposed a different view of intra-option learning by augmenting
the state space with the option-termination probability. In that augmented state space, the option
selection policy and termination condition may be represented by orthogonal basis functions and is
optimized individually by standard policy gradient methods.

Options are also used in many hierarchical RL approaches where they are often extended to sub-
tasks. A sub-task also contains an individual reward function such that we can learn the policy of the
subtask. Dietterich (2000) proposed the MAXQ framework that uses several layers of subtasks. In
contrast to the traditional option framework, the policies of the subtasks can also choose to execute a
new subtask instead of just a primitive action. The subtasks are given by an individual reward func-
tion per subtask, a termination condition and a set of actions or other subtasks that can be executed.
The policy of the subtasks is learned by the MAXQ-Q learning algorithm that learns the optimal
value function for each subtask. However, the structure of the subtasks, i.e., the individual reward
functions, must be specified by the user. How to define such subtasks for complex robot motor
tasks or even learn the structure from data remains an open question. Additionally, value function
methods are less applicable in continuous state action domains and not well suited for robotic tasks.
Barto et al. (2004) used an ‘intrinsic motivation’ mechanism to define the reward signal of each
subtask. A naturally curious agent is exploring its environment and whenever it discovers an unex-
pected change in its environment, it creates a new subtask in its internal representation that tries to
reproduce this unexpected event. Hence, the agent incrementally builds up a set of skills that help
the agent to explore its environment more efficiently. After this exploration phase, new tasks can be
learned more efficiently by using the learned set of skills.

The notion of subtasks has also been used in continuous environments. Morimoto and Doya
(2001) proposed a hierarchical RL setup where the subtask is defined by reaching a specific joint
configuration of the robot. In this work, the set of subtasks, i.e., desired joint configurations, is given
and the robot learns to reach the individual joint configurations as well as to choose a reachable next
desired joint configuration. Ghavamzadeh and Mahadevan (2003) used a policy gradient approach
to learn the policies for the individual subtasks while a value based method is used to select the
next subtask. Policy gradient approaches work well in continuous environments but often converge
slowly. In both approaches, the subtasks have been specified by the user and could not be modified
by the learning algorithm. Hence, both approaches are limited to simpler robots where appropriate
subtasks can be hand-tuned. In Konidaris and Barto (2009), the structure of the subtasks is also
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learned by discovering the initiation set, the termination set and the option policy for new options.
The options are then be chained together to solve the overall task. However, the option discovery
algorithm is to date still limited to rather simple agents, such as a ball navigating in a maze.

The approach which is probably most closely related to ours is Bayesian policy search with
hierarchical policy priors (Wingate et al., 2011). In this approach, the probabilistic formulation of
policy search (Kober et al., 2008) is used and a hierarchical Bayesian prior is used for the policy
parameters. Similarly to our approach, the activations of options are modeled as latent variables in
their model that are estimated by MCMC sampling methods. While the use of hierarchical Bayesian
priors is a promising idea, the approach is restricted to directly learn on the trajectory data instead of
state actions pairs, which might lead to inefficient policy updates. In addition, the approach cannot
be extended straightforwardly to complex high dimensional robots as the structure of the options is
limited.

Another approach to simplifying the hierarchical RL problem in continuous action spaces is to
restrict the space of possible trajectories by using parametrized policies, often also called movement
primitives (Schaal et al., 2003), motion templates (Neumann and Peters, 2009) or parametrized
skills (Da Silva et al., 2012). Learning the option policy now reduces to learning an appropriate
parameter vector for the option. In Neumann and Peters (2009), the agent learned to sequence such
parametrized policies, i.e., it learned the correct order of the parametrized policy as well as the
single parameter vectors of the policy. In total, the agent has to learn fewer decisions as opposed to
directly learning with primitive actions. However, learning is often also more difficult as the effect
of an inaccurate decision can be much more costly than for primitive actions. While Neumann and
Peters (2009) used value function approximation to evaluate the quality of the chosen parameter
vectors of the options, Stulp and Schaal (2012) directly used the reward to come as evaluation. This
reward to come was subsequently used by the Policy Improvement by Path Integrals (PI2) algorithm
(Theodorou et al., 2010) to learn the option policy.

Parametrized options or skills were also used for skill transfer, i.e., generalizing the parameters
of the options to new tasks (Kupcsik et al., 2014). Thomas and Barto (2012) showed how the
structure of motor primitives for continuous state action tasks can be learned and later be used to
accelerate learning of a similar task. Da Silva et al. (2012) as well as Kober et al. (2010b) generalized
parametrized skills for reasonably similar tasks drawn from a task distribution. They do not only
use the concept of an option for a single policy, but instead allow each option to adapt to a subset of
the task space by smoothly changing the parameter vector of the option. Hence, individual options
are responsible for areas of the task space that are locally smooth. Multiple options together span
discontinuous areas of the task space. The proposed framework consists of a pipeline of machine
learning tools to identify the individual smooth lower dimensional manifolds as well as to generalize
and improve the policy parameters. Alternative approaches for task generalization of parametrized
options include learning a mixture of experts (Mülling et al., 2013) and Gaussian processes (Ude
et al., 2010). The method presented in this paper is applicable to both primitive actions as well as
movement primitives.

In the remainder of the paper we will explain how to obtain at a hierarchical formulation of
the relative entropy policy search (REPS) method. We treat the problem of learning a hierarchical
policy as a latent variable estimation problem. For the policy update, we assume that we can only
observe the resulting actions of the old policy. The underlying hierarchy is unknown and, therefore,
unobserved. The resulting algorithm is closely related to expectation maximization (EM) for latent
variable models. We prove that such EM mechanisms can be incorporated in the information theo-
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retic regularization of the REPS algorithm in order to get a lower bound of the original optimization
problem which can, subsequently, be optimized in closed form. Furthermore, we introduce an
additional constraint into the optimization problem that bounds the uncertainty of identifying a sub-
policy given an action. As a consequence, the sub-policies are separated in the action space, which
results in finding more versatile solutions and also alleviates the problem of averaging over several
modes in the solution space, which is present in many current policy search algorithms as shown
in Neumann (2011). In the evaluation section, we compare our algorithm to other state-of-the-art
methods on benchmark problems and evaluate our algorithm on real world robotic applications.

2. Background on Information Theoretic Policy Search

As our algorithm is based on information theoretic policy search (Peters et al., 2010; Daniel et al.,
2012a), we will quickly review the most relevant concepts of information theoretic policy search in
the non-hierarchical learning setup. In policy search, an agent tries to maximize the expected return
by adapting a parametrized policy. Formally, in a Markov decision process setting, the agent is in a
state s ∈ S and chooses an action a ∈ A to execute. Given state s and action a, the agent transfers
to a next state s′ in accordance with a transition probability distribution p(s′|s,a) = Pass′ . For each
transition, the agent also receives a reward r ∈ R that depends on s and a, which we also write
as Rsa. The agent chooses actions a in the current state s according to a policy π(a|s). We will
consider an average reward setting where the goal of the agent is to find an optimal policy that will
maximize the average reward

J(π) = E[Rsa] =

∫∫
µπ(s)π(a|s)Rsa ds da, (1)

where µπ(s) is the state visit distribution of policy π.
Information-theoretic policy search was introduced with the relative entropy policy search

(REPS) algorithm (Peters et al., 2010). We will start by defining a constrained optimization problem
for solving the discussed average reward reinforcement learning setting and, subsequently, add an
information-theoretic constraint to make the optimization problem feasible.

Constraints for the State Distribution. The objective of our optimization problem is given in
Equation (1) which is supposed to be maximized with respect to µπ(s)π(a|s). The agent can not
freely choose the state distribution µπ(s) of the policy, since µπ(s) needs to comply with the policy
π(a|s) and the system dynamics Pass′ , i.e.,

∀s′ : µπ(s′) =

∫
s,a

µπ(s)π(a|s)Pass′ ds da.

However, direct matching of the state probabilities is not feasible in continuous state spaces. Instead,
we introduce state features φ(s) and only match the feature averages∫

φ(s′)µπ(s′) ds′ =

∫∫∫
µπ(s)π(a|s)Pass′φ(s′) ds da ds′. (2)

For example, if we use all linear and squared terms of s in our feature vector φ(s), we match
the mean and the variance under both distributions. Additionally, we require the joint probability
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Figure 1: Schematic sketch of the behavior of policy updates. Solid lines show the contours of
a quadratic reward function. The orange shaded area delimited by the dashed lines illustrates the
area within two times the standard deviation of the sampling policy and the orange dots represent
samples from the original policy. The darker shaded area delimited by the dotted line indicates the
the possible policy update. The policy update needs to be balanced, such that it converges quickly
to the local optimum, while not converging too fast to miss it. Such a balance is chosen by the user
by specifying the relative entropy bound. Due to the relative entropy bound, the step size of the
update is invariant to the task, the reward function or the parametrization of the policy. a) Learning
curves corresponding to illustrations b-c. b) The update is not greedy enough, the policy will take
too long to converge. c) The update is too greedy, the policy will not find the optimal solution. d)
The update balances exploration and exploitation such that the policy quickly converges to a local
optimum.

p(s,a) = µπ(s)π(a|s) to define a probability distribution, i.e., its integral has to evaluate to

1 =

∫∫
µπ(s)π(a|s) ds da. (3)

While the optimization criterion given in Equation (1) with constraints in Equations (2,3) describes
the general average reward reinforcement learning problem, it does not consider that we have typ-
ically estimated Rsa and Pass′ from a limited amount of data. Hence, we do not want the agent
to ‘jump’ to the optimum of this problem but instead balance exploitation versus exploration. In
REPS (Peters et al., 2010), this exploitation-exploration trade off is balanced by the insight that the
loss of information in the policy updates should be limited. Independently, such regularization was
also suggested and motivated from different perspectives by other authors. Still and Precup (2011)
showed that the policy update with maximum information gain results in a similar solution and Azar
et al. (2012) motivated a similar update as punishing the distance between the controlled system and
the uncontrolled one. Finally, Rawlik et al. (2012) showed that even previous probabilistic policy
search approaches are closely related. All these arguments have lead to similar solutions despite
their different motivations and the resulting algorithms work well on benchmark problems.

Staying Close to the Data by Information Theoretic Constraints. As motivated by Peters et al.
(2010), one key feature of effective PS methods is to limit the loss of information between policy
updates, i.e., while we want to maximize the average reward of the new policy, we also want to stay
close to the ‘data’, i.e., the state action distribution q(s,a) of the old policy. Staying close to the
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data can be achieved by limiting the Kullback-Leibler (KL) divergence between the observed data
q(s,a) and the next policy, i.e.,

ε ≥ DKL (µπ(s)π(a|s) || q(s,a)) =

∫∫
µπ(s)π(a|s) log

µ(s)π(a|s)
q(s,a)

ds da. (4)

Maximizing Equation (1) under the constraints of Equations (2, 3, 4) yields the optimization prob-
lem that defines the REPS method (Peters et al., 2010) which is the basis for our hierarchical
policy search algorithm. The REPS optimization problem allows for a closed form solution for
µπ(s)π(a|s) that can be derived by the method of Lagrangian multipliers. It is given by

µπ(s)π(a|s) ∝ q(s,a) exp

(
Rsa + E

[
θTφ(s′)|s,a

]
− θTφ(s)

η

)
, (5)

where η and θ are Lagrangian parameters that are obtained by optimizing the dual function

g(η,θ) =η log

∫∫
q(s,a) exp

(Rsa + E[V (s′)]− V (s)

η

)
ds da+ ηε, (6)

of the original optimization problem. If we interpret the term V (s) = θTφ(s) as value function
linear in the parameters θ, the termRsa + E [V (s′)]− V (s) can be viewed as advantage function.
The Lagrangian parameter η is a scaling factor for the advantage. It becomes the temperature of the
soft-max distribution defined in Equation (5) such that the KL-bound from Equation (4) is met.

Sample-Based REPS. As the reward function and the old distribution q(s,a) can have an arbi-
trary structure, the integral contained in the dual function can typically not be obtained in closed
form. However, the reward function can typically be evaluated on samples from q(s,a) and these
samples can be used to approximate the dual function g. As a result, we can only evaluate the
distribution µπ(s)π(a|s) on a finite set of samples si and ai with i = 1 . . . N .

In order to sample new actions a in the next iteration of the algorithm, we need to find a para-
metric representation π̃(a|s;β) of the policy that approximates the distribution π(ai|si), where β
denotes the parameter vector of the policy. To do so, we aim to minimize the expected Kullback-
Leibler divergence between π(ai|si) and the next parametric policy π̃(a|s;β), i.e.,

arg min
β

∫
p(s)DKL (π(a|s) ||π̃(a|s;β) ) ds

= arg min
β

∫
p(s)

∫
π(a|s) log

π(a|s)
π̃(a|s;β)

da ds

≈ arg max
β

∑
i

p(si,ai)

q(si,ai)
log π̃(ai|si;β) + const

= arg max
β

∑
i

wi log π̃(ai|si;β), (7)

with

wi = exp

(
r(si,ai) + E

[
θTφ(s′)

∣∣ si,ai]− θTφ(si)

η

)
. (8)
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Since the available samples are drawn from the distribution q(s,a), and not p(s,a), we need to per-
form importance sampling and divide by the sampling distribution q(s,a). Equation (7) is equiv-
alent to computing the weighted maximum likelihood estimator for β. In Section 4.3 we discuss
how to compute the expectation over next states E

[
θTφ(s′)

∣∣ si,ai].
Illustration of Information Theoretic Policy Search. We illustrate the concept of information
theoretic policy search on a two-dimensional toy problem with a quadratic reward function in Fig-
ure 1(a). Here, the algorithm typically starts with a broad explorative policy. Given a set of samples
generated using this policy, we update the policy such that the exploitation-exploration trade-off is
well balanced. This trade-off is chosen by the relative entropy bound of the REPS algorithm. Due to
the relative entropy bound, the step-size of the policy update is largely independent of the task, the
reward function, or the representation of the policy. Changing the policy only by a small step leads
to further exploration as we stay close to the old exploration policy as illustrated in Figure 1(b).
In contrast, a large KL divergence for the policy update greedily jumps to the best observed sam-
ples with very little further exploration, see Figure 1(c). This trade-off has to be chosen by the
user by specifying the bound ε for the KL-divergence. Typically, we want to achieve a moderate
exploration-exploitation trade-off as illustrated in Figure 1(d).

3. Learning Hierarchical Policies for Real Robot Reinforcement Learning

In this section, we will extend the REPS optimization problem to the hierarchical case, where the
agent learns a hierarchical policy that is based on both a gating network and sub-policies. In order
to obtain an efficient update rule for the hierarchical policy, we will rely on several insights detailed
below. We will use these insights to derive three different learning algorithms that can be employed
in different scenarios.

Hierarchical Policies. More complex tasks often require multiple sub-policies, such as a forehand
stroke, backhand stroke, smash or lob in tennis. Different sub-policies are appropriate in different
states of the environment. In order to model a policy consisting of several sub-policies, we use a
hierarchical policy π(a|s) which consists of a set of sub-policies π(a|s, o) and a gating network
π(o|s) that selects the currently active sub-policy. Thus, the hierarchical policy can be represented
as

π(a|s) =
∑
o∈O

π(o|s)π(a|s, o). (9)

In order to determine the action a in state s, we first sample a sub-policy from the gating network
π(o|s) and, subsequently, sample the action a from the specific sub-policy π(a|s, o). The benefit
of representing multiple solutions has already been made evident in recent research results (Calinon
et al., 2013; Daniel et al., 2012a).

Options as Latent Variables. Sharing of experience between sub-policies, known as inter-option
learning, is an important property of a hierarchical learning algorithm for data-efficient learning. To
realize inter-option learning, we treat the problem of learning sub-policies as a latent variable prob-
lem, i.e., we assume to observe only state-action samples {s,a}, but not the index of the generating
sub-policy o. Instead, we infer the latent structure of the hierarchical policy that has generated the
re-weighted samples. Expectation-maximization based methods can be used to iteratively estimate
the responsibilities p(o|s,a) of the sub-policies for each sample {s,a} and, subsequently, update
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Figure 2: Schematic sketch
of the behavior of REPS, and
HiREPS with (κ̃ = 0.8) and
without (κ̃ = ∞) bounding
of the gating’s entropy. A
two-dimensional, bi-modal re-
ward function is shown in the con-
tour plot lines. Two sub-policies
are shown in dashed and dot-
ted outlines respectively (outlines
show 95% confidence bound-
aries). REPS and naive HiREPS
average over both modes. Con-
strained HiREPS separates the
sub-policies and is therefore able
to find both modes.

the sub-policies where the influence of each sample {s,a} for the update of the sub-policy π(a|s, o)
is weighted by the responsibility p(oj |s,a). Hence, the generated experience can be shared between
the sub-policies. In Section 3.1, we integrate such an expectation-maximization mechanism into the
REPS algorithm.

Learning Versatile Solutions. Being able to represent multiple solutions does not force the learn-
ing algorithm to find different solutions. Thus, without further constraints, we are likely to find mul-
tiple sub-policies that concentrate on the same mode of the solution space. Versatility of sub-policies
can be achieved if the sub-policies are clearly separated in the state-action space. To enforce this
separation of the sub-policies, we limit the expected change in the entropy H of the responsibilities
of the sub-policies, i.e.,

κ ≥ Es,a[H
(
p(o|s,a)

)
]

Eq(s,a)[H
(
q(o|s,a)

)
]

=

∫∫
µπ(s)π(a|s)∑o∈O p(o|s,a) log p(o|s,a) ds da∫∫
q(s,a)

∑
o∈O q(o|s,a) log q(o|s,a) ds da

, (10)

where Eq(s,a)[H
(
q(o|s,a)

)
] is a constant and we write κ̃ = Eq(s,a)[H

(
q(o|s,a)

)
]κ to simplify the

notation, such that the constraint reads

κ̃ ≥ Es,a[H
(
p(o|s,a)

)
] = −

∫∫
µπ(s)π(a|s)

∑
o∈O

p(o|s,a) log p(o|s,a) ds da. (11)

A high entropy of the responsibility p(o|s,a) indicates a high uncertainty in deciding which sub-
policy has generated the state action pair, which implies that several sub-policies do overlap in the
parameter space. By limiting the entropy, such overlapping is avoided and we ensure that different
sub-policies concentrate on different and separate solutions.

We will discuss three settings for Hierarchical REPS (HiREPS). In the episodic setup, a single
sub-policy is executed per episode, but the algorithm can choose between multiple sub-policies and
adapt these to the current context. Subsequently, we will show how to sequence a fixed number of
sub-policies with a finite horizon MDP formulation. Finally, we will use a infinite horizon MDP
formulation to learn how to sequence a possibly infinite number of skills.
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Illustration of Hierarchical Learning. We illustrate the advantage of learning with multiple sub-
policies on a toy task with a two dimensional action space and a bi-modal reward function (see
Figure 2). In this task, the reward function consists of two attractors g1, g2 and a reward scaling
matrix Σr, such that the reward function is given by

r(a) = −min
i

(
(a− gi)Σr(a− gi)T

)
,

and has two local optima at g1 and g2, respectively. The illustration in Figure 2 demonstrates two
key insights into PS methods. First, many standard policy search methods such as Policy Improve-
ment with Path Integrals (Theodorou et al., 2010) or EM-based policy search methods (Kober et al.,
2008) will be attracted to multiple optima in a multi-modal solution space and, therefore, converge
slowly due to averaging over several modes (Neumann, 2011). Second, we would like to represent
a versatile solution space by learning all modes of the reward function. Figure 2 shows a qualitative
comparison of HiREPS to the standard REPS algorithm which can only use one sub-policy and to
the naive implementation of HiREPS that does not bound the sub-policies’ entropy (i.e., κ̃ = ∞).
The single sub-policy algorithm tries to average over both modes and, takes a long time to con-
verge. The naive HiREPS exhibits similar behavior. Both sub-policies are attracted by both modes.
In most cases, both sub-policies will find the same mode and convergence will be slower. Thus,
only introducing hierarchical policies without additional constraints cannot take full advantage of
the increased flexibility. When limiting the entropy, however, the sub-policies quickly separate and
concentrate on the two individual modes, allowing for a fast improvement of the policy without
getting stuck between two modes.

3.1 Episodic Selection of Sub-Policies

We start our discussion of HiREPS with the continuous multi-armed contextual bandit setting. In
this setting, the agent is presented with an initial state according to an initial state distribution p0(s)
and has to select a sub-policy o as well as an action a according to this state. In this setting, an
episode consists of executing exactly one sub-policy, afterwards the episode is terminated and the
environment is reset. Thus, no state transition is modeled, as the whole episode consists of only one
step, i.e., executing one sub-policy until it terminates.

Contextual Optimization of the Policy. While we do not need to use the state distribution con-
straint from REPS, as we do not have to incorporate state transitions, the agent can still not freely
choose its state action distribution p(s,a) = µπ(s)π(a|s) as the initial state distribution p0(s)
is specified by the learning task. Hence, the estimated state distribution µπ(s) has to satisfy
µπ(s) = p0(s) for all s. As this requirement would result in an infinite number of constraints,
we need to resort to matching feature averages, i.e.,

φ̂ =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)φ(s) ds da (12)

where φ̂ denotes the average observed feature vector for the initial state

φ̂ =

∫∫
q(s,a)φ(s) ds da. (13)

This constraint enforces that the learned state action distribution does not concentrate only on con-
texts where the task is easy to achieve, but considers all contexts sampled from the initial state
distribution.

11
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Resulting Optimization Problem. For the resulting optimization problem, we combine the in-
sights from the previous section on hierarchical policies with the contextual episodic learning con-
straint in Eq. (12). The episodic learning problem of multiple sub-policies is then given as

max
π,µ

J(π) = max
π,µ

∑∫∫
µπ(s)π(o|s)π(a|s, o)Rsa ds da,

s. t. ε ≥ DKL (µπ(s)π(a|s, o)π(o|s)|| q(s,a)p(o|s,a)) ,

κ̃ ≥ Es,a
[
H
(
p(o|s,a)

)]
,

φ̂ =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)φ(s) ds da,

1 =
∑∫∫

µπ(s)π(o|s)π(a|s, o)dsda. (14)

In this optimization problem, the responsibilities

p(o|s,a) =
µπ(s)π(a|s, o)π(o|s)∑
o∈O µ

π(s)π(a|s, o)π(o|s) ,

occur inside the log-term of the KL-divergence. As the responsibilities contain a sum in
the denominator, we also obtain the sum inside the log-term, preventing us from solving for
µπ(s)π(a|s, o)π(o|s) in closed form. However, we can resort to an iterative, expectation maxi-
mization (EM) update strategy shown in Daniel et al. (2012a). In the expectation step, we first fix
the sub-policies and compute the responsibilities p̃(o|s,a). In the maximization step, we replace
p(o|s,a) in our optimization problem with the pre-computed responsibilities p̃(o|s,a) and, there-
fore, neglect that the responsibilities will change once we change the sub-policies. In Appendix A
we show that the EM-step maximizes a lower bound of the original optimization problem. We use
this iterative update strategy in all further algorithms. The adapted optimization problem reads as

max
π,µ

J(π) = max
π,µ

Es,a,o [Rsa] ,

s. t. ε ≥ DKL (µπ(s)π(a|s, o)π(o|s)|| q(s,a)p̃(o|s,a)) ,

κ̃ ≥ −
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) log p̃(o|s,a) ds da,

φ̂ =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)φ(s) ds da,

1 =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) ds da. (15)

The above optimization problem can be solved by the method of Lagrange multipliers. The La-
grangian also allows for a closed form of µπ(s)π(a|s, o)π(o|s) which is given as

µπ(s)π(a|s, o)π(o|s) ∝ q(s,a)p̃(o|s,a)
1+ ξ

η exp

(Rsa − V (s)

η

)
, (16)
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which depends on the Lagrangian parameters ξ, η and θ with V (s) = θTφ(s). The Lagrangian
parameter ξ is associated to the overlapping constraint in Eq. (11). In this update equation, the
parameter ξ controls the spreading of the sub-policies. A higher value of ξ will force the sub-policies
to spread further apart and reduce overlapping of sub-policies as the influence of state-action pairs
with a high entropy of p(o|s,a) is weakened. The derivation of the dual formulation is given in the
appendix.

In Table 3, we give the algorithmic form of episodic HiREPS. The new parametric policy
π̃(a|s, o;βo) has to be computed from the weighted samples by performing a weighted maximum
likelihood estimate for the single sub-policy parameters βo as well as the parameter vector for the
gating policy. In HiREPS, we obtain a weight

wi,o = p̃(o|si,ai)1+
ξ
η exp

(Rsa − V (si)

η

)
,

for each sample and each sub-policy. These weights can be used to update the policy. HiREPS does
not make any assumptions on the form of the policy and many different representations could be
considered. In Section 4, we show the details of the policy model we chose to implement for the
evaluations, i.e., a soft-max gating policy and linear Gaussian sub-policies.

Since HiREPS does not assume knowledge of which sub-policy generated a sample, it can use
all samples to update all sub-policies, also known as inter-option learning. The weights wi,o are
then used to update the sub-policies π(a|s, o) and the gating policy π(o|s).

3.2 Sequencing of Skills

Many real world tasks require not only one, but multiple sequential interactions. For example, in
a game of tennis, we need to perform several tennis strokes in sequence in order to win the game.
Just learning to return a ball is insufficient to win a game. Instead, the ball has to returned in such a
way that future strokes can lead to situations where the opponent is unable to return the ball. Hence,
tasks like tennis can be learned more efficiently if we learn a sequence of tennis strokes against an
opponent. We will model the skill sequencing case with a limited numberK of sequential decisions.
We will denote the individual action selection problems as stages of the decision problem. Our goal
is to maximize the sum of the expected reward over all stages, i.e.,

J = Ea1:K ,s1:K+1

[
rK+1(sK+1) +

∑K

k=1
rk(sk,ak)

]
=

∫
µπK+1(s)rK+1(s)ds+

∫∫ K∑
k=1

µπk(s)πk(a|s)rk(s,a) ds da, (17)

where µπk(s) are the state distributions at for each decision step. The function rK+1(sK+1) denotes
the final reward for reaching state sK+1 and rk(sk,ak) denotes the reward for executing an action
ak in state sk. In the tennis example, the individual rewards could, for example, describe the energy
efficiency of the movements, while the overall reward signal carries information about winning or
losing the point. The sub-policy is given by

πk(a|s) =
∑
o∈O

πk(o|s)πk(a|s, o). (18)
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Input: Information loss tolerance ε, Entropy tolerance κ̃, Number of sub-policies O, number of
Iterations L, number of episodes per iteration M .
Initialize all π(a|s, o) and π(o|s).
for l = 1 to L . . . # iterations

Collect samples
for i = 1, . . . ,M (# episodes)

Sample initial state s1,i from environment.
Sample action: ai ∼ q(a|si) =

∑
o∈O πold(o|si)πold(a|si, o).

Execute action ai and observe reward r(ai, si).

Compute Responsibilities:
p̃(o|si,ai) = pold(o|si,ai) =

µπold(si)πold(ai|sioi)πold(o|si)∑
o∈O µ

π
old(si)πold(ai|sioi)πold(o|si) for all i.

Minimize the dual function
[θ∗, η∗, ξ∗] = arg min[θ,η,ξ] g (θ, η, ξ).

Policy update:
Compute model distribution

µπ(si)π(ai|sioi)π(o|si) ∝ p̃(o|si,ai)1+ξ∗/η∗ exp
(
Ri−V ∗(si)

η∗

)
.

Estimate policies
π(o|s) and π(a|s, o) for all o = 1 . . . O by weighted ML estimates.

Output: Policies π(a, o|s)

Table 1: Episodic HiREPS. In each iteration the algorithm starts by sampling an sub-policy o from
the gating policy π(a|s) given the initial state s and an action a from π(a|s, o) from the sub-policy.
Subsequently, the action is executed to generate the reward r(s,a). The parameters η, ξ and θ are
determined by minimizing the dual-function g.

Alternatively, we can also share the sub-policies for all decision stages and only make the gating
policy time dependent, i.e.,

πk(a|s) =
∑
o∈O

πk(o|s)π(a|s, o).

This formulation allows for reusing experience between the stages. Whether this property is useful
depends on the task at hand. For example in tennis, the strokes at the decision stages can taken from
the same skill library1. In the case of skill sequencing, we have one latent variable oi,k per rollout i
and per decision stage k.

Connecting the Decision Stages. The state distributions µπk(s) are now connected through the
transition dynamics Pass′ yielding∫

φ(s′)µπk+1(s
′) ds′ =

∑
o∈O

∫∫∫
Pass′µπk(s)πk(a|s, o)πk(o|s)φ(s′) ds ds′ da. (19)

1. Except for the first stroke, as it is supposed to be the serve.
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In addition, the agent cannot freely choose the initial state distribution µπ1 (s), but needs to match
the given initial state distribution p1(s), which is implemented in the same way as for the episodic
case. Typically the dynamics Pass′ of a task are not known and need to be estimated from data.

Skill Sequencing Optimization Problem. After including the overlapping constraints from the
previous section, the optimization problem reads

max
πk,µ

π
k

Ea1:K ,s1:K+1

[
rK+1(sK+1) +

∑K

k=1
rk(sk,ak)

]
,

s. t. ε ≥ DKL
(
µπK+1(s)|| qK+1(s)

)
,

φ̂1 =

∫
φ(s′)µπ1 (s′) ds′,

∀k ≤ K : ε ≥ DKL (µπk(s)πk(a|s, o)πk(o|s)|| qk(s,a)p̃k(o|s,a)) ,

κ̃ ≥ −
∑
o∈O

∫∫
µπk(s)πk(a|s, o)πk(o|s) log p̃k(o|s,a) ds da,

∫
φ(s′)µπk+1(s

′) ds′ =
∑
o∈O

∫∫∫
Pass′µπk(s)πk(a|s, o)πk(o|s)φ(s′) ds ds′ da,

1 =
∑

s,a,o
µπk(s)πk(a|s, o)πk(o|s). (20)

The resulting policy update rules are given by

µπk(s)πk(a|s, o)πk(o|s) ∝

qk(s,a)p̃k(o|s,a)
1+

ξk
ηk exp

(
rk(s,a) + E[Vk+1(s

′)|s,a]− Vk(s)
ηk

)
, (21)

where one set of Lagrangian parameters ξk, ηt,θk is computed for each stage. As we observe, we
now obtain an individual value function Vk(sk) for each decision stage. As in the standard REPS
algorithm, the value functions are connected by the advantage function term that occurs inside the
exponent in the policy. The skill sequencing algorithm is given in Table 2. The derivations of the
dual function and the update rules are given in Appendix A.2. In Section 4.3, we discuss how to
compute the expectation over next states E[Vk+1(s

′)|s,a].

3.3 Infinite Horizon

An infinite horizon setting is needed for all repetitive tasks where we sequence an unknown, possibly
infinite amount of sub-policies to fulfill the task. For example, when bouncing a ball on a paddle,
the repetitive paddling movements induce a clear structure in the motion that suggests the use of
sub-policies. In addition, we want to bounce the ball on the paddle for an infinite amount of time.
In this setting, the agent needs to consider the state of the environment before each stroke.
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Input: Information loss tolerance ε, entropy tolerance κ̃, number of sub-policies n, number of time
steps K, number of iterations L.
Initialize all πk(a|s, o) and πk(o|s).
for l = 1 to L . . . # iterations

Collect samples
for i = 1, . . . ,M (# episodes)

Sample initial state s1,i from environment.
for k = 1, . . . ,K (# motor primitives)

Sample action: ak,i ∼ qk(a|sk,i) =
∑

o∈O πk,old(o|sk,i)πk,old(a|sk,i, o).
Execute action ak,i, observe next state sk+1,i and reward r(ak,i, sk,i).

Observe Final Reward: r(sK+1,i).

Compute Responsibilities:
p̃k(o|sk,i,ak,i) = pk,old(o|sk,i,ak,i) for all k and i.

Minimize the dual function
[θ1:K+1

∗, η1:K+1
∗, ξ1:K+1

∗] = arg min[θ1:K+1,η1:K+1,ξ1:K+1] g (θ1:K+1, η1:K+1, ξ1:K+1).

Policy update:
for k = 1, . . . ,K

Compute model distribution
µπk(sk,i)πk(ak,i|sk,i, o)πk(o|sk,i) ∝
p̃k(o|sk,i,ak,i)1+ξk

∗/ηk
∗

exp
(
Rk,i+E[V ∗k+1(s

′)]−V ∗k (sk,i)
ηk∗

)
.

Estimate policies
πk(o|s) and πk(a|s, o) by weighted ML estimates.

Output: Policies πk(a, o|s) for all k = 1, . . . ,K

Table 2: Time-indexed HiREPS. In each iteration the algorithm starts by sampling from the policy
π1 given the initial state s1 and executes the sampled action to generate the next state s2. From this
state, the next action is sampled with policy π2. This procedure is repeated until the final time-step
is reached. The algorithm observes state transitions and rewards for each step k and the final reward
signal r(s). The parameters η1:K+1, ξ1:K+1 and θ1:K+1 are determined by minimizing the dual-
function g, where η1:K+1 and ξ1:K+1 are vectors containing the Lagrangian parameters ηk and ξk
for each decision step.

The traditional objective in an infinite horizon MDP is to use the discounted accumulated future
rewards, i.e.,

R =

∞∑
t=0

γtrt,

where γ < 1 is a discount factor. Such an objective can be easily transferred to the average reward
setting by introducing a reset probability γ, where the agent jumps to a state sampled from the initial
state distribution µ0(s) with probability γ and transitions to the next state with probability (1− γ)
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(van Hoof et al., 2015). Thus, we obtain a transformed transition probability distribution given by

p̃(s′|s,a) = γp(s′|s,a) + (1− γ)µ0(s), (22)

where γ is the reset probability. Thus, the discount factor is considered as a termination probability.
The constraint ensuring the state transition probabilities are satisfied reads as∫

φ(s′)µπ(s′) ds′ =
∑
o∈O

∫∫∫
P̃ass′µπ(s)π(a|s, o)π(o|s)φ(s′) ds ds′ da. (23)

The optimization problem for the infinite horizon case reads as

max
π,µπ

J(π) = max
π,µπ

Es,a,o [Rsa] ,

s. t. ε ≥ DKL (µπ(s)π(a|s, o)π(o|s)|| q(s,a)p̃(o|s,a)) ,

κ̃ ≥ −
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) log p̃(o|s,a) ds da,

∫
φ(s′)µπ(s′) ds′ =

∑
o∈O

∫∫∫
γPass′µπ(s)π(a|s, o)π(o|s)φ(s′) + (1− γ)µ0(s)φ(s′) ds ds′ da,

1 =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) ds da, (24)

with the resulting policy update

µπ(s)π(a|s, o)π(o|s) ∝ q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa + E[V (s′)|s,a]− V (s)

η

)
, (25)

where

E[V (s′)|s,a] = θT
[∫

γPass′φ(s′) ds′ +

∫
(1− γ)µ0(s)φ(s′) ds′

]
.

In contrast to the finite horizon case, the value function, the policy and the state distributions are
now stationary instead of time dependent.

4. Algorithmic Design Choices

Having shown the theoretical foundation of HiREPS, we use this Section to explain implementation
details concerning the policy representation and parametrizations as well as feature representations
and model learning. The choices detailed in this Section represent only some of the possible imple-
mentations and are design choices. The HiREPS framework as specified in the previous Section is
independent of these design choices and can be used with arbitrary representations for the gating,
the sub-policies as well as arbitrary feature representations. HiREPS only requires that the policy
representation can be updated using weighted samples.
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Input: Information loss tolerance ε, Entropy tolerance κ̃, Number of sub-policies O, number of
Iterations L, number of rollouts per iteration M , reset probability γ.
Initialize all π(a|s, o) and π(o|s).
for l = 1 to L . . . # iterations

Collect samples
for i = 1, . . . ,M (# rollouts)

t = 1; reset = 0;
Sample initial state si,t from environment.
while reset < γ

Sample action ai,t ∼ q(a|si,t) =
∑

o∈O πold(o|si,t)πold(a|si,t, o).
Execute action ai,t and observe reward ri,t(ai,t, si,t).
Observe reward ri,t(ai,t, si,t) and next state si,t+1.
Sample reset value.

Compute Responsibilities:
p̃(o|si,t,ai,t) = pold(o|si,t,ai,t) =

pold(si,t,ai,t,o)∑
o∈O pold(si,t,ai,t,o)

for all i, t.

Minimize the dual function
[θ∗, η∗, ξ∗] = arg min[θ,η,ξ] g (θ, η, ξ).

Policy update:
Compute model distribution

p(si,t,ai,t, o) ∝ p̃(o|si,t,ai,t)1+ξ∗/η∗ exp
(
Ri,t+E[V (s′)]−V ∗(si,t)

η∗

)
.

Estimate policies
π(o|s) and π(a|s, o) for all o = 1 . . . O by weighted ML estimates.

Output: Policies π(a, o|s)

Table 3: Infinite Horizon HiREPS. The algorithm follows the form of the episodic implementation,
however one iteration produces state, action, reward triples for each time step in each rollout of an
iteration. In the infinite horizon case, a model Pass′ is required to compute E[V (s′)].

4.1 Policy Representation

We implemented the hierarchical policy using a soft-max gating network π(o|s) and linear Gaussian
sub-policies π(a|s, o). The gating network π(o|s) chooses which option to activate according to
the model

π(o = k|s) =
exp

(
φG(s)TβG,k

)∑O
i exp

(
φG(s)TβG,i

) ,
where βG,1...O are the parameter vectors defining the influence of the sub-policies and φG are the
feature representations of the state used for the gating network. While this model itself is relatively
simple, the complexity and expressiveness of the resulting policy depends largely on the feature
transformations employed for the individual components of the hierarchical policy. In HiREPS, we
are free to choose different feature transformations for the sub-policies, the gating and the value
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function, where the value function features are the features in the primal optimization problem. In
the presented experiments, the sub-policies themselves are represented by linear Gaussian policies,
i.e.,

π(a|s, o;βo) = N (a|µo + F os,Σo) ,

where βo = [µo,F o,Σo] is the parameter tuple describing sub-policy o. The sub-policies could
also be defined on a feature transformation of the state. Equally well, non-linear sub-policies instead
of the linear Gaussians could be used. However, since HiREPS performs a piecewise linear approxi-
mation in the state space using multiple sub-policies, linear sub-policies are usually sufficient. Both,
the gating policy as well as the sub-policies can easily be updated using the sample weights com-
puted by HiREPS. The update equations, as shown in the appendix, yield a weight matrix with one
row per sample and cone column per sub-policy. The gating requires the full weight matrix as well
as the responsibilities to be updated whereas each sub-policy is updated independently using the
respective column of the weight matrix to weigh all state-action samples.

Generally, HiREPS can be initialized with many more sub-policies than solutions are expected
to be available for the problem at hand. The gating network π(o|s) will reduce the probability of
selecting options that are not concentrated on good solutions to zero and effectively ignore these
unnecessary sub-policies. Options can also be pruned throughout the learning process as in the
first series of experiments described in Section 5.1.2. There, we report the number of actual solu-
tions found. In this case, whenever the prior p(o) =

∫
π(o|s)µ(s)ds of sub-policy activation gets

too small (i.e., p(o) < 10−4) we delete the sub-policy. However, in order to avoid sub-policies
getting deleted too quickly, we assure that each sub-policy gets a minimum amount of samples in
the sampling process. We also bound the minimum variance of our Gaussian sub-policies to small
values in order to avoid singularities. After the sampling process, we evaluate the quality of the
exploration-free policy (i.e., without variance) found so far.

4.2 Feature Based State Representation

We use feature transformations for representing the value function as well as achieving a higher
flexibility in the gating policy. Different feature representations can be used for the gating and the
value function. In the presented experiments, the gating network π(o|s) is constructed on squared
expansion of the state space. Thus, the squared features are constructed as the vector of all linear
and squared combinations of the state dimensions. For example, for a two-dimensional state space
the feature vector would be given by

φ([s1, s2]) = [1, s1, s2, s
2
1, s

2
2, s1s2].

While the squared expansion of the state space can also be used as feature representation for the
value function, more complex tasks often benefit from a more flexible representation, such as a
kernel based feature transformation. In our experiments we used either kernel based features or
features based on a Fourier transformation as shown by (Konidaris et al., 2011). The kernel based
features used a squared exponential kernel, i.e.,

[φV ]i (s) = exp

(
−1

2
(s− si)

TΛ−1(s− si)

)
,

where Λ is a diagonal matrix denoting the bandwidth of the kernel and the index i iterates over the
reference set of observed states.
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Choosing sufficiently expressive features for the representation of the value function is crucial
to the success of the learning algorithm. As an example, we can consider a contextual bandit task,
where the robot has to select the number of steps to take to walk to a goal position. The context in
this task is given by the robot’s initial distance to the goal. If the robot has access to insufficient
features, e.g., only a constant feature, it cannot differentiate between the different starting positions,
and, hence, cannot learn to adapt its policy to the initial position. This effect is compounded in the
infinite horizon setting, were successful policies often depend on reaching intermediate states with
potentially low rewards on the path to the goal states.

4.3 Model Learning

For the finite horizon, as well as the for the infinite horizon formulation, HiREPS requires a tran-
sition model Pass′ . In this paper, we use a sample based transition model, which reproduces previ-
ously observed state transitions and does not necessarily generalize. Using a sample based transition
model effectively results in computing V (s′) directly based on one single observed state transition
instead of computing the expectation E[V (s′)|s,a] in the update, Equation (25), as well as in the
corresponding dual function in Eq. (51) as given in Appendix A.3. Replacing the expectation in
such a manner is only feasible if the controlled system has limited stochasticity. However, it is
indeed still sufficiently robust to solve the real robot tasks as presented in the experimental Section.
For systems with more stochasticity, van Hoof et al. (2015) show how to learn a better model that is
able to generalize if sufficient data is available.

4.4 Sample Efficiency

One of the important trade-offs when using iterative policy update methods is the number of rollouts
performed per iteration. More rollouts per iteration result in more stable policy updates but also
increase the number of overall rollouts required to learn a task. When using sample based policy
update techniques in high dimensional action spaces, the number of samples is crucial. Using fewer
samples than action dimensions will lead to an underestimate of the variance or the variance might
even collapse, as the new policy is just based on the available samples. In HiREPS, we are not
restricted to using only samples from the previous iteration of rollouts when computing the sample
weights. By considering samples fromM multiple past iterations, we can stabilize the policy update
while retaining a fast learning speed. As a general rule of thumb, keeping three times as many
samples as used per rollout can stabilize the algorithm against aggressive choices in the number of
rollouts per iteration (lower than number of parameters) or high ε (≥ 1.5). When keeping samples
from previous iterations, we usually define our current state-action distribution q(s,a) to be given
by the collection of these samples. Alternatively, importance weighting schemes can be employed
to incorporate samples from previous iterations. However, in our experience, these importance
weighting schemes are often prone to destabilizing the learning algorithm.

4.5 Parametrized Trajectories

For the results of this paper, we often rely on movement primitives that inherently encode tempo-
ral correlations, such that each sub-policy π(a|s, o) describes the parametrization of one move-
ment primitives. We are using the extended version of DMPs by Kober et al. (2010a), that
parametrizes trajectories using a combination of weighted basis functions as well as the end point
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g and final velocity ġ of the trajectory. DMPs are based on a simulated spring damper system
ẍ = α (ġ − ẋ) + β (g − x) with damping factor α and spring stiffness β. The spring damper sys-
tem will result in a trajectory that reaches the desired goal and goal velocity in a direct manner.
However, the spring damper system alone is insufficient to encode arbitrary shapes along the trajec-
tory. To represent arbitrary shapes, DMPs modulate the dynamical system with a forcing function
f(z,v) = Φ(z)Tv that depends on the phase z of the movement, the basis functions Φ(z) and
the basis functions weights v. Using the forcing function to deviate from the direct path of the
spring damper system allows DMPs to generate complicated trajectory shapes. To ensure that the
desired final goal position and velocity constraints are met, the forcing function depends on the ex-
ponentially decaying phase variable z, such that the forcing function does not influence the system
towards the end of the trajectory.

If a demonstration trajectory, for example from kinesthetic teach-in, exists, basis function
weights v that reproduce the shape of that motion as well as the goal position and velocity can
be computed to initialize the learning process. After initialization, the basis function weights as
well as the desired goal position and velocity are the parameters that the reinforcement learner opti-
mizes over. In the presented robot learning experiments we learn one DMP per degree of freedom.
It is important to note that the output of the DMPs only represents the desired trajectories, which
are then usually tracked by an internal controller of the robot itself. This distinction is important
because even if the robot is unable to track trajectories, e.g., due to gain or torque limitations, the
RL agent can adapt the DMP such that the resulting trajectory still solves the task. When using
DMPs, each sub-policy lasts until the DMP has finished execution.

4.6 Computational Complexity

The presented algorithm depends on the three key computations: solving the dual function for
HiREPS, fitting a gating policy and fitting the individual sub-policies. The optimization of the dual
problem can be performed using existing optimizers such as, for example, the Broyden-Fletcher-
Goldfarb-Shannon algorithm. The optimization can often be accelerated by providing the first and
second derivative of the dual function. While the actual complexity depends on which algorithm
is used, we can analyze the problem itself. The number of open parameters in this optimization
problem stays constant with the number of options. However, the number of open parameters
depends directly on the dimensionality of the features φV (s) for the value function. Thus, the
complexity of the optimization problem depends on the feature representation rather than on the
number of options.

Fitting a gating policy based on the weights computed through the HiREPS optimization prob-
lem yields a multiclass classification problem. For example, multiclass logistic regression can be
used. As before, a solution can be found through the use of third party optimization software.
However, the number of open parameters scales multiplicative with the dimensionality of the gating
feature representation and the number of options. Thus, for high dimensional gating features and a
large number of options, the gating optimization problem can become computationally expensive.

Finally, the sub-policies have to be fitted. Given the gating, the sub-policies are independent
and each sub-policy can be fitted individually using a weighted maximum-likelihood estimate. In
the case of linear Gaussians, the complexity of this operation is governed by a linear regression
operation which depends on the dimensionality of the sub-policy feature representation. However,
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since these optimizations are performed individually per option, the computational effort for this
last step is usually negligible.

4.7 Hyperparameter Tuning

The presented method exposes three main hyperparameters to be set by the practitioner. These
are the number of options O, the entropy bound κ as well as the relative entropy bound ε. The
number of options can usually be chosen generously, i.e., around 20 seems to be reasonable for a
wide range of problems. The algorithm will prioritize more promising options such that even if
too many options are initialized, only options which yield high rewards will be sampled from after
the first few iterations. The entropy bound κ is probably the most important parameter to consider
since it does not have a clear equivalent in existing approaches. However, our experiments showed
that a value of 0.9 seems to work well in almost all cases and no major tuning was necessary.
The parameter ε is probably the parameter that is the most tuning-intensive in the proposed method,
especially if the total number of episodes is crucial, e.g., in real robot experiments. In our experience
values for ε between 0.5 and 1.5 are reasonable and, most often, we would start a new task with
ε = 1. Changing these parameters certainly influences the learning speed of the proposed method.
However, while sub-optimal settings may lead to slower convergence, they usually do not prevent
successful learning. Thus, in our experience, the algorithm is generally robust in that even sub-
optimal settings will lead to convergence.

5. Experimental Validation

We validated the different presented formulations of HiREPS on both simulated and real robot tasks.
We compare our algorithm to the non-hierarchical counterpart, REPS (Peters et al., 2010). Evalu-
ating against REPS is interesting, as the two algorithms share the same basis. In effect, REPS is
equivalent to our algorithm with just one sub-policy. This similarity allows us to directly investigate
the influence of adding a hierarchical policy representation without additional confounders. The
experimental section is structured analogously to the structure of Section 3, i.e., we first report re-
sults on the contextual episodic settings, subsequently the skill sequencing problem and finally the
infinite horizon setting. For the contextual setting as well as for the skill sequencing, we report real
robot results. In both cases, we start by presenting results on related simulated experiments to better
investigate the properties of the presented algorithms as well as to compare to the REPS algorithm.
For all presented results, we have optimized the parameters of the algorithms to deliver the best
performance and both algorithms receive the same number of samples per iteration. For all exper-
iments, if not noted otherwise, the experiments were repeated ten times to produce the errorbars
reported in the results.

5.1 Episodic Skill Based Tasks

We start by presenting results for the episodic formulation of HiREPS. In the contextual setting,
as well as for the skill sequencing setting in the next part, we start by presenting results of simpler
experiments that allow a more in-depth analysis of the algorithms and then proceed to more complex
tasks.
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Figure 3: (a) The puddle world task. Sub-policies are represented as two-dimensional DMPs with
fixed end points. The DMPs have five basis functions per dimension and we learn the weights of the
basis functions for the y dimension while leaving the weights for the x dimension fixed. The plot
shows trajectories sampled from two sub-policies found after 80 iterations (using 10 samples per
iteration) of HiREPS. Start and end points of the trajectory are pre-defined, the agent may choose
the path in between those points. The puddle world has two solutions. The plot shows samples
from both modes acquired by HiREPS after 30 iterations. (b) Performance of HiREPS and REPS
on the puddle world task. As HiREPS can represent both solutions, it does not get stuck averaging
over both modes. Note, that this effect is much more pronounced if we bound the entropy of the
sub-policies.

5.1.1 PUDDLE WORLD EXPERIMENT

In a first toy task, we test HiREPS on a variation of the puddle world (Sutton, 1996). While this
task is of limited difficulty it is interesting as it is a well known setting which exhibits the averaging
problem of interest to us. Additionally, the simplicity of the problem allows us to thoroughly assess
the quality of the solutions found by the RL agent, which is often difficult in real robot tasks. Our
version differs from the standard version by having a continuous action space instead of a discrete
one. While the agent proceeds with a constant velocity along the x-dimension of the environment,
it has to learn the DMPs shape parameters such that the puddle is avoided. Thus, the actions a
of our sub-policies are five-dimensional vectors. The reward of the task is given by the negative
length of the line segments, which encourages shorter solutions. An additional punishment occurs
for passing through the puddles. The arrangement of the puddles can be seen in Figure 3a. The
presented puddle world has two solutions which are located close to each other. Still, the mean of
both solutions leads through a puddle and, therefore, yields lower rewards.

In Figure 3b, we evaluate the performance of REPS and HiREPS with and without bounding
the sub-policies’ entropy. For HiREPS, just two sub-policies were used. REPS takes a longer
time to reliably find good solutions, as the algorithm averages over both modes. HiREPS without
bounded entropy performs slightly better than REPS. However, the advantage of HiREPS is much
more pronounced when also bounding the expected entropy of the responsibilities. Furthermore, if
we limit the entropy, the algorithm is able to reliably find both modes. The results also show that
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(a) Top View (b) Left and right swings

Figure 4: (a) Top view of the setup of robot tetherball. The ball is hung on a string from the ceiling
in front of the pole. (b) Time series overlay of two swings in simulation, one left swing and one
right swing. The two solutions use different sub-policies of the same hierarchical policy. HiREPS
can also keep more sub-policies representing additional solutions to a task.

even after 80 iterations (using ten samples per iteration), the REPS learning curve still exhibits some
variance, showing that the algorithm has not fully converged.

5.1.2 TETHERBALL

Our aim is to adapt the game ‘Tetherball’ for a robotic player, as shown in Figure 4b. Specifically,
the task consists of a ball, a rope, an obstacle (i.e., a pole) and a target. The ball is hung in front
of the pole, in a line with the robot, the pole and the target. This setup requires the robot to induce
a circular trajectory to be able to wind the ball around the pole. In the planar simulation, the
robot can induce this angular velocity through the elasticity of the rope. In the physically accurate
simulation as well as on the real robot, a pre-strike is necessary to achieve similar results. This task
presents a versatile solution space, as many different strategies successfully hit the target. Our goal
is to model this versatile solution space with HiREPS. In order to thoroughly assess the proposed
method, we split our investigation of the tetherball task into three parts of ascending difficulty. In a
first evaluation, we implement a planar simulation of the task in which we abstract the robot into a
force, i.e., we do not simulate a robotic arm but instead allow the agent to directly exert a force onto
the ball. We use this simplified setup to compare HiREPS to its non-hierarchical counterpart as well
as to investigate the effect of different settings. In a second evaluation, we use a detailed physical
simulation of the task including the robot arm, in which we evaluate the benefits of a hierarchical
policy in a more realistic setting. Finally, we present the results of the actual robotic task which
show that HiREPS finds multiple solutions within one learning scenario.

Planar Simulation. For the purpose of testing the HiREPS method, we use a strongly simplified
setup where the tetherball task is implemented in a planar simulation. We initialize HiREPS with 30
randomly located sub-policies and use ten samples per iteration. The agent can accelerate the ball
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Figure 5: (a) Average reward gathered by the REPS and the HiREPS with and without bounding the
entropy of the sub-policies in the tetherball task including states. As REPS only uses a single sub-
policy and thus a linear model as policy, it cannot represent the complicated structure of the solution.
The HiREPS approach benefits from bounding the entropy of the sub-policies. (b) Average reward
in the tetherball task without states. While REPS also finds one of the optimal solutions, HiREPS
benefits from its structured policy representation and outperforms REPS in learning speed. At the
same time, HiREPS finds both solutions. (c) Number of sub-policies used by the HiREPS approach
with and without bounding the entropy. If the prior p(o) of a sub-policy becomes too small it
gets deleted. By bounding the overlap of the sub-policies, less sub-policies are used while the
performance of the algorithm is increased. (d) Number of modes found by HiREPS with and without
bounding the overlap of the sub-policies. We can see that, despite that HiREPS with bounding the
overlap uses less sub-policies, it can find more modes. Without bounding the overlap of the sub-
policies, many sub-policies concentrate on the same mode, which attenuates the advantages of the
structured policy representation.

with a two dimensional impulse {Fx, Fy}. The reward is given by the negative minimum squared
distance of the ball to the target throughout the ball’s trajectory. The initial state of the agent is
given by the initial position of the ball before hitting it. We only vary the x-position of the ball
and learn different solutions to hit the target. As before, we compare HiREPS with and without
bounding the overlap of the sub-policies to the standard REPS approach. In Figure 5a, we evaluate
the average reward of all three approaches. The results show that HiREPS with the bound on the
overlap outperforms the two other methods. The HiREPS approach already without the additional
bound is better than the REPS approach, as REPS only uses one sub-policy to cover the whole
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state space. Thus, REPS needs to approximate the optimal policy using a single linear model.
Therefore, in order to have a fair comparison to REPS, we also compare HiREPS and REPS on the
tetherball task without states, i.e., we always start from the same initial state in the middle. This
comparison can be found in Figure 5b. We can observe that REPS is impaired by the multi-modality
of the solution space as it tries to average over several modes, but finally learns a solution that is
equally good as the solutions found by HiREPS. However, while REPS only learns one solutions,
Figure 5d shows that HiREPS learns multiple solutions at the same time. In order to compute the
number of modes, we divide each dimension of the state action space into 5 partitions and count
the number of partitions which contain at least one sub-policy with an average reward larger than
−1. The plot shows that, as the sub-policies distribute more uniformly in the state-action space due
to the bounding, we can find more modes. Thus, the bound of the overlap also helps us to find
more versatile solutions as it avoids situations where multiple sub-policies concentrate on the same
solution. In Figure 5c, we show the number of sub-policies used for different bounds of the overlap
κ̃. By bounding the overlap, the gating network can learn to select individual sub-policies more
decisively, explaining the faster learning speed in the experiments when using the bound.

Physically Accurate Simulation. Having compared the properties of (Hi)REPS on the simpler
simulation, we proceed to presenting the results of the physically accurate simulation as shown in
Figure 4a, which also serves as a stepping stone to the real robot results. As described, the pole is
placed on a line between the ball’s resting position and the target location, such that it is impossible
to hit the target with a single strike of the ball in direction of the target. In order to evoke a circular
trajectory that arcs the ball around the ball, displacing the ball from its resting pose is necessary.
Thus, we decompose our movement into a swing-in motion and a hitting motion. However, the
parameters for both motions are combined into one parameter vector that is learned jointly. A more
powerful approach would be to respect the natural separation of the successful trajectories and use
the skill sequencing approach as presented in Section 3.2. The reward is determined by the speed of
the ball when the ball winds around the pole. We define winding around the pole as the ball passing
the pole on the opposite side of the pole. We run the algorithms with 50 samples per iteration and
always keep the last 400 samples. We initialize our algorithm with 30 sub-policies and stop deleting
sub-policies if only 5 sub-policies are left. The resulting learning curve in the simulation can is
shown in Figure 6. After 100 iterations the robot has learned to wind the ball around the pole in
5/5 trials. In all trials, we were able to observe sub-policies for the left and for the right mode. The
resulting movements are shown in Figure 4b and illustrate that the resulting movement of the two
solutions are easily differentiated. The results show, that albeit HiREPS uses the same amount of
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Figure 7: Time series of a successful swing of the robot. The robot first has to swing the ball to the
pole and can, once the ball has swung backwards, arc the ball around the pole.

total samples per iteration as REPS, it can use those samples to learn multiple solutions while being
faster than REPS can learn a single solution.

Real Robot Tetherball. After presenting the results on the two simulated tetherball settings, we
proceed to show the results of the real robot experiment. For the robot experiment, we mounted a
table-tennis paddle to the end-effector of the robot arm. The real-robot setup is depicted in Figure
8a and two successful hitting movements of the real robot are shown in Figure 7. In order to track
the ball, a Kinect RGBD camera was setup to look at the robot from the opposite side of the pole.
The vision data was used to compute the reward signal. As in the physically accurate simulation,
the robot needed to perform a pre-swing as well as the actual swing. However, the real robot can
easily be bootstrapped through imitation learning. Thus, we extract the shape parameters v by
kinesthetic teach-in (Ijspeert and Schaal, 2003) for both motions. Subsequently, the robot learns
the final positions and velocities of all seven joints through the presented approach. Additionally,
we learn the waiting time between both movements. This task setup results in a 2 × 2 × 7 +
1 = 29-dimensional action space. We initialized the algorithm with 15 sub-policies and sampled
15 trajectories per iteration. While this scheme amounts to considerably fewer samples than in
simulation, it is sufficient to learn multiple solutions, given the initial demonstrations. We performed
three trials to produce the errorbars reported in the results. The learning curve is shown in Figure
8b. The noisy reward signal is mostly due to the vision system and partly also due to real world
effects such as friction which lead to a non-repeatability of rollouts. Two resulting movements of
the robot are shown in Figures 7 and 4b.

5.2 Planar Reaching Task

To further evaluate the properties of the proposed algorithm, we present a series of experiments on
a planar reaching task. In this simulated task, the agent controls the joint trajectories of a three-link
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Figure 8: (a) The real robot tetherball setup. (b) Average rewards of HiREPS on the real robot
Tetherball setup. Mean and standard deviation of three trials are shown. In all three trials, the robot
has found solutions to wind the ball around the pole on either side after 50 iterations.

robotic arm using DMPs with two basis functions per joint. The robot starts from a fixed initial
position and executes a trajectory for 100 time steps. At time steps 40 and 100 the robot is rewarded
for passing through via points. While the robot is controlled in joint space, these via points are given
in task space. Furthermore, for both time steps two possible via points exist.

Comparison to Baseline Methods. Most of the presented experiments compare the performance
of HiREPS to its natural competitor, REPS. To better analyze the performance levels of HiREPS, we
also performed an experiment comparing HiREPS to other state of the art methods. Specifically, we
compared to the PIBB algorithm (Stulp and Sigaud, 2013), the CMA-ES algorithm (Hansen et al.,
2003) as well as the NES algorithm (Wierstra et al., 2014). To compare HiREPS against these base-
lines we performed an empirical optimization of the open parameters these methods perform. For
example, Fig. 9b shows the effects of the initial variance of CMA-ES. The results in Fig. 9a show
that HiREPS converges faster than the alternative algorithms we compared to. Furthermore, the
alternative algorithms are designed to represent a single solution. In this experiment, all algorithms
used 10 samples per iteration. Both HiREPS and PIBB used a higher initial variance than CMA-ES
and NES in this experiment since the latter methods’ performance decreases using higher initial
variances as shown in Fig. 9b. Due to this higher initial variance, PIBB and HiREPS start with a
higher initial reward.

Initialization of the Algorithm. Since the presented algorithm is based on the availability of
multiple sub-policies, these options have to be initialized to sensible values. In the presented exper-
iments linear Gaussians were usually used as sub-policies, i.e., π(a|s, o) = N (a|µo + F os,Σo).
To initialize each linear Gaussian, we can keep F o = 0 and Σo = cI , where the constant c is a task
specific variable set by the experimenter. While Fo and Σo are initially identical for all sub-policies,
the means µo have to be different to allow for later separation of the sub-policies based on the re-
sponsibilities. To that effect, we usually sampled the individual sub-policy means µo from a normal
distribution, i.e., µo ∼ N (·|0,Σµ).

Figure 10a shows the results of varying Σµ relative to the admissible range of parameters. The
results show that while a larger initial separation seems to help bootstrapping the learning process,

28



HIERARCHICAL RELATIVE ENTROPY POLICY SEARCH

0 100 200 300 400 500
−30

−20

−10

0

Episodes

A
ve

ra
ge

R
et

ur
n

Comparison to Baselines

HiREPS

NES

CMA-ES

PIBB

(a) Comparison To Baselines

0 100 200 300 400 500

−30

−20

−10

0

Episodes

A
ve

ra
ge

R
et

ur
n

Reaching Task CMA-ES Initial Variance

Σ0 0.001
Σ0 0.01
Σ0 0.1
Σ0 0.5
Σ0 1

(b) Influence of Initial Variance in CMA-ES

Figure 9: (a) Comparison of HiREPS to popular baselines. HiREPS and PIBB start at higher initial
rewards because CMA-ES as well as NES have to be initiated with a much lower variance. While
HiREPS and PiBB start with a high-variance initial policy (or sub-policies) and keep contracting it
until convergence. CMA-ES and NES on the other hand work best with a smaller initial variance
that is kept for longer. (b) Effects of different initial variances on CMA-ES. We chose the best initial
variance for the comparative experiments.

the overall effect of changing this parameter is negligible. In this experiment, a total of 20 options
were available to the algorithm. While the comparison to the base-line methods was performed
using ten samples per iteration, for the following experiments 20 samples per iteration were used.
Using more samples per iteration allowed us to observe the effects under investigation more clearly,
while the comparison to other baselines was optimized for the CMA-ES and NES algorithms.

The Influence of Probabilistic Option Assignments. The presented algorithm allows for inter-
option learning, i.e., the sharing of information between options during learning which is expected
to improve learning. To test this hypothesis, we performed an experiment comparing the proposed
formulation of the algorithm to an alternative formulation based on hard assignments. In the al-
ternative formulation, every option was effectively limited to using it’s own samples to update its
policy. This behavior was achieved by assigning a responsibility of 1 to the option that generated a
sample while all other options had zero responsibility for the same sample. Using soft assignments
allows the gating to shift responsibilities such that options can specialize on distinct sub-tasks. The
results in Figure 10b show that using soft assignments did indeed improve asymptotic learning per-
formance but was slower in the early stages. However, in our experiments we observed that the
importance of this effect would diminish with an increasing number of options. As the number
of options increases, HiREPS can implement a more effective divide and conquer strategy. Shar-
ing of information can becomes less important after the division of the state-action space has been
successfully performed.

Evaluation of the Entropy Bound. One of the main parameters to be considered in the proposed
algorithm is the desired bound on the entropy of the responsibilities, κ̃. The lower the value for
κ̃, the more aggressively the algorithm will separate the individual options. Figure 11a shows the
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Figure 10: (a) Investigation of different initial distributions of sub-policies. Using a low initial vari-
ance of the distribution over option means, all options share similar responsibilities for all samples
and the entropy bound forces a separation of the options. Using a higher initial variance for this
distribution, the individual sub-policies will be responsible for different regions of the action space
from the beginning. While the results show that such an initial separation can improve learning
speed initially, it can also lead to sub-optimal asymptotic performance. (b) Using hard assignments,
i.e., not sharing information between options, leads to high initial learning speed. However, using
the hard assignments, the algorithm did not always find the optimal solution. In our experiments,
the non-probabilistic (hard assignments) version of the algorithm would usually require more sam-
ples per iteration to consistently find equally good solutions as the proposed probabilistic approach.
However, our experience shows that when using more samples per iteration, the learning speed of
the hard assignment approach will actually decrease relative to the speed of the probabilistic ap-
proach. This effect can be explained by the fact that each option is drawn to all local optima more
uniformly if more samples are used.

results of evaluating a wide range of possible parameter values for κ̃ in the reaching task. The
results show that values for κ̃ ≥ 1 yield slower convergence speeds while the options still overlap
and aim to explain multiple solutions. As in most other experiments presented in this paper, a value
of κ̃ = 0.9 seems to yield the best learning speeds. While even lower values of κ̃ do not noticeably
decrease the learning speed in the presented experiment, our experience shows that lower values
may prevent successfully learning multiple solutions. Since lower values of κ̃ force options apart,
only few options may actually be fully developed while the probability of sampling from most other
options will diminish.

The results reported for this experiment and the puddle world experiment regarding the entropy
bound mirror our experience with the remaining experiments reported in this paper. In all exper-
iments a bound of κ = 0.9 seems to give good results and much higher (> 0.95) or much lower
(< 0.8) values usually deteriorate performance. Thus, for the remaining experiments, we chose
κ = 0.9 and do not present further evaluations.

Robustness to Changing Environments. One main contribution of the proposed algorithm is to
learn multiple solutions for the same task. Learning multiple solutions can be interesting if, for
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Figure 11: (a) Comparison of different relative values κ for the entropy bound. The results show that
higher values for the entropy bound slow down learning, as the options are not forced to separate.
Thus, multiple options will compete for the same local optimum for longer. Very low values for
κ will also slow down learning and can potentially lead to sub-optimal asymptotic performance
when the entropy bound ‘overpowers’ the reward maximization criterion. (b) Investigation of a
task which requires multi-modal solutions. After learning a solution, some of the via points were
randomly disabled and the agent had to rely on the availability of alternative solutions. The results
show that increasing the number of options allowed for a robust policy which could recover from
the change in the environment because the agent had previously learned multiple solutions.

example, the environment changes in a way that makes some solutions inaccessible. To evaluate
the behavior of the proposed algorithm in such a scenario, we let the algorithm learn a solution for
the reaching task as described above. After 30 iterations HiREPS typically converged to a good
solution. At that point, the via points on either the lower or upper path were randomly disabled,
which simulated blocking one of the paths. Figure 11b show the effects of learning multiple solu-
tions. With only one option, the agent cannot recover in about half the trials. Using more options
increases the likelihood that the agent has learned sufficiently versatile solutions to successfully
perform the task even after cutting off of the paths.

5.3 Sequencing of Skills

As evident from the tetherball experiment, many real world tasks require multiple steps to be solved.
To evaluate the skill sequencing implementation of HiREPS presented in Section 3.2, we present
a second set of experiments. Before testing skill sequencing on a real robot task, we evaluated
the time-indexed HiREPS algorithm on a via-point task in order to illustrate the properties of the
approach. In this task, we modeled a second-order dynamical system. The state of the agent is
given by its position x and velocity ẋ. The actions u control the accelerations ẍ. The task of the
agent is to reach specified via-points at four different points in time. For each of these time points,
different via-points exist. The reward at the time points is given by the negative squared distance
to the closest via-point. In addition to the deviation to the via-points at the four specified time
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Figure 12: (a) We use this via-point task to illustrate our algorithm.The agent has to reach one of the
via-points (denoted by red circles) at each of four specified times [0.25, 0.5, 0.75, 1.0]s. The reward
is given by the negative squared distance to the closest via-point. The last via-point has to be reached
with zero velocity. The initial positions and velocities are sampled from a Gaussian distribution with
zero mean and a standard deviation of 0.25 for the position and 0.1 for the velocity. In this task, we
learn to sequence two motor primitives, with the second primitive starting at t = 0.5s (shaded region
in which the line colors change). This task is per construction multi-modal and illustrates how our
algorithm learns distinct motor primitives. The mean and variance are indicated by shaded error
bars. The agent learned several but not all possible solutions to solve the task. (b) The multi-modal
via-point task learned with episodic and sequential motor primitive learning where the movement
was decomposed into two primitives, see Figure 12a for a more detailed description. As we can
see, our algorithm could exploit this decomposition resulting in increased learning speed and higher
quality final policies.

points, the reward function contains a squared punishment term for taking high accelerations. As
we defined multiple via-points for each of the four time-points, this task has multiple solutions per
construction. The agent used 20 samples per iteration for this task. The exact setting of the task
including its via-points is depicted in Figure 12a.

In order to demonstrate sequencing of skills, we decomposed the task into two DMPs which
were executed sequentially. We used five shape parameters for both DMPs. In addition, we also
learn the goal-parameter of the DMP, resulting in 6 parameters per movement primitive. To compare
our sequencing method to the commonly used episodic policy search setup, we also solve this task
with the episodic version of HiREPS. In this case, we only used one DMP with ten shape parameters
and the additional goal-parameter. For both scenarios, the agent could choose between four distinct
sub-policies oi at each decision time-point. As we can see from Figure 12a, the agent learned to
select these primitives according to the state at the decision time-points as well as to adapt the
primitives such the task can be solved. Our approach was able to learn multiple solutions for the
task as can be seen from Figure 12a. However, only a subset of all possible solutions was found.

The comparison of the episodic and the sequential learning methods can be seen in Figure 12b
and shows the advantage of the sequencing approach in learning speed as well as in the quality of
the learned solution. Additionally, the episodic formulation will also require more options in total
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(a) Hockey Setup

(b) First strike (c) Second strike (d) Final strike

Figure 13: (a) The robot hockey task. The robot has two pucks, the pink control puck and the
yellow target puck. The task is to shoot the yellow target puck into one of the colored reward zones.
Since the best reward zone is too far away from the robot to be reached with only one shot, each
episode consists of three strikes. After each strike the control puck is returned to the robot, but the
target puck is only reset after one episode is concluded. Concluding an episode with the target puck
in one of the reward zones yields rewards from one to three as indicated in the picture. However, if
the robot shoots the target puck too far, the reward is zero. (b-d) One episode of the Hockey task,
consisting of three strikes. Each picture shows the initial and final position of control and target
puck. The movement of the pucks is indicated by arrows. The robot can shoot the pink control puck
to move the target puck and tries to place the yellow target puck in one of the marked target zones
while not overshooting. In the depicted episode the robot only needed two strikes to place the target
puck into the highest reward zone. With the last strike the robot taps the target puck only slightly
without actually moving it to avoid negative reward for missing it.

in order to find all possible solutions than the sequential formulation. However, in the presented
experiment we only rewarded the agent for finding at least one solution such that this effect did not
alter the resulting performance analysis.

5.3.1 EVALUATION ON THE ROBOT HOCKEY TASK

As before, after using a simpler task to investigate the properties of the proposed algorithm, we now
present the results of a more sophisticated task. Similar to the structure of the tetherball experiments,
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we first present a comparative analysis on a physically accurate simulation and then proceed to show
the results of the real robot task. In the robot hockey task, the robot has to move a target puck into
one of three target areas. This target puck can only be moved by shooting a control puck at it. The
target areas are defined by a specified distance to the robot. The first zone is defined as distance
from 1.4 to 1.8m, the second zone from 1.8 to 2.2m and the last zone from 2.2 to 2.6m. The robot
gets rewards of 1, 2, and 3 for reaching zone 1, 2 or 3, respectively, with the target puck. If the robot
overshoots the last target zone, the reward drops to zero. The reward is only given after each episode
which consists of three shots of the control puck. After each shot, the control puck is returned to
the robot. The target puck, however, is only reset after each episode. The setup of the robot hockey
task is shown in Figure 13a.

The 2-dimensional position of the target puck defines the state of the environment as perceived
by the agent. After performing one shot, the agent observes the new position of the target puck to
plan the subsequent shot. In order to give the agent an incentive to shoot at the target puck, we
punished the agent with the negative minimum distance of the control puck to the target puck after
each shot. While this reward was given after every step, the zone reward was only given at the end
of the episode (every third step) as r(sK+1).

We used a DLR-Kuka lightweight arm with 7 degrees of freedom as depicted in Figure 15a.
We used DMPs to represent single motor primitives where we only adapted the goal positions and
velocities of the primitives. This setup resulted in 14 parameters per primitive per shot. Thus, the
episodic version of HiREPS has to optimize one 42-dimensional parameter vector while the time
indexed version of HiREPS that we use for skill sequencing has to optimize three policies with
14-dimensional parameter spaces each. Both, the episodic as well as the time-indexed version of
HiREPS had access to five options. The shape parameters v of the single primitives were learned
from imitation by collecting trajectory data via kinesthetic teach-in.

Simulation Results. We first implemented a realistic simulation of the robot hockey task. In
simulation, we varied the initial position of the puck by sampling the position from a normal dis-
tribution with standard deviation of 10cm. The agent used 30 samples per iteration. We compared
our sequential motor primitive learning method with its episodic variant. For the episodic variant,
we encoded the policy-parameters of all three shots into one policy, resulting in 42 parameters.
The episodic variant cannot use state-feedback except for the information of the initial position of
the puck. To make the comparison as fair as possible we did not use any noise in our simulation
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Figure 15: (a) The real robot Hockey setup. The robot first has to shoot the pink puck on the orange
puck, to move the orange puck into a target zone. (b) One trial of of the real robot hockey tasks.
The robot starts with a negative initial reward and learns to achieve an average reward of 2.5 after
300 episodes. The optimal theoretical reward of the presented task is 3.0. However, learning has
not yet converged and had to be stopped prematurely due to time constraints.

and, hence, the initial position of the puck is sufficient to solve the task. The comparison of both
methods can be seen in Figure 14. The episodic learning setup failed to learn a proper policy while
our sequential motor primitive learning framework could steadily increase the average reward. Our
method reached an average reward of 2.3 after learning for 1500 episodes. Note that an optimal
strategy would have reached a reward value of 3, however, this is still a clear improvement in com-
parison to the episodic setup, which reached a final reward value of 1.4.

Real Robot Results We used a Kinect RGB-D camera to observe the state of target puck. For the
real robot hockey task, the initial position was not varied. On the real robot, we could reproduce
the simulation results. The robot learned a strategy which could move the target puck to the highest
reward zone in most of the cases after 300 episodes, where the robot used ten samples per iteration.
One episode of robot hockey is depicted in Figure 13. In the final trials, the robot tended to prefer
using a soft hit in the first shot and to shoot the target puck to the last reward zone with the remaining
two shots. This behavior yielded higher average reward, since it is easier to only tap the target
puck without moving it too much while it is still closer to the robot. During learning the robot
steadily adapted his strategy when it mastered the necessary motor skills to achieve higher rewards
by placing the target puck in the highest reward zones.

5.4 Infinite Horizon Formulation for Sequencing Skills

We evaluated the infinite horizon formulation of HiREPS on the pendulum swing-up task in sim-
ulation. In this task, the pendulum starts hanging down with a random perturbation. The goal of
the robot is to find a solution that first swings up the pendulum and then stabilizes the pendulum
at the top. Instead of directly choosing motor commands in each time step, the robot chooses a
desired joint value which is tracked with a PD-controller that is active over multiple time steps d
(in the standard setting d = 5). While using direct motor commands is generally feasible as well,
using a PD-control scheme is often beneficial from a robotics point of view. Real systems are often
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Figure 16: Evaluations of the pendulum swingup task. The task starts with the pendulum hanging
down and the robot has to swing up and stabilize the pendulum. (a) The results show that one linear
sub-policy is insufficient to learn this task. With five sub-policies the robot is able to learn the task,
with ten sub-policies the asymptotic performance does not improve anymore. (b) The number of
time steps d each sub-policy stays active. The results show that activating a sub-policy for multiple
time steps increases the speed of learning. If a sub-policy stays active for more than five time
steps, the performance decreases. (c) One rollout of the pendulum swingup task. The pendulum
starts at the bottom and requires a pre-swing to be brought to the upright position. (d) Pendulum
Swingup-Policy learned by HiREPS. Colors indicate the mean value of the policy.

controlled at very high frequencies internally, however, policy signals are usually only necessary at
lower frequencies. Reducing the control frequency of the policy will increase the signal to noise
ratio, especially in real systems. Furthermore, even in simulated systems, the temporal extension of
the actions can benefit the learning process. Since this task is highly non-linear in nature, it cannot
be solved with a single linear policy. However, since HiREPS is able to represent a piecewise linear
policy, it can be used to solve the pendulum swing-up task with multiple linear sub-policies. In this
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Figure 17: (a) Evaluation of a pre-defined constant gating vs. a learned gating. In the constant
gating approach, the gating was pre-determined by performing a K-Means clustering of the state
space. The results show that the pre-defined constant gating does not allow the agent to successfully
learn the task. (b) Effect of the number of options when using a constant gating. The results show
that the constant gating depends strongly on the number of options used, which related directly to
the resolution with which the state-action space is parceled. Even with 100 options the constant
gating approach is outperformed by the learned approach which uses only five options.

task, the pendulum has a mass of 10kg, a length of 0.5m and a friction coefficient of 0.2. The robot
can exert at most 30nm of torque and uses 20 samples per learning iteration. The internal robot con-
trol runs at 100Hz and the restart probability in the base setting is given as (1−γ) = 0.02/d, where
d determines the control frequency of the learned policy. The primitive actions wich are chosen
by the sub-policies are the desired joint angles of the pendulum. The robot can typically perform
a swing-up within 1.5s. To represent the value function, we used the Fourier transform based fea-
ture transformation of the states using five Fourier bases, see Section 4. The gating uses a squared
expansion of the states as feature representation. The reward function punishes deviation from the
desired upright position with a factor of 500 and punishes velocities with a factor of 10. These
punishments are subtracted from a base value of 500. The results of the experiments show that a
single linear policy is insufficient for swinging up and stabilizing, however, HiREPS successfully
combines multiple linear policies to solve the task, a resulting policy is shown in Fig 16.

Evaluation of a Constant Gating. In the pendulum swing-up task, a good gating policy is essen-
tial if the task is to be solved using simple sub-policies. To evaluate the effect of a learned gating
versus a constant pre-determined gating, we compared the proposed approach to an alternative for-
mulation where the individual action policies can be learned, but the gating stays constant. To find
a such a constant gating, we divided the state space using K-Means clustering and kept the resulting
gating constant afterwards. To perform K-Means clustering we sampled 1000 data points uniformly
within ±[π, 50], where π in this case is the numerical value. The results show that the performance
of such a constant gating strongly depended on the number of options available. However, even
with 100 options the constant gating did not allow to learn this task successfully.
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Figure 18: Comparison to flat but
non-linear policy. The non-linear
policy is given by a linear Gaussian
based on a non-linear feature trans-
formation of the states while the
hierarchical policy uses only linear
sub-policies. The results show that
the non-linear flat policy is outper-
formed by the hierarchical policy.
While the flat policy is able to learn
the solution, the asymptotic perfor-
mance varies over multiple runs and
would require more samples per it-
eration to exhibit a robust learning
performance.

Comparison to a Non-linear Flat Policy. While the proposed approach can learn the pendulum
swing-up task using a combination of linear sub-policies, the task can also be solved using a single
non-linear policy. To evaluate the effects of the proposed approach, we compared to a non-linear flat
policy which was based on the same features as the gating in HiREPS. The results in Figure 18 show
that while the non-linear flat policy initially learned faster than the HiREPS, the average asymptotic
performance of the HiREPS was higher. Initially, HiREPS requires some iterations to learn a good
gating policy. However, once a good gating policy was available, having different options that
specialize on sub-tasks such as high accelerations vs. stabilization yielded better policies.

5.5 Infinite Horizon Real Robot Experiment

To evaluate the practical applicability of the proposed infinite horizon approach, we performed a
real robot evaluation on the ‘ball on a beam’ task as shown in Fig. 19a. In this task, the robot has to
guide a ball to a prescribed position on a beam and balance it at this position. In our experiments,
the robot had to choose between two possible goal positions, 10cm to the left or right of the beam
center. To learn the task, the robot learned a policy which set a new desired end effector angle every
0.5s. Every policy was evaluated for 20s and in each iteration the agent collected three episodes
before updating the policy. In this task, the state space was given by the ball’s position and velocity
as well as the current beam angle. The sub-policies were linear Gaussian policies. The gating
operated on squared features of the state space and the value function was based on a Fourier feature
transformation of the state space using five basis functions. The reward function in this task was
given as the summed negative squared distance and velocity of the ball (to the closest goal position)
in every control step. The ball’s position and velocity were determined using a Microsoft Kinect
which was mounted above the robot. The results in Fig. 19b show that the robot was able to learn
this task within 30 episodes in all three trials performed.
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(a) Ball On Beam Setup
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Figure 19: (a) The experimental setup for the ‘ball on a beam’ task. A beam of 1m length is attached
as the robot’s end effector. The robot has to balance a ball in one of two goal positions,±10cm from
the center of the beam. The ball is initialized alternating on the right and left end of the beam. (b)
Results of three trials on the real robot. In all trials the robot was able to learn the task within 30
episodes. In the second trial performance dropped slightly at the end of the trial before recovering
again. This drop was most likely due to noise in the vision system.

6. Conclusion & Discussion

In this paper, we present a novel method, derived from first principles, to represent multiple solutions
to a task. The representation of multiple versatile solutions is achieved though a hierarchical policy,
which consists of a gating network and multiple sub-policies. We show that a naive implementation
of a hierarchical policy is insufficient as it does not find distinct solutions. To address this problem,
we introduce an entropy-based constraint which ensures that the agent finds distinct solutions with
different sub-policies. Having a hierarchical policy based on multiple sub-policies additionally
allows us to solve tasks that are non-linear using multiple linear sub-policies.

We evaluated the proposed method on two real robot tasks and several simulated tasks. The
evaluations showed that our framework can be used to learn temporally extended sub-policies, also
called options, and to sequence these sub-policies to learn complicated tasks on real systems.

The results show, that HiREPS is able to learn multiple solutions for complicated tasks and
that HiREPS is able to learn piecewise linear solutions for non-linear tasks. The comparison to
the non-hierarchical REPS method shows that HiREPS additionally often learns faster than REPS.
This effect is especially intriguing as HiREPS does not only aim to learn one solution but multiple
solutions at the same time and effectively uses fewer samples per sub-policy.

While the presented approach is able to learn a multi-modal policy using weights generated by
solving one optimization problem, alternative solutions are possible. In the presented approach,
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computing the lower bound and, subsequently, solving the optimization problem and fitting the sub-
policies is equivalent to an EM approach with only one iteration. While EM approaches typically
benefit from multiple iterations, we observed no further benefit from applying multiple passes in our
experiments. The observation that one EM iteration is sufficient can be explained by the fact that we
start with a distribution which is highly similar to the target distribution. Thus, using HiREPS with
κ � 1 results in a version of the REPS algorithm which works on a mixture model. Furthermore,
alternative mixture model fitting approaches could be used to incorporate the entropy bound which
is integrated into the optimization problem in the proposed approach. For example, Graça et al.
(2007, 2009) show how EM can be performed with additional constraints such as, for example, the
entropy constraint presented in this paper.

In this paper we focus on learning multiple sub-policies and do not solve the temporal extension
aspect of the options framework directly. Temporal extension is inherently achieved in many of
the presented experiments through the use of movement primitives. Using movement primitives,
the time horizon is usually pre-determined. However, this time horizon could be made adaptive by
including the duration of the movement primitive into the set of parameters that is learned by the
agent. Learning both when to terminate options as well as learning how to construct options from
atomic state-action pairs in a unified framework is an important aspect for future work. Equally,
extending the framework to not only allow pruning of sub-policies, but also generating new sub-
policies during the learning process could be an important addition to the versatility of the presented
framework. In the presented version, options might be separated in the state-action space in the
beginning of learning when actually multi-modalities exist on a smaller scale than can initially be
detected. In such cases, it would be helpful to split one sub-policy into two sub-policies that can
adapt to the individual modes.
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Appendix A. Derivation of the Lower Bound

Consider the optimization problem in Equation (14) with the real conditional p(o|s, a) instead of
the responsibilities p̃(o|s, a). For simplicity, we do not introduce the steady-state distribution and
the normalization constraint as, our results are not affected by these constraints. The Lagrangian of
this problem is then given by

F (π, η, ξ) =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)Rsa ds da

+ η

(
ε−

∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) log

µπ(s)π(a|s, o)π(o|s)
q(s,a)p(o|s,a)

ds da

)

+ ξ

(̃
κ+

∫∫
p(s,a)

∑
o∈O

p(o|s,a) log p(o|s,a) ds da

)
. (26)

Simplifying the terms, we obtain

F (π, η, ξ) =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)

(
Rsa−η log

p(s,a, o)

q(s,a)p(o|s,a)1+ξ/η

)
ds da+ ηε+ ξκ̃.

(27)

However, determining a closed form solution for p(s,a, o) is infeasible as the conditional p(o|s,a)
is inside the log. Yet, we can determine a lower bound L(p, η, ξ, p̃) by using a proposal distribution
p̃(o|s,a) for p(o|s,a) which we can iteratively maximize in an Expectation-Maximization like
manner. We need to verify that L is a lower bound on F and that maximizing L w.r.t p̃ is equivalent
to setting p̃(o|s,a) = p(o|s,a), both of which follows from the relation

L = F − (η + ξ)

∫∫
p(s,a)

∑
o∈O

p(o|s,a) log
p(o|s,a)

p̃(o|s,a)︸ ︷︷ ︸
DKL

(
p(o|s,a)||p̃(o|s,a)

)
≥0

ds da.

After the Expectation step, the lower bound is tight, i.e., maxp̃ L(p, η, ξ, p̃) = F (p, η, ξ). In the
Maximization step, we fix p̃ and maximize L w.r.t p, η and ξ. This combination defines our con-
straint optimization problem.
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A.1 Derivation of Contextual HiREPS

We first reiterate the complete optimization problem, i.e.,

max
π,µπ

J(π) = max
π,µπ

∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)Rsa ds da,

s. t. ε ≥
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) log

µπ(s)π(a|s, o)π(o|s)
q(s,a)p̃(o|s,a)

ds da,

κ̃ ≥ −
∑
o∈O

∫∫
µπ(s)π(a|s, o)p(o|s,a) log p̃(o|s,a) ds da,

φ̂ =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)φ(s) ds da,

1 =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) ds da, (28)

which includes an additional constraint to represent prior knowledge about the desired behavior of
sub-policies, i.e., that sub-policies should spread out and not overlap. In the entropy constraint,
we replace only the responsibility term inside the log with the approximation p̃(o|s,a), as we can
combine the expectation over the entropy into Eµπ(s)π(a|s,o)π(o|s) log p̃(o|s,a).

The Lagrangian formulation reads

L =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)

[
Rsa−ηlog

µπ(s)π(a|s, o)π(o|s)
q(s,a)p̃(o|s,a)

+ξ log p̃(o|s,a)−θTφ(s)−λ
]

ds da+ ηε+ λ+ θT φ̂+ ξκ̃, (29)

where η , θ , ξ and λ are Lagrangian parameters. To arrive at a closed form update rule for
µπ(s)π(a|s, o)π(o|s), we differentiate L

dL

dµπ(s)π(a|s, o)π(o|s) =Rsa − η log
µπ(s)π(a|s, o)π(o|s)
q(s,a)p̃(o|s,a)

+ ξ log p̃(o|s,a)− θTφ(s)− λ− η,

=Rsa − η log
µπ(s)π(a|s, o)π(o|s)
q(s,a)p̃(o|s,a)1+ξ/η

− θTφ(s)− λ− η, (30)

with

ξ log p̃(o|s,a) = η
ξ

η
log p̃(o|s,a) = η log p̃(o|s,a)

ξ
η = −η log

1

p̃(o|s,a)ξ/η
.

We set the derivative to zero and write V (s) = θTφ(s) to solve for the update rule

µπ(s)π(a|s, o)π(o|s) = q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa − V (s)

η

)
exp

(
−1− λ

η

)
. (31)

Here, we use the fact that ∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s) ds da = 1, (32)
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and, thus,

exp

(
−1− λ

η

)−1
=
∑
o∈O

∫∫
q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa − V (s)

η

)
ds da. (33)

Hence, the term exp (−1− λ/η) acts as a normalization constant and µπ(s)π(a|s, o)π(o|s) can be
written as

µπ(s)π(a|s, o)π(o|s) =
q(s,a)p̃(o|s,a)1+ξ/η exp

(
Rsa−V (s)

η

)
∑

o∈O
∫∫

q(s,a)p̃(o|s,a)1+ξ/η exp
(
Rsa−V (s)

η

)
ds da

.

However, for improved clarity, we resort to writing the update equation in the proportional formu-
lation

µπ(s)π(a|s, o)π(o|s) ∝ q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa − V (s)

η

)
, (34)

which depends only on the Lagrangian parameters ξ, η and θ with V (s) = θTφ(s), but not on the
parameter λ. The values for these Lagrangian parameters can be calculated by optimizing the dual
problem. The dual formulation can be obtained by inserting Eq. (31) into the original Lagrangian
formulation, i.e.,

g(η,θ, ξ, λ) =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)

[
Rsa

−ηlog
q(s,a)p̃(o|s,a)1+ξ/η exp

(
Rsa−V (s)

η

)
exp

(
−1− λ

η

)
q(s,a)p̃(o|s,a)1+ξ/η

−θTφ(s)−λ
]

ds da+ ηε+ λ+ θT φ̂+ ξκ̃, (35)

which can easily be simplified to

g(η,θ, ξ, λ) = ηε+ λ+ θT φ̂+ ξκ̃+
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)η ds da, (36)

where we again use Eq. (32) to simplify further to

g(η,θ, ξ, λ) = ηε+ λ+ θT φ̂+ ξκ̃+ η. (37)

At this point we rewrite Eq. (33) as

η + λ = η log
∑
o∈O

∫∫
q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa − V (s)

η

)
ds da, (38)

where we used log(a−1) = − log(a) and multiplied by η. We insert Eq. (38) back into Eq. (36)
and get

g(η,θ, ξ) =η log
∑
o∈O

∫∫
q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa − V (s)

η

)
+ ηε+ θT φ̂+ ξκ̃. (39)
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The dual function g(η,θ, ξ) is formulated in such a way that it does not depend on the Lagrangian
parameter λ, which acts as a normalization factor.

If we work on samples {s,a}i with i = 1, 2, . . . N , we have to divide by the generating distri-
bution q(s,a) and obtain

g(η,θ, ξ) =η log
1

N

∑
o∈O

N∑
i=1

p̃(o|si,ai)1+ξ/η exp

(
Ri − V (si)

η

)
+ ηε+ θT φ̂+ ξκ̃, (40)

which we can optimize using standard optimization libraries.

A.2 Derivation of Skill Sequencing

As above, we first reiterate the complete optimization problem, i.e.,

max
πk,µ

π
k

J(π1:K) = max
π,µπk

K∑
k=1

∑
o∈O

∫∫
Rksaπk(a|s)πk(o|s)µπk(s) ds da+

∫
µπK+1(s)RK+1

s ds,

s. t. : ε ≥
∫
µπK+1(s) log

µπK+1(s)

qK+1(s)
ds,

φ̂0 =

∫
φ(s′)µπ1 (s′) ds′,

∀k ≤ K : ε ≥
∑
o∈O

∫∫
µπk(s)πk(a|s, o)πk(o|s) log

µπk(s)πk(a|s, o)πk(o|s)
qk(s,a)p̃k(o|s,a)

ds da,

κ̃ ≥ −
∑
o∈O

∫∫
µπk(s)πk(a|s, o)pk(s,a)πk(o|s) log p̃k(o|s,a) ds da,∫

φ(s′)µπk+1(s
′) ds′ =

∑
o∈O

∫∫∫
Pass′µπk(s)πk(a|s, o)πk(o|s)φ(s′) ds ds′ da,

∀k : 1 =
∑

o∈O

∫∫
µπk(s)πk(a, o|s) ds da. (41)

The Lagrangian formulation reads

L = θT1 φ̂0 +
K∑
k=1

ηkε+ λk +

∫
θTk+1φ(s)µπk(s) ds+ ξkκ̃+

∑
o∈O

∫∫
µπk(s)πk(a|s, o)πk(o|s)[

Rksa−ηklog
µπk(s)πk(a|s, o)πk(o|s)
qk(s,a)p̃k(o|s,a)

+ξk log p̃k(o|s,a)−
∫
Pass′θTk+1φ(s′) ds′−λk

]
ds da

+

∫
µπK+1(s)

[
RK+1
s − ηK+1 log

µπK+1(s)

qK+1(s)
− λK+1

]
ds+ ηK+1ε+ λK+1, (42)
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where ηk , θk , ξk and λk are Lagrangian parameters. To arrive at a closed form update rule for
µπk(s)πk(a|s, o)πk(o|s), we differentiate L

dL

dµπk(s)πk(a|s, o)πk(o|s)
=Rksa − ηk log

µπk(s)πk(a|s, o)πk(o|s)
qk(s,a)p̃k(o|s,a)

+ ξk log p̃k(o|s,a)

+

∫
Pass′θTk+1φ(s′) ds′ − θTkφ(s)− λk − ηk,

=Rksa − ηk log
µπk(s)πk(a|s, o)πk(o|s)
qk(s,a)p̃(o|s,a)1+ξk/ηk

+

∫
Pass′θTk+1φ(s′) ds′ − θTkφ(s)− λk − ηk, (43)

with

ξk log p̃k(o|s,a) = ηk
ξk
ηk

log p̃k(o|s,a) = ηk log p̃k(o|s,a)ξk/ηk = −ηk log
1

p̃k(o|s,a)ξk/ηk

and set the derivative to zero to solve for the update rule

µπk(s)πk(a|s, o)πk(o|s) =qk(s,a)p̃k(o|s,a)1+ξk/ηk

exp

(
Rksa +

∫
Pass′θTk+1φ(s′) ds′ − θTkφ(s)

ηk

)
exp

(
−1− λk

ηk

)
.

(44)

For improved readability we write E[Vk+1(s
′)] =

∫
Pass′θTk+1φ(s′) ds′ and Vk(s) = θTkφ(s). As

before, we use ∑
o∈O

∫∫
µπk(s)πk(a, o|s)πk(o|s) ds da = 1, (45)

and, thus, obtain

exp

(
−1− λk

ηk

)−1
=
∑
o∈O

∫∫
qk(s,a)p̃k(o|s,a)1+ξk/ηk

exp

(Rksa + E[Vk+1(s
′)]− Vk(s)

ηk

)
ds da. (46)

Hence, the term exp
(
−1− λk

ηk

)
acts as a normalization constant and µπk(s)πk(a|s, o)πk(o|s) can

be written as

µπk(s)πk(a|s, o)πk(o|s) =
qk(s,a)p̃k(o|s,a)1+ξk/ηk exp

(
Rksa+E[Vk+1(s

′)]−Vk(s)
ηk

)
∑

o∈O
∫∫

qk(s,a)p̃k(o|s,a)1+ξk/ηk exp
(
Rksa+E[Vk+1(s′)]−Vk(s)

ηk

)
ds da

.

For improved clarity, we resort to writing the update equation in the proportional formulation

µπk(s)πk(a|s, o)πk(o|s) ∝ qk(s,a)p̃k(o|s,a)1+ξk/ηk exp

(Rksa + E[Vk+1(s
′)]− Vk(s)

η

)
, (47)

49



CHRISTIAN DANIEL, GERHARD NEUMANN, OLIVER KROEMER AND JAN PETERS

which depends only on the Lagrangian parameters ξ, η and θ with V (s) = θTφ(s), but not on the
parameter λ. The values for these Lagrangian parameters can be calculated by optimizing the dual
problem.

As before, we set the solution for µπk(s)πk(a|s, o)πk(o|s) back into the Lagrangian and simplify
to get a dual function that does not depend on the Lagrangian parameters λk, i.e.,

g(η1:K+1,θ1:K+1, ξ1:K+1) =θT1 φ̂0 +
K+1∑
k=1

ηkε+ ξkκ̃+ ηk log
∑
o∈O

∫∫
qk(s,a)p̃k(o|s,a)1+ξk/ηk

exp

(Rksa + E[Vk+1(s
′)]− Vk(s)

ηk

)
ds da. (48)

Now, the dual function g(η1:K+1,θ1:K+1, ξ1:K+1) is formulated in such a way that it does not
depend on the Lagrangian parameters λk, which acts as a normalization factor.

A.3 Derivation of Infinite Horizon HiREPS

The derivation of the infinite horizon case follows the derivations given above, where the Lagrangian
is given by

L =
∑
o∈O

∫∫
µπ(s)π(a|s, o)π(o|s)

[
Rsa−ηlog

µπ(s)π(a|s, o)π(o|s)
q(s,a)p̃(o|s,a)

+ξ log p̃(o|s,a)−θTφ(s)−λ
]

ds da+ ηε+ λ+

∫
θTφ(s′) ds′ + ξκ̃, (49)

and the resulting update rule and dual function are given as

µπ(s)π(a|s, o)π(o|s) ∝ q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa + E[V (s′)]− V (s)

η

)
, (50)

and

g(η,θ, ξ) =η log
∑
o∈O

∫∫
q(s,a)p̃(o|s,a)1+ξ/η exp

(Rsa + E[V (s′)]− V (s)

η

)
+ ηε+ ξκ̃. (51)

As for the other cases we can find the minimum of the dual function using standard optimization
libraries.
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