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Abstract— During grasping and other in-hand manipulation
tasks maintaining a stable grip on the object is crucial for
the task’s outcome. Inherently connected to grip stability is
the concept of slip. Slip occurs when the contact between the
fingertip and the object is partially lost, resulting in sudden
undesired changes to the objects state. While several approaches
for slip detection have been proposed in the literature, they
frequently rely on previous knowledge of the manipulated
object. This previous knowledge may be unavailable, seeing
that robots operating in real-world scenarios often must interact
with previously unseen objects.

In our work we explore the generalization capabilities of
well known supervised learning methods, using random forest
classifiers to create generalizable slip predictors. We utilize
these classifiers in the feedback loop of an object stabilization
controller. We show that the controller can successfully stabilize
previously unknown objects by predicting and counteracting
slip events.

I. INTRODUCTION

Robust grasping and dexterous in-hand manipulation of
objects remain challenging tasks in robotics. A host of
issues contribute to the difficulty of in-hand manipulation
including finger positioning, estimation of object and finger
dynamics, finger coordination, and dynamic grip stability [1—
3]. Furthermore, in realistic open-ended environments, robots
will encounter many novel objects. Therefore, we claim it is
crucial that strategies for grasping or manipulation do not
rely on object models. Instead, strategies should generalize
previous experiences for use with novel objects in order to
be useful in these scenarios.

Slip, the partial loss of contact between a robot finger and
object, is a fundamental concept in manipulation tasks [4, 5].
Accurately detecting slip provides rich feedback for a robot
to maintain grip stability during manipulation [5, 6]. Such
feedback could additionally be used by a robot to reposition
objects in its hand through controlled sliding [2]. We believe
endowing a robot with the ability to detect slip will enable
more reliable and more sophisticated manipulation of ob-
jects. We also consider slip prediction as a means to improve
manipulation capabilities. Predicting slip allows the robot
to react prior to slip occurring, compensating for controller
latencies and negating all undesired changes to the object’s
state.
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Fig. 1.
vertical surface; it then slowly moves the finger away inducing a slip event.

Example data collection trial: the robot holds the object against a

While several tactile sensing technologies have been used
in robotic manipulation applications [4], some show a num-
ber of attractive benefits compared to alternative sensing
modalities for detecting and predicting slip. Tactile sensors
that function at high frequencies allow for the detection of
incipient slip, letting the robot react before gross slip oc-
curs [6]. Such quick feedback is crucial to combat undesired
object dynamics caused by slip. Beyond this, tactile sensors
are directly in contact with the object, not suffering from
visual occlusion. Furthermore tactile sensors that have high
spatial resolution provide richer and more direct feedback
of the object of interest’s behaviour when compared to joint
encoders or force-torque sensors. Slip detection based on
force and joint sensing modalities also frequently relies on
strong modelling assumptions.

As a step towards robust in-hand manipulation, this work
focuses on the detection and prediction of slip via tactile
sensing. We incorporate our learned slip classifiers into a
feedback controller to perform grip stabilization. We take a
data-driven approach, where the robot collects tactile data of
objects being held stably as well as slipping, as illustrated
in Fig. 1. Based on this data, the robot learns a classifier to
detect or predict slip events. Compared to approaches based
on modelling and analysis of slip physics, our approach
has the advantage that the friction coefficient and shape
of the object need not be known. We compare different
learning methods for classification trained on data collected
on common household objects. We examine the ability of the
slip classifiers to generalize to previously unseen objects. We
ultimately validate our slip classification approach through
use in a grip stabilizing feedback controller. We analyze the
differences in control performance when using detection and



prediction classifiers.

We present the remainder of this work as follows. Sec-
tion II gives an overview of related research efforts on slip
detection and tactile sensing. We formalize slip detection
and slip prediction as similar learning problems and discuss
possible approaches in Sec. III. We introduce our grip
stabilization controller in Sec. IV. We follow this with a
description of our experimental setup and results of our
evaluation in Sec. V. We conclude with a discussion of future
applications and extensions of our work in Sec. VL.

II. RELATED WORK

In this section, we review related work on slip detection
and tactile sensing. We first give an overview of various
modalities used to predict slip, and then focus on approaches
using tactile sensing specifically. Finally we give a short
overview on approaches for detecting grasp stability.

Other than tactile sensing, modalities such as vision, force-
torque sensing, and range sensing have been used for slip
detection. As an example of the first, Ikeda et al. [7] use a
camera to detect deformations of a fingertip. Problems due
to occlusion were avoided by gripping a transparent object,
limiting the possible applications. The work of Vifia et al. [8]
is an example of using force-torque sensing for slip detection.
Using learned models in conjunction with Coulomb’s friction
model, they determine continuous bounds on the forces and
torques that can be withstood by a grasp before slipping
occurs. A laser-based range sensor is proposed by Maldonado
et al. [9] for detecting slip between a fingertip and object.

An alternative body of literature addresses the identifica-
tion of slip explicitly using tactile sensing. An early example
is the work of Tremblay et al. [6], who employ a hand-tuned
slip detector based on the amount of vibrations, inspired by
the FAII receptors in humans. Human-inspired features are
also used by Romano et al. [10] to stabilize grasps during the
lifting and transport of objects. Their human inspired features
are used as inputs to a high level control policy composed
of phase specific lower level controllers. Van Anh Ho et
al. [11] treat a tactile array as an image and compute sparse
optical flow to estimate “slipped points”. A point feature is
classified as a slipped point if the change in feature position
over two subsequent frames is greater than a predefined slip
threshold. The method classifies the object as slipping based
on the percentage of tracked features identified as slipped
points. Heyneman and Cutkosky [12] present a method for
differentiating between hand-object and object-world slip
events. Spectral decomposition is used to separate vibration
signals caused by the slip between the object and finger
from external vibrations. Reinecke et al. [13] compare three
different approaches for slip detection of objects grasped
between two fingers equipped with BioTac sensors. The first
approach performs model-based slip detection by estimating
the contact location of forces applied by the fingers using
the tactile sensors. Slip is predicted if the forces applied
lie outside the estimated friction cones. The second method,
following a method proposed by Fishel [14], uses spectral
analysis of vibration data to detect slip. If the energy content

between 30 and 200 Hz is above a nominal value slip is
believed to be occurring. The third method uses a random
forest classifier to detect slip events. While the three methods
are compared to one another they are only evaluated on a
single object. Schopfer et al. [15] present a method for slip
detection by learning a neural network trained on spectral
features computed on a large tactile array. The method
uses the robot kinematics to determine the end effector
velocity when sliding across a known material and estimates
this velocity as the ground truth slip. Li et al. [16] use
tactile sensing to adapt grasps in order to maintain grasp
stability. They predict if a grasp is stable on a combination
of kinematic data from the robot hand and the raw tactile
information from BioTac sensors embedded in the robot’s
fingers.

Although we are interested in explicit detection of slip
across different objects, the related task of detecting grasp
stability is also relevant. For example, Bekiroglu et al. [17]
use the moments of the activation patterns of tactile arrays
to assess the current grasp as stable or unstable. Dang and
Allen [18] present an alternative method for detecting stable
grasps from tactile sensing using a learned dictionary of
contact locations. In contrast, Madry et al. [19] used deep
learning to find tactile features for assessing grasp stability.

III. LEARNING TO PREDICT SLIP

In this section we describe our approach to detecting and
predicting slip using tactile feedback and supervised learning
methods. We formalize the prediction problem as a classifi-
cation problem where we wish to learn a function, f(-), to
classify the current state as slip or non slip: ¢, = f(¢(x14))
where ¢; € {¢glip, Cron_slip } 1S the state class at time 7 and ¢ (-)
is a feature function over the raw sensor data xj., covering
sensor samples from initial time 1 to the most recent time
step .

Using this formalization we detect slip at the current time
step. While detecting slip is important, being able to predict
slip allows the robot to react before any undesired changes
to the object state occur. In our approach, slip prediction is
performed using the previous formalization while training the
classification methods with future labels ¢;¢, = f(9(x1:))
where Ty is a positive step size, indicating how many steps
in the future the predictor is trained for. Detection is then
the special case of prediction when 7y = 0.

We aim at having stable classification throughout the slip
event without compromising on the generalization capa-
bilities of the learned classifier. We also wish to achieve
prediction of fg;p as early as possible. Early prediction of
the class transitions from cpon_siip t0 cs1ip Will provide for the
possibility of more robust control during object manipulation.
With these three goals in mind, we explore how the feature
function, ¢ (-), and the use of different classification methods,
f(-), influence the outcome of the prediction.

A. Feature Comparison

Our raw tactile data is extracted from the BioTac [20], a
multi-channel tactile sensor whose design was inspired by the
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Fig. 2. The Mitsubishi PA-10 robot arm equipped with a BioTac tactile
sensor. An RGB-D camera records the experiments to facilitate the data
labeling process.

human finger. The sensor provides several channels including
an array of impedance-sensing electrodes measuring the local
pressure on the fingertip, E, a pressure transducer which
measures low frequency, Py, and high frequency, P,, pres-
sure variations, and a set of heaters coupled with a thermistor
that measure temperature, Ty., and temperature flow, T,c. A
single timestep generates a vector of 44 values which make
up x;. The electrodes account for 19 of these elements. The
high frequency P, values are sample 22 times per single
data frame accounting for half of vector. The remaining Py,
Tyc and T, channels are all single values. These 44 values
are sampled at a rate of 100 Hz. Thus a single timestep in
terms of classification is actually accumulating data over a
small time window.

The feature function ¢ (-) takes several forms each of them
representing distinct assumptions about the detectability of ¢,
from the raw sensor data xj.,. If we assume the class label
to be directly observable from the current sensor reading,
¢; than a memoryless feature ¢(-) takes the form ¢ (x;,) =
x; and is denoted as the single element feature function.
Another interesting case is when we assume that ¢; depends
not only on the current sensor data but also on the change of
the data with respect to the previous time step. In this case
o(.) takes the form ¢(x;.,) = [X;,Ax;] and is denoted as the
delta feature function. Finally, the last assumption considers
¢; heavily dependent on past data. This can be interpreted
as an attempt to teach a classifier the tactile patterns that
lead to slip, and can be represented through the feature
function ¢(x;;) = X,_r; where 7 is the size of the time
window of past data to be considered. This feature function
is denoted as time window feature function. In addition to
these feature functions we also show results when using the
features introduced by Chu et al. [21]. Originally designed
with the goal of object property learning, these features are
divided into four distinct groups that try to depict not only the
compliance, roughness, and thermal properties of the object,
but also the correlation between the electrode data retrieved
from the sensor. For a more detailed description of these
features please refer to [21].

B. Classification Methods

For classification, the methods used in this work are
support vector machines and random forest classifiers. We
have chosen these methods as they are well understood in
the machine learning community and have been successfully
applied to a number of problems in computer vision, which
also deal with classification of high-level concepts from
complex sensor data [22-25].

Support vector machines (SVM) are discriminate clas-
sifiers separating the training samples by partitioning the
feature space with a single decision boundary [26]. Each par-
tition of the feature space defined by the decision boundary
represents a single class. The decision boundary is chosen
with respect to the closest samples of each class referred to
as the support vectors. During training the decision function
which maximizes the classification margin, defined as the
sum over the distances to each support vector, is found. The
resulting linear classifier evaluating feature vector z takes the
form:

flz)= Zia(z-iz)+b

i=1
‘where ‘& is the weight associated with the i support vector,
'z, and b is a constant offset term. The support vectors
and weights can be found efficiently by solving a quadratic
program.

A random forest classifier is an ensemble of randomly
trained binary decision tree classifiers [27]. Each decision
tree classifies a given test example independently. The result
of the entire forest is obtained by averaging over the dis-
tributions of the leaves reached in each of the trees. The
class with the highest probability is then selected as the
corresponding class for the current sample. Each decision
tree is a binary tree where all non-terminal nodes have an
associated splitting function, which decide if the currently
evaluated example should traverse down the tree following
the left or right branch. Leaf nodes contain a probability
distribution over the class labels of training examples which
reach this node. Tree training consists of selecting the feature
and threshold to split at each node. These values are selected
through the optimization of a specific performance criterion.

In this work we minimize the Gini impurity score to ac-
quire the node splitting function. Randomness in each tree is
introduced during training by providing only a random subset
s € . of the complete feature set . to the optimization
of the node splitting criterion. We perform hyper-parameter
optimization on the number of trees per forest and the size
of the feature subset s by maximizing the Fi.,. using grid
search. The Fy.,r is introduced in Section V-C. Trees have
no maximum depth, and nodes are split until they are either
pure (all samples have the same label) or contain only two
samples. All classifier implementations in our work come
from the scikit-learn library for python [28].

IV. STABILITY CONTROL USING SLIP PREDICTION

We propose a simple feedback controller which makes
use of the slip classifier’s discrete output in the feedback



loop. In brief, the controller increases the force applied to
the object when slip is predicted to occur until the robot no
longer predicts slip. By increasing the force in the direction
of the contact normal, tangential forces should not increase
and the force should stay within the friction cone of the
contact location. We give a detailed explanation of our
implementation below. We show evaluations of our controller
in Section V-E.

We assume the sensor is in contact with the object when
control begins since we can easily detect contact using
thresholds on the sensor pressure values. At each timestep the
classifier evaluates if slip is occurring. If the robot predicts
slip, then the controller increases the force, F,[f], applied
normal to the point of contact, P. at time t. If the robot
predicts no slip, then the current force is maintained. The
robot increases the force applied by a fixed amount J.

Fy[t] + 8yt +1]
Fylt] otherwise

if ¢ = cqlp

FN[t+1]={

where 8Fy denotes the unit contact normal.

We estimate both the contact normal £, and point of
contact P, using the electrode sensors in the BioTac using a
method detailed to us by the manufacturers. We estimate P,
as the center of applied pressure on the BioTac skin using a
simple interpolation method. We average the spatial locations
of all electrodes weighting this average by the responses at
each electrode to determine the point of highest pressure.
The contact normal is estimated in an analogous manner.
The surface normals of all sensing electrodes are averaged,
weighted again by the electrode responses. We normalize by
the magnitude of the resulting vector to give us a unit vector
in the direction of applied contact force.

V. EXPERIMENTAL EVALUATION

We now explain in detail our experimental evaluation.
Section V-A describes our robot platform and the sensors
used. The experiments performed for data collection pur-
poses as well as the description of the data set used for the
training and testing of the learning methods are described
in section V-B. We present results of our detection and
prediction methods as well as comparisons to other methods
in Sections V-C and V-D. Finally, we show results for our
grip stabilization controller in Section V-E.

A. Experimental Setup

Our experimental setup consists of a Mitsubishi PA-10
robot with seven degrees of freedom. A BioTac tactile sensor
is rigidly mounted to the force-torque sensor as a single
finger for manipulation. Additionally to the on-board sensing,
an external RGB-D camera (Asus Xtion Pro) was placed in
order to capture the robot’s work space to record each trial.
The complete setup can be seen in Figure 2.

B. Data Collection

A single data collection trial is initialized by placing
an object between the robot finger and a vertical plane.
The robot arm then slowly moves away from the plane

Fig. 3.

The objects comprising our data set. We selected objects covering
a range of shapes and stiffness in order to adequately test classifier
generalization. From left to right the objects names are ball, box, cup,
marker, measuring stick, tape, and watering can.

at a constant task-space velocity (1 cm/s) until slip occurs
between the object and finger. The robot continues moving
until the object eventually falls to the ground. Data was
collected for each object from the set of seven common house
old objects depicted in Figure 3. Ten trials were performed on
each object using different initial contact locations and object
poses, producing a total of seventy trials. The labeling of
the data was performed with the aid of the camera. Slip was
labeled at all times at which the object was visibly sliding
between the finger and the vertical plane. Figure 4 show an
example of the labels and the corresponding visual feedback
at each label transition.

Two observations can be made regarding the data. First we
notice that slip occurs for very short durations. This results
in a low ratio between the number of slip labels and non-slip
labels. Secondly, the labeling accuracy of the human expert
may be biased by the camera data which is captured at a
much slower rate then the tactile data. This potentially results
in a lag in the labeling causing an inaccurate measurement
of tip by the human expert. It is worth mentioning that the
vision labelling could have been done autonomously by the
robot but we wished to simplify the experimental procedure.

Both of the previous observations are taken into account
when analyzing the results in Sections V-D and V-E. Ap-
propriate measurements for classifier performance are used,
taking into account the low ratio of positive examples. We
also expect the transition step fgjp to be estimated earlier
by the learning algorithms when compared to the human
expert. We examine this in evaluating our slip controller in
Section V-E.

C. Slip Detection

We now analyze the described methods focusing on de-
tection rates and generalization capabilities. We start by
introducing the experimental procedure and the criteria used
to compare the methods. We split the collected experimental
data into training sets containing seven trials for each object.
The remaining three trials per object were amassed into the
test set. In all experiments we set the time window feature of
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Fig. 4. An example slip trial. The blue plots represent the ground truth labels. Images below correspond to the box being held stably, slipping, and finally
loosing contact. Ground truth labels were given by a human observer after the trial was completed. The solid vertical lines correspond to the start and end

of the human labeled slip event.

7 = 10. We examined a range of values for T and found this
to perform the best, although not by a significant margin.

For the first set of experiments we compare the different
feature functions and classifiers described above in Sec-
tion III. We examine two different training scenarios. The
first approach trains a single classifier for each object. In
the second scenario a single classifier was trained across
all available training data. We report the results of these
experiments in Table I. This table summarizes the Fy.ore
for each classifier. The Fy. is a weighted average of the
precision and recall measures and has the form

precision - recall
Feeore =2 ——7———
precision + recall

Precision depicts the ratio between accurate positive classi-
fications and total positive classifications

true positives

precision = — —
true positives + false positives

while recall is the ratio between accurate positive classifica-
tions and positive examples

true positives
recall = P

true positives + false negatives

We choose to report the Fi.,. instead of classification
accuracy, as we care much more about detecting when slip
occurs then when it doesn’t. Since the majority of labels are
negative (no slip) classification accuracy could be quite high
while not detecting any of the slip events.

We see that random forests with the single time element
feature performed best in detecting slip on average. The sin-
gle time element features perform best on four of the seven
object classes. For two of the remaining three objects—the
box and the watering can— the linear SVM with delta features
performed best. The final object, the cup, was best classified
by the linear SVM with the time window. On average the
delta feature random forest classifier performed at 95% of
the single time step feature. The SVM performed similarly
well with these features. We see no dramatic difference in
training per object specific versus object agnostic classifiers.

The features we adapted from Chu et al. perform worse
than the simple feature functions we defined. This is not
surprising since they were designed with other tasks in mind.

In fact the features from Chu et al. pool information over
temporal windows which are quite large in comparison to the
time in which slip events occur. These results show that there
is a need for preserving the distinct information available at
the immediate time of slip.

We see that the ball is the most difficult object across all
classifiers for predicting slip. We attribute this to the fact
that the spherical shape causes contact to be over a very
small area. This causes the object to quickly lose contact
with the finger once slip occurs giving few slip examples
for training as well as few available testing examples for a
classifier to correctly label. Slip is more easily detected by
all classifiers on the roll of tape, the measuring stick, and
the box. We attribute this to the flat contact surfaces of the
objects which generate a long and consistent sensory signal.
This consistency simplifies the learning problem, while also
giving more chances for testing examples to be correctly
classified.

In Table I we additionally compare our learning approach
to the spectral slip classifier introduced in [14]. This spectral
slip method computes the total energy in the P,. channel
over 8 frames, after bandpass filtering the output from 30 to
200 Hz. We choose the threshold for total energy present by
optimizing the F.,. on the training set. Unsurprisingly this
method performs quite poorer than the learning methods.
The method has a very strong assumption about how slip
events manifests in the sensor ignoring all information but
that found in the AC pressure component.

For the last set of experiments, we were interested in
examining how well learned classifiers could generalize to
previously unseen objects. As such, we removed one object
class at a time from the training set and trained a classifier
on data from the six remaining classes. We repeated this
procedure for all seven objects and we report results for
different features and learning methods in Table II.

We note that the random forest again performs best in
this generalization scenario with the delta feature function
outperforming the single time step features on average. The
overall Fy.,. for the best performing method is only slightly
worse than for results when all objects have been seen. In fact
the Fycore reduces by only 10%. Spectral slip again performs
poorly, with a very minor decrease in score from being
trained on all objects. The performance using the features of



TABLE I
Ficore FOR VARIOUS COMBINATIONS OF CLASSIFIER AND FEATURES. “PER OBJECT” DENOTES CLASSIFIERS TRAINED INDEPENDENTLY FOR EACH
OBJECT. “ALL OBJECTS” REFERS TO TRAINING A SINGLE, GENERAL CLASSIFIER ACROSS ALL OBJECTS. THE BEST PERFORMING METHOD IN EACH

COLUMN IS HIGHLIGHTED IN BOLD.

: s Ficore

Features Classifier Training Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
Linear SYM LPS" ol?ject 0.7451 | 0.6437 0.9765 0.7825 0.3258 0.8041 0.9697 0.7137
X all objects [ 0.7341 [ 0.5065 0.911 0.7114 0.5849 0.9163 0.9749 0.5339
! Random Forest | P~ object [ 0.722410.2266 0.9775 0.7741 0.6611 0.9647 0.9956 0.4571
" [all objects [ 0.7502]0.2886 0.9777 0.7437 0.7049 0.9126 0.999 0.6247
Lincar SVM  LPeT ot?ject 0.7174 1 0.6121 0.9795 0.7827 0.1495 0.7824 0.9879 0.7278
Ix;, Ax;] all ob]e_:cts 0.7336 | 0.5289 0.908 0.7198 0.5532 0.9328 0.9774 0.5148
’ Random Forest | 2" object 0.712310.2462 0.978 0.6922 0.6591 0.9287 0.9963 0.4854
all objects [ 0.7097 [ 0.2163 0.9754 0.705 0.6621 0.9192 0.9927 0.4969
Linear SVM  LPeT ot?ject 0.7174 | 0.4132 0.9671 0.7849 0.4524 0.7719 0.9069 0.7255
) all objects | 0.6571 | 0.461 0.8141 0.7016 0.3813 0.97 0.8181 0.4535
Random Forest | PS" ol?ject 0.721210.2428 0.9759 0.7297 0.7035 0.9446 0.9941 0.4579
all objects [ 0.7151 [ 0.2402 0.9701 0.7067 0.686 0.9227 0.996 0.4841
Chu et al. | Random Forest | PST ol?ject 0.6956 | 0.6053 0.9754 0.6862 0.6364 0.8666 0.6778 0.4219
all objects [ 0.5374[0.4742 0.9417 0.7026 0.2966 0.7803 0.5181 0.0486
P Spectral Sli per ol?ject 0.2751(0.1237 0.3586 0.2122 0.0796 0.3908 0.4039 0.357
a P Pl objects | 0.2565 [ 0.0917 0.3207 0.2071 0.0791 0.3883 0.3714 0.3368

TABLE II

Ficore FOR VARIOUS CLASSIFIERS IN GENERALIZING TO PREVIOUSLY UNSEEN OBJECTS. THE BEST PERFORMING METHOD IN EACH COLUMN IS
HIGHLIGHTED IN BOLD.

M Ex‘core

Features Classifier Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
N Linear SVM | 0.5141 | 0.5432 0.7866 0.4467 0.6384 0.6629 0.0193 0.5019
' Random Forest | 0.5936 [ 0.0816 0.8596 0.6966 0.5414 0.6442 0.756 0.5757
[x,, Ax;] Linear SVM | 0.4788 | 0.5639 0.7718 0.3756 0.5813 0.6453 0.0183 0.3953
’ Random Forest | 0.6739 [ 0.1626 0.8922 0.7076 0.7052 0.7762 0.9021 0.5716
< Linear SVM | 0.4406 | 0.3997 0.0121 0.6089 0.4554 0.2432 0.843 0.5216
=% 'Random Forest | 0.6149 [0.0686 0.8235 0.697 0.6975 0.7906 0.709 0.518
Chu et al. | Random Forest | 0.2926 | 0.1925 0.8609 0.625 0.0898 0.229 0.0496 0.0017
Pyc Spectral Slip | 0.2485|0.0917 0.2957 0.2059 0.0791 0.3758 0.3714 0.3202

Chu et al. perform quite a bit worse than in the earlier exper-
iments. As noted before, these features were designed with
a very different purpose in mind. As such, the results show
that for the case of tactile slip detection, there is a need for
designing tactile features that explore the information gained
at each time step. Furthermore, the strong performance of
the delta features suggests that dynamic information over
short periods is important while the performance of the time
window features suggest that excessive dynamic information
might lead to overfitting.

We observe poor performance for all combinations of
classifiers and features when generalizing for the ball. The
poor generalization of the ball, results from it’s distinct shape
with respect to the other training objects.

D. Slip Prediction

We now turn our analysis to our learned slip predictors.
We trained classifiers to predict slip with look-ahead horizons
Ty of 10, 15, and 20 steps, equating to times of 0.01, 0.015,
and 0.02 seconds respectively. Performing a similar analysis
as for the slip detectors we show the prediction rates for the
trained slip predictors in Table III. In this instance we only
report the Fy.,. for the random forests with single element
and delta features, since these proved to be the most relevant
in the detection experiments. With respect to the features
and the training scenarios, the results are similar to the ones

obtained for the detectors. We observe that the highest scores
for each object are again condensed in the single element
features and that the average Fj. obtained by the single
feature classifiers is slightly higher than the that of the delta
features. With respect to the look-ahead horizons, we observe
the highest average performance when 7y = 10. Considering
each object separately, we see that most objects also perform
best when 7y = 10. However, predicting slip for the marker
works best when 7 = 15, while setting 7y = 20 gives the
best performance on the ball and cup trials. This suggest
that for objects with higher curvature the changes in finger
deformation make it easier to predict slip events at an earlier
stage.

We also performed the generalization experiment for the
predictors. The results are shown in Table IV. The results
are again very similar to the ones obtained for the detectors,
as the delta features still show the best generalization capa-
bilities. With respect to the values of 7y, the best scores for
each object can be seen for 7y = 10 and 7y = 15 while the
average best performance is still observed for 7, = 10.

E. Grip Stabilizing Control

As a final test of the generalization capabilities of our slip
detection method, we examine the ability to perform grip sta-
bilization on novel objects. We embedded the random forest
slip predictor in the grip stabilization controller presented



TABLE III
Fscore FOR VARIOUS COMBINATIONS OF CLASSIFIER AND FEATURES WHEN PERFORMING PREDICTION. “PER OBJECT” DENOTES CLASSIFIERS TRAINED
INDEPENDENTLY FOR EACH OBJECT. “ALL OBJECTS” REFERS TO TRAINING A SINGLE, GENERAL CLASSIFIER ACROSS ALL OBJECTS. PREDICTION IS

DONE FOR 3 DIFFERENT VALUES OF Ty.

Features | 77 | Training Frcore - - -
Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
10 |LPer object | 0.717 | 0.4255 0.9715 0.7324 0.5695 0.9538 0.9874 0.3792
all objects | 0.6806 | 0.2857 0.9233 0.7104 0.4165 0.896 0.9926 0.5395
. 15 |per object [ 0.7047]0.1966 0.9675 0.7334 0.6563 0.9414 0.9862 0.4513
' all objects [ 0.6427 [ 0.2369 0.9532 0.7188 0.3081 0.8949 0.9255 0.4617
0 LPer object | 0.6795]0.0938 0.9661 0.7274 0.6767 0.9241 0.9471 0.4211
all objects | 0.6989 [ 0.4626 0.9359 0.6948 0.4034 0.8991 0.9732 0.5232
10 |Per object | 0.6797 | 0.0937 0.9685 0.7361 0.602 0.9163 0.9885 0.4528
all objects [ 0.6743 [ 0.0865 0.9665 0.7149 0.6041 0.914 0.9912 0.4429
x,Ax] | 15 per object [ 0.6918 [ 0.1294 0.9615 0.7385 0.7228 0.866 0.9823 0.4422
e all objects [ 0.6727 | 0.32 0.9561 0.7119 0.4001 0.9101 0.9776 0.433
0 |Per object [ 0.6918 [ 0.0972 0.964 0.7439 0.7145 0.9235 0.9721 0.4273
all objects | 0.6697 [ 0.3275 0.9592 0.7161 0.4497 0.8983 0.9741 0.3626
TABLE IV

Ficore FOR VARIOUS CLASSIFIERS IN GENERALIZING TO PREVIOUSLY UNSEEN OBJECTS WHEN PERFORMING PREDICTION. THE BEST PERFORMING
METHOD IN EACH COLUMN IS HIGHLIGHTED IN BOLD.

F:\L‘Ufe

Features | 7, Mean | Ball Box Cup Marker Measuring Stick Tape Watering Can
10]0.5266 | 0.1741 0.4054 0.7017 0.4032 0.7101 0.6281 0.6638
X; 15] 0.564 [0.2315 0.5874 0.6507 0.2373 0.7819 0.7739 0.685
2010.596210.1643 0.7936 0.669 0.4432 0.7558 0.759 0.5885
10| 0.6406 | 0.1943 0.8154 0.6965 0.5778 0.7678 0.9502 0.4819
[x;,Ax,] [ 15]0.5562]0.2326 0.4383 0.6909 0.4278 0.8036 0.8765 0.4239
20]0.5337]0.1667 0.5861 0.6906 0.3724 0.7763 0.879 0.2649

in Section IV. We used the random forest trained with one
object held out to perform a number of grip stabilization
trials. Each trial consisted of the robot initially pinning the
object in a similar manner to the training method. However,
the robot initially applies a much lighter contact force (= 2N)
when initially pinning. We introduce additional variability
into the testing by moving away the robot with a randomly
selected exit velocity. The exit velocity is sampled uniformly
between 0.02m/s and 0.07m/s in the reverse direction. We
change the direction of motion by adding vertical and lateral
velocity components sampled from Gaussian distributions
with 0.0 cm/s mean and 0.05 cm/s standard deviation. We
compare the performance of using the single time step
features to using the delta features for a number of different
look-ahead values. The results achieved using a variety of
different classifiers are shown in Tables V. We conducted
ten trials per object and report the percentage of successful
grip stabilization trials for each object.

When using detection, and not prediction, we see that
the controller performs better on average when trained with
the delta features. This echoes the offline results for leave-
one-out detection, where the delta features also performed
best. This is intuitively appealing as information about the
change in state available in the delta features should aid
in compensating for slip compared to the raw features. As
shown in Table V the controller is able to stabilize most
objects successfully when using the learned predictor.

When using prediction we see that the overall performance
of the controllers trained with single element features in-
creases above the detection rates, for all look-ahead values.

On the other hand the performance of the controllers trained
with the delta features seems to be highly correlated with the
look-ahead value, achieving the highest overall stabilization
performance out of all controllers when 7y = 20. However,
no single method performs best consistently. Looking at
each object specifically, we observe that the four worst
performing objects are the measuring stick, marker, ball and
watering can. The measuring stick is quite heavy, shortening
the duration of the slip events, making it quite hard to
stabilize. Stabilizing the marker and the ball requires a good
balance between the normal force and the contact location,
as increasing the normal force may result in the object
being ejected from the grip. Finally the watering can has
an uneven weight distribution creating torsional slip which
our controller does not mitigate well.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a learning based approach to feed-
back control for stabilizing objects. Our controller relies on
learning to predict slip through tactile sensing. Our approach
learns from real-world robot interactions to better detect slip
events better than previous proposed approaches. Our binary
classification formulation of slip events also corresponds
well with neuroscientific evidence suggesting that the human
tactile system has a strong discrete feedback component [5].
We show that our learning method effectively generalizes
learned knowledge to predict slip when interacting with novel
objects. We believe these results show great promise for
the use of slip detection to improve control during in-hand
manipulation. We intend to extend our controllers into other



TABLE V
PERCENTAGE OF SUCCESSFUL GRIP STABILIZATION TRIALS USING OUR GRIP STABILIZATION CONTROLLER. ALL CONTROLLERS USED A RANDOM

FOREST SLIP CLASSIFIER TRAINED WITHOUT DATA FOR THE TEST OBJECT. BOLD VALUES INDICATE THE BEST PERFORMANCE FOR A GIVEN OBJECT.

. X; X, , AX;
TestObject | o 0 | ¢, =10] 7, =157, =20| ¢, =0 rf:[lo rf}: 15| 7, =20
Ball 0% | 0% | 0% | 100% | 90% | 0% | 90% | 80%
Box 100% | 100% | 100% | 100% | 100% | 100% | 90% | 100%
Cup 90% | 60% | 40% | 70% | 100% | 10% | 60% | 60%
Marker 80% | 40% | 80% | 10% | 30% | 10% | 0% | 100%
Measuring Stick | 20% | 90% | 60% | 10% | 20% | 10% | 0% | 10%
Tape 10% | 100% | 80% | 100% | 30% | 80% | 100% | 90%
Watering Can | 10% | 60% | 100% | 50% | 30% | 60% | 60% | 80%
Overall 44.28% | 64.28% | 65.71% | 62.85% | 57.14% | 38.57% | 57.14% | 74.28%

manipulation tasks such as performing grip stabilization dur-
ing object transport or controlled sliding of grasped objects.
While we focus particularly on the detection of slip,
our formulation can be extended to detecting other types
of tactile events. Slip was chosen as a first step, since
it is a pervasive problem in both grasping and in-hand
manipulation. We plan to extend our detection framework
to other tactile events such as making and breaking contact
with an object or detecting when an object being lifted breaks
contact with the supporting surface. At present our method
is limited by the need of a human to provide labels based
on visual information. We hope to circumvent this problem
in the future by measuring slip externally during training.
Nevertheless we still find our method to be more attractive
than heuristic or model-based methods of detecting slip.
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