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Abstract— Most manipulation tasks can be decomposed into
a sequence of phases, where the robot’s actions have different
effects in each phase. The robot can perform actions to
transition between phases and, thus, alter the effects of its
actions, e.g. grasp an object in order to then lift it. The robot
can thus reach a phase that affords the desired manipulation.

In this paper, we present an approach for exploiting the
phase structure of tasks in order to learn manipulation skills
more efficiently. Starting with human demonstrations, the robot
learns a probabilistic model of the phases and the phase
transitions. The robot then employs model-based reinforcement
learning to create a library of motor primitives for transitioning
between phases. The learned motor primitives generalize to new
situations and tasks. Given this library, the robot uses a value
function approach to learn a high-level policy for sequencing
the motor primitives. The proposed method was successfully
evaluated on a real robot performing a bimanual grasping task.

I. INTRODUCTION

In order to perform a wide range of tasks, robots need to
learn how to interact and manipulate objects. A robot can
manipulate different parts of its environment by fulfilling
certain preconditions. For example, a robot can apply forces
to an object by first moving into contact with it. The robot
may in turn need to alter other parts of the environment’s
state to achieve these conditions. Hence, a robot will often
have to perform a sequence of manipulations to alter dif-
ferent parts of the environment’s state. These stages of the
manipulation task are referred to as phases [12], [19], and a
phase transition usually results in the robot’s actions having
different effects.

The robot will often need to transition through multiple
phases before reaching one that allows for the desired ma-
nipulation. The conditions for transitioning between phases
therefore represent important subgoals of the overall task.
A robot can learn individual skills for transitioning between
pairs of phases. In this manner, the robot learns skills that
can be reused between tasks with similar phase sequences.
The skills for accessing different parts of the environment’s
state are thus also separate from the task-specific skills for
changing those parts of the state.

In this paper, we present a method for learning hierarchical
manipulation skills based on the task’s phase structure. The
robot first learns a probabilistic multi-phase model of the task
using a state-based transitions autoregressive hidden Markov
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Fig. 1. The Darias robot performing a bimanual grasp of a box. The motor
primitives used to perform the task, as well as the policy for sequencing
them, were learned using a reinforcement learning approach. The model of
the task’s phases was learned from human demonstrations.

model (STARHMM) [25]. This model captures the phase
transition conditions that represent the subgoals of the task.
The robot then learns a motor primitive for each of these
subtasks and optimizes it using a policy search reinforcement
learning approach. Finally, the robot uses a value function
approach to learn a high-level policy for sequencing the
motor primitives. In this manner, the robot can learn policies
that reuse motor primitives between tasks with the same
phase transitions.

The proposed method was evaluated using the robot shown
in Fig. 1. Given only two demonstrations of bimanual
grasping, the robot successfully decomposed the task into
five phases, and it learned a library of motor primitives for
transitioning between them. The learned motor primitives
generalize to different object locations, as well as objects
with different shapes. The robot then learned high-level
policies for both bimanual grasping task and pushing tasks.

This paper presents three main contribution: 1) An ex-
tension to the STARHMM that allows the robot to model
the entry and exit conditions of phases, which leads to
more efficient learning of the phase transitions. 2) Using
the learned phase transitions to optimize motor primitives
for reliably transitioning between phases. 3) Using non-
parametric dynamic programming to learn a high-level policy
for sequencing motor primitives, including primitives that
were learned from other tasks.



II. MULTI-PHASE MODELS

This section explains how the robot learns a multi-phase
model of the manipulation task. We assume that the robot
is initialized with human demonstrations of the task. The
model can be updated to incorporate additional data as the
robot attempts the task. The model structure is outlined in
Section II-B, and the learning is explained in Section II-C.

A. Related Work
Previous work on learning sequences of motor primitives

for manipulation tasks has mainly focused on imitation
learning from human demonstrations. While some methods
assume that a library of motor primitives already exists
and focus on sequencing these primitives [30], [27], other
approaches also learn the individual skills by segmenting
the human demonstrations [29], [6], [14], [38]. The result-
ing segments are therefore linked to specific movements
and the sequencing of primitives is done according to the
demonstrated task. In contrast, our approach performs the
segmentation based on the effects of the actions, and uses the
resulting subgoals to optimize the motor primitives. Multi-
modal planning methods have also been used to sequence
actions in order to achieve different manipulation goals [3],
[16]. However, the actions, the discrete modes of the system,
and the system model are usually predefined.

Some methods have also been proposed for using re-
inforcement learning to improve the performance of skill
sequences [21], [35], [9]. These approaches learn to optimize
sequences of skills for specific tasks, and the skills are gen-
erally executed in a fixed order. Hiearchical reinforcement
learning methods learn both a library of skills as well as a
high-level policy for sequencing them [37], [13], [20], [34],
[15]. However, these methods often rely on a predefined set
of subtasks or salient events [20], [34], or use a scaffolding
approach to direct the hierarchical learning process [13],
[15]. In contrast, our approach first learns a model of the
task to determine the salient subgoals, and then learns a
corresponding skill library. The robot subsequently learns a
high-level policy, which can reuse skills between tasks.

Previous work in robotics has already shown the benefits
of incorporating phases into the design of controllers [32],
[10], and several methods have been proposed for learning
controllers for multi-phase tasks [22], [26], [1], [28]. Levine
el al. [26] proposed learning monolithic neural network
controllers for multi-phase manipulation tasks. Koval et
al. [22] decompose a grasping policy into pre- and post-
contact policies. Mugan and Koipers [28] learn a model
by discretizing the entire state and action spaces, and then
applying reinforcement learning to the discrete domain.

B. Modeling Multi-Phase Manipulation Tasks
The observed state of the robot and its environment at time
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Fig. 2. Graphical model of the multi-phase STARHMM (Black) and the
motor primitive policy (Blue). The orange nodes indicate observed variable.
The white nodes indicate hidden variables. The model includes the states s,
actions a, motor primitives M, termination variables �, and the phases ⇢.
The figure also shows how the motor primitives reflect the phase structure.

and the state refers to the observed state. As the phases are
not directly observed, the robot needs to infer the phase from
the observed states and the actions’ effects.
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are modeled by the transition probabil-
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on the previous phase allows the model to represent hystere-
sis effects, and transient state information. The dependency
on the current state allows the model to learn the conditions
where phase transitions are more likely to occur. In order to
learn the entry and exit conditions of phases, we incorporate
a binary termination variable "
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The phase termination distribution is modeled using logistic
regression
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2 Rd is a weight vector for terminating phase
⇢ = i, and �(s
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) 2 Rd is a feature vector. Features may, for
example, be a subset of the full state vector or additionally
include the positions of objects relative to each other. We



model the phase initiation distribution as
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2 Rd is a weight vector for initiating phase ⇢ = j.
We assume that the previous phase terminated at the start of
the trajectory, such that p(⇢1 = j|s1) = p(⇢1 = j|s1, "0 =

1). The policy for selecting actions will be discussed in
Section III. To improve clarity, we can assume that the
actions are drawn from some fixed distribution p(a

t

) when
learning the multi-phase model.

Given the components of the model, the probability of
observing a sequence of N samples of states s1:N+1 =
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}, phases
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The graphical model of this probability factorization is
shown in Fig. 2 in black. The key difference to an autoregres-
sive HMM is the additional edge from the current state to
the current phase. As a result of this edge, the transitions be-
tween phases depend on the observed state. The STARHMM
with entry and exit conditions, presents important benefits
over the original model [25]. Rather than having to learn
+ 1 multi-class classifiers, the robot only needs to learn 
binary classifiers and one multi-class classifier. The extended
version also results in a more consistent mapping from the
state space to phases.

In the proposed model, we assumed that the state is
observable. This assumption is common for segmenting
manipulations movements [6], [29]. However, one could also
extend the model to use observations of hidden states [2].

C. Model Learning Using Expectation-Maximization

Having defined the structure of the model, we now focus
on learning the model parameters ˆ!, ˇ!, A, B, and ⌃,
which we will refer to jointly as ✓ = {ˆ!, ˇ!,A,B,⌃}.
Given a set of sampled trajectories of states and actions, we
propose using the expectation-maximization (EM) algorithm
[4] to estimate the parameters. The EM algorithm iterates
between an expectation step and a maximization step in
order to find maximum likelihood estimates of the model
parameters ✓ given that some of the variables are hidden
H = {⇢1:N , "0:N�1}, i.e., the phases and the phase ter-
minations of the samples are not known. The steps of the
algorithm are explained below.

EXPECTATION STEP: In the expectation step, we compute
the distribution over the hidden states, i.e., the phases, given
the observed sequence of variables. In particular, we compute
the distribution p(⇢

t

, "
t

, ⇢
t+1|s1:N+1,a1:N ) for the computa-

tions in the maximization step. We compute these marginal
probabilities efficiently by using a forward-backward mes-
sage passing approach [4]. During the expectation step, we
assume that the parameters ✓ of our model are fixed.

To improve the clarity of the methodology below, we
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We first send a series of messages forward through the
network from t = 1 to t = N . The forward messages
↵ give the probability of observing the sequence of states,
actions, and next state up to the current time step ↵
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Having computed these probabilities, we can now proceed
to the maximization step.

MAXIMIZATION STEP: In the maximization step of the
EM algorithm, we compute the parameters that maximize the
expected log-likelihood of the observed and hidden variables
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where the hidden variables H are given by H =

{⇢1:N , "0:N�1}, the summation is over all possible se-
quences of ⇢ and ", and the conditional distributions
p(H|z1:N+1; ✓old) are computed using the old model param-
eters ✓old as indicated. By factorizing the joint distribution
p(H, z1:N+1;✓), decomposing the log of a product into a



sum of logs, and marginalizing out variables, the maximiza-
tion problem can be rewritten as
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ward to compute from the joint distributions computed
in the expectation step. The new parameters can then be
computed for the phase- and state- transition distributions.
For the state transition distribution, the matrices A and
B are computed using weighted linear regression. When
learning the matrices A
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The phase transition parameters ˆ! and ˇ! are computed
using the weighted version of interatively reweighted least
squares. When learning the phase termination model for
phase ⇢ = i, the sample {"
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can be added to both linear regression and logistic regression
to incorporate prior knowledge and avoid overfitting.

After the maximization step, the algorithm computes the
expectation step again with the new parameters. This process
iterates until the model has converged to a solution.

INITIALIZATION: The EM learning method converges to
a local optimum and requires a suitable initialization. There
are various potential methods for initializing the model and
selecting the number of phases . We initialized the model
using spectral clustering [8]. Given that phase transitions
often correspond to the making or breaking of contacts
[12], [19], the similarity between samples was computed
using contact distribution kernels [24]. Thus, samples were
clustered together if they had similar contacts between the
hands and object, as well as the object and the table. The
computation was based on point-cloud models of the objects,
and a point was considered to be in contact if it was within
1cm of the other object. The clustering was performed with
different numbers of clusters . The clustering with the
highest intra-cluster and lowest inter-cluster similarities was
used to initialize the model.

The samples assigned to a cluster were used to compute
the initial parameters and hyperparameters for the corre-
sponding phase’s state-transition distributions, as well as the
phase initiation distribution. This approach to initializing
the model worked well in the experiments, and found the
correct number of phases for the demonstrated task. The
initial clustering was also used to create a set of  contact
features. One representative sample from each phase was

selected to define the basis for a contact feature using the
contact distribution kernel.

III. LEARNING MOTOR PRIMITIVE LIBRARIES FOR
MULTI-PHASE TASKS

Having learned a multi-phase model, the next step is
to learn movements for transitioning between the different
phases. In this manner, the model decomposes the original
task into a series of subtasks and learns a motor primitive
policy for each subtask. The learned motor primitives should
generalize between different scenarios and be reusable for
different tasks. The process of learning a library of motor
primitives is explained in Sections III-A and III-B.

A. Dynamic Motor Primitives
The robot’s skills are represented using dynamic motor

primitives (DMPs) [17], [33]. These motor primitive repre-
sentations are easily adapted to different situations and can
be learned in a straightforward manner [18], [33]. The robot
learns one DMP for each of the phase transitions observed in
the demonstrations. The shape of a DMP trajectory is defined
by a set of shape parameters w, and a goal state g.

Our initial approach learned a mapping directly from the
object’s position to the parameters of the motor primitives.
However, this method ignored the geometry of the object,
which lead to crude grasps. The DMPs are therefore now
defined in task frames that generalise between object shapes.

Computing a suitable task frame is similar to the grasp
synthesis problem [5]; i.e. the robot needs to select a hand
pose for transitioning to the next phase. Although this pose
is not the goal state, it should allow the hand to establish
suitable contacts with the object. In our experiments, the
current hand pose was used as the task frame if the hand
was already in contact with the object or making contact
would decrease the likelihood of transitioning to the next
phase. Otherwise, the robot computed the task frame by
sampling different hand poses and evaluating them based
on their contact features. The hand pose with the highest
likelihood of transitioning to the goal phase was then selected
as the task frame. The robot also tested if breaking contact
between the object and the table increased the likelihood.
In the future, one could extend this approach to sampling
different object poses in the scene.

The DMPs are incorporated into the model as shown
in Fig. 2. At time step t, the robot is executing motor
primitive M

t

, which includes the linear system as well
as the canonical system. The robot performs an action a
according to the DMP’s desired trajectory and the current
state p(a

t

|M
t

, s
t

). Once a DMP has finished, a new DMP
is selected according to the current state p(M

t

|M
t�1, st

).
The graphical model illustrates the complementary nature of
motor primitives and phases.

B. Learning Motor Primitives for Phase Transitions
Having defined a task frame, the next step is to learn the

goal state g and shape parameters w. As the purpose of each
DMP is to bring the robot from one phase to another, the
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Fig. 3. The five phases detected in the task demonstrations. The pictures
show the contacts between the objects in each of the phases. The arrows
show the phase transitions that were observed during the demonstrations.
The robot learns a motor primitive for each of these transitions.

robot should optimize the parameters accordingly. Hence, the
phase transition distribution p(⇢

t

|⇢
t�1, st

) is used to define
a reward function for transitioning between different phases.
The parameters of the DMP are then learned using relative
entropy policy search (REPS) [31].

In order to learn motor primitives for transitioning from
phase ⇢0 to ⇢

g

, we define the reward at each time step as
the probability of transitioning to the goal phase p(⇢

t+1 =

⇢
g

|s
t+1, ⇢t

). This reward is discounted over time by the
probability of transitioning to a phase other than ⇢0 or ⇢

g

.
Thus, the reward function directs the robot towards the goal
phase’s conditions, while avoiding other phases. A squared
cost term was also applied to penalize large actions as well as
large deviations of the goal state from the task frame’s origin
to keep the goal grounded. By including smooth features for
modelling the phase transition distribution p(⇢

t

|⇢
t�1, st

), the
reward function can guide the robot during the learning pro-
cess. This reward function worked well in the experiments,
but other reward functions could also be constructed using
the phase transition distribution.

Given the reward function and a set of starting states,
the parameters g and w of the the DMP are learned using
episodic REPS. The robot begins by learning the goal pa-
rameters g, which are defined relative to the task frame. The
distribution over the parameters is modeled as a Gaussian
g ⇠ N (µ

g0,⌃g0), where the initial mean µ
g0 is given by

the origin of the task frame. Parameters are sampled from
the distribution and evaluated for each starting state using the
learned multi-phase model. The rewards are averaged over
the starting states.

After evaluating multiple samples of parameter sets from
the current policy N (µ

g

,⌃
g

), a policy update is performed
to determine a new policy N (µ0

g

,⌃0
g

). REPS computes
a new policy that maximizes the expected reward, while
limiting the Kullback Leibler divergence between the old and
new policies ✏ � DKL(N (µ0

g

,⌃0
g

)||N (µ
g

,⌃
g

)). Limiting
the KL divergence between the policies makes learning the
policy more robust to noisy rewards, and the robot is less
likely to converge prematurely to a poor local optimum. For
more details on REPS, we refer the reader to the survey of
Deisenroth et al. on policy search methods in robotics [11].

The shape parameters w were learned in the same manner
using REPS. The initial mean parameters µ

w0 were learned
from the demonstrations using imitation learning [18].

Once a motor primitive M has been learned, it can be
executed using the learned model to get the starting states
for the next phase. This process is repeated until motor
primitives have been learned for all of the phase transitions.
The model can potentially also be used to learn motor
primitives for specific tasks by defining a suitable reward,
e.g., moving to a goal while remaining in the same phase.

C. Learning Policies for Sequencing Motor Primitives
Given a library of DMPs, the robot must now learn high-

level policies for sequencing these motor primitives M to
perform different manipulation tasks. We assume that the
task is defined by an expected reward function r(˜s, M),
where M is the executed motor primitive, and the extended
state ˜s includes the state s and the robot’s estimate of the
phase ⇢̃. The robot’s high-level policy ⇡(M|˜s) selects motor
primitives M, according to the current state and phase. The
motor primitives should be selected such that they maximize
the reward accumulated over time

max

⇡

1X

t=1

�tr(˜s(t), M(t)),

where � is a discount factor on future rewards 0  � < 1

and t indicates the steps in the motor primitive sequence. In
our experiments, all of the motor primitives had the same
duration. However, one could also use different discount
factors for motor primitives with different durations.

The robot uses a policy iteration approach to learn the
high-level policy [36]. This approach iterates between com-
puting a value function V ⇡

(

˜s) for the current policy and im-
proving the policy according to the value function. The value
function V ⇡

(

˜s) is defined as the expected future rewards
when in state s and phase ⇢, and following policy ⇡. We
estimate the value function using non-parametric dynamic
programming (NPDP) [23]. The robot first computes a set of
m prototypical samples {˜s

i

} for i 2 {1, ..., m}. Given a set
of starting states, the prototype samples can be obtained by
sampling different sequences of motor primitives using the
multi-phase model. In our experiments, we sampled every
sequence of motor primitives using the maximum-likelihood
state transitions. The estimated value function has the form
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˜s) =

P
m

i=1✓i

� (˜s, ˜s
i

)P
m

j=1� (˜s, ˜sj

)

,

where we model � (˜s, ˜s
i

) using a squared exponential kernel
for the state s and multiply it by a Kronecker delta function
for the phase ⇢̃. The parameters ✓ of the value function are
given by ✓ = (I � ��)�1

¯r, where the ith element of ¯r is
the expected reward [

¯r]
i

= r(˜s
i

, M
i

), and the elements of
the transition matrix P are defined as
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ˆ
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(

˜s)P
m
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)
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The function  
i

(

˜s) is the distribution over next states ˜s0 after
executing motor primitive M

i

from state ˜s
i

. The integral is



computed by drawing samples from the multi-phase model
to approximate the function  

i

(

˜s). Even though a DMP is
meant to transition to a specific phase, some of the samples
may not reach this desired phase due to the stochasticity of
the multi-phase model. The model thus also incorporates the
failure rates of the DMPs, and the robot can learn a high-
level policy that avoids motor primitives that tend to fail.

Given the value function V (

˜s), the policy is updated by
selecting a new motor primitive for each of the prototypical
samples. For each of these samples, the robot selects the
motor primitive that maximizes the expected immediate
reward plus the expected discounted value for the next state

Mnew
i

= argmax

M
E(r(˜s

i

, M) + �V (

˜s0
i

)).

The rows of the matrix � and the vector ¯r are then updated
accordingly, and a new value function is computed. This
policy iteration process is repeated until the value function
and the policy converge. The resulting policy is given by

⇡(M|˜s) =
P

m

i=1' (M, M
i

)� (˜s, ˜s
i

)P
m

k=1� (˜s, ˜sk

)

,

where ' (M, M
i

) is a Kroenecker delta function. The policy
has a similar form to the multi-class classifier policies that
are commonly used by imitation learning approaches.

IV. EVALUATIONS

The proposed method was evaluated on a bimanual grasp-
ing task. The robot consists of two Kuka light-weight robot
arms, and two five-fingered DLR hands [7].The robot’s
arms were controlled using cartesian impedance control. The
object was tracked using a marker-based Optitrak system.
The box is too large to grasp with a single robot hand.

A. Setup and Model Learning
The robot was given two demonstrations of a bimanual

grasping task using kinaesthetic teaching. In the first demon-
stration, the robot’s right hand made contact with the box
first. In the second demonstration, the left hand made the first
contact with the object. In both demonstrations, the object
was subsequently grasped with both hands and lifted up from
the table. The trajectories were sampled at 10 Hz. When
the object was placed at the same position and orientation,
the robot performed the task by replaying the demonstrated
trajectory. However, the robot failed to grasp the box if it was
placed at a different location on the table. The trajectories
were segmented into five phases, as illustrated in Fig. 3, using
the method described in Section II.

For learning the multi-phase model, the state s includes
the position and orientation of the box, the positions of the
robot’s hands, and the contact features. The joints of the
robot’s fingers have encoders and torque sensors. Rather
than using the joint angles and torques directly, principal
component analysis was used to reduce the dimensionality
of the data from 60 to eight dimensions, i.e., two dimensions
for positions and two dimensions for torques for each hand.
The state transition distributions learned the change in state
rather than the absolute state, except for the contact features.

The actions a were defined by the change in the desired
trajectory. The robot used an impedance controller to follow
the desired trajectory. The features for the phase transition
distributions include the distances between the box and the
finger tips, the distance between the box and the table, and
the joint angle and torque data. The contact features were
also used for computing the phase initiation distribution. The
proposed entry and exit version of the STARHMM allowed
the robot to share initiation data for phase transitions 2 ! 3

and 5 ! 3, and termination data for 1 ! 2 and 1 ! 5.

B. Learning Motor Primitives for Phase Transitions
Using the method described in Section III, the robot

learned a library of five motor primitives corresponding to
the five phase transitions observed in the demonstrations.
Three different approaches for learning DMP libraries were
evaluated for comparison. The first approach used only
imitation learning. The goal states were set to the origins
of the task frames, except for the 3 ! 4 phase transition,
for which the goal states were set to 10 cm above the task
frame. The second approach learned the DMP parameters
using the policy search method described in Section III.
The third approach also used reinforcement learning, but the
stochasticity of the model was removed by using the MAP
state transitions and keeping the phase fixed. In this manner,
the model provided the robot with a deterministic reward.
For both model-based reinforcement learning approaches, the
bound was set to ✏ = 0.5, and the goal states g were learned
using 10 policy updates of 50 episodes. The weights w were
learned using 10 policy updates of 100 episodes each.

The robot executed the motor primitives according to the
phase transition sequences observed in the demonstrations,
i.e., 1 ! 2 ! 3 ! 4 and 1 ! 5 ! 3 ! 4. Each sequence
of motor primitives was executed 25 times using each of
the three approaches, giving a total of 450 motor primitive
executions. At the start of each sequence, the box was placed
at a random position and orientation on the table in a 50 cm
⇥50 cm region within the robot’s workspace. The successes
and failures of the motor primitives were labelled by hand.
A transition to phases 2 or 5 was considered successful if
the robot’s right or left hand made contact with the object. A
transition to phase 3 was considered a success if the hands
were touching opposite sides of the box, and the box was in
contact with the table. A transition to phase 4 was considered
a success if the robot succeeded in lifting the box from the
table with both hands for more than 15 seconds.

The results of the experiment are shown in Fig. 4. Both
reinforcement learning approaches succeeded in lifting the
box in more than 90% of the trials. Using imitation learning,
without additional reinforcement learning resulted in a suc-
cess rate of only 38%. These motor primitives often resulted
in a single finger tip making light contact with the object,
which lead to delicate grasps. In comparison, the motor
primitives learned using reinforcement learning pushed the
box a few centimeters, which resulted in the object becoming
aligned with the hand. The motor primitives for transitioning
from phase 3 to 4 tended to apply less horizontal force to
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Fig. 4. The success rates of the motor primitive evaluations. The robot
performed the sequences of three motor primitives (first hand, second hand,
and then lift) as observed in the human demonstrations. The different colored
bars indicate different approaches to learning the motor primitives.

the object at the end of the motion than at the start. This
may be a result of the demonstrations, which also tended to
apply less force once the object was lifted from the table.

The results of the experiment show that the robot can learn
to transition between phases more reliably by optimizing the
motor primitives according to the learned phase transition
model. The multi-phase model captured a sufficient amount
of detail to allow the robot to learn the required motor
primitives. Determining the number of phases is still an
open problem, which could be addressed by using a suitable
prior [6], [14], [29], or by first learning the coarse phase
structure using simulation data. The forward model could
also be improved by explicitly enforcing each phase’s contact
constraints, or using Gaussian processes with phase-specific
hyperparameters to model the state transition distributions.

The robot’s ability to generalize the motor primitive be-
tween different objects was evaluated by attempting to grasp
six novel objects (shown in Fig. 5) using the 1 ! 2 ! 3 ! 4

phase sequence. Two out of three grasps failed for the bottle,
as it tended to topple rather than slide across the table. Two
of the grasps of the green box also failed as a result of
low-friction contacts between metal and metal. The grasps
of the other objects all succeeded. The results show that
the learned motor primitives are not applicable to objects
with distinct dynamics or friction properties, but they do
generalize between objects with different shapes.

C. Learning Policies for Sequencing Motor Primitives

The goal of the second experiment was to learn high-level
policies for sequencing motor primitives. Two task motor
primitives were added to the library: moving both hands to
the left 10 cm and raising both hands by 10 cm. Unlike the
motor primitives for transitioning between phases, these task
motor primitives can be executed from any phase. Executing
a task motor primitive marked the end of a trial, which was
modeled by a special absorbing state. Thus, the robot had to
learn a high-level policy for reaching a suitable phase and
then executing the correct task motor primitives.

The high-level policy was learned as described in Section
III-C. The phase estimates ⇢̃ were computed using the
model’s phase transition distribution p(⇢

t

|s
t

, ⇢
t�1) and the

Fig. 5. The figure shows the ability of the the learned DMPs to adapt to
the geometry of different objects. Two out of three grasps of the green box
and the bottle failed. The other fourteen grasps lead to successful lifts.

trajectory from the previous motor primitive. The kernel
function � (˜s, ˜s

i

) was computed using the 3D position of the
box and the positions of the hands relative to the box. For
this evaluation, the robot always selected the most likely next
motor primitive argmaxM ⇡(M|˜s). The robot computed
137 prototype samples ˜s

i

based on 20 start states.
For the first task, the robot was given a reward for the final

height of the box and a penalty for the left-right deviation
of the box from the center of the table. The discount factor
was set to � = 0.99. The task was executed 20 times on
the robot. The box was placed on the left side of the table
for ten of the trials, and on the right side for the other ten
trials. In all of the trials, the robot grasped the box with
both hands and successfully lifted it off of the table. When
the box was placed on the left side of the table, the robot
always approached the box with the left hand first, as shown
in Fig. 6. When the box was placed on the right side of the
table, the robot approached the box first with the right hand
in nine of the ten trials. In this manner, the robot tended to
push the box towards the center of the table before lifting
it. In two of the trials, the robot failed to detect the 3 ! 4

phase transition. These errors seems to be a result of the
robot using the back of the thumb to hold the box, which
pushed the fingers together rather than apart. This problem
could be addressed by representing the forces in task-space.

For the second task, the robot was given a reward for
quickly moving the box to the left, and a penalty for the
height of the box. The discount factor was set to � = 0.95.
The task was again executed 20 times on the robot with
the box placed at different locations on the table. In all of
the trials, the robot placed its right hand on the box and
then moved both hands to the left. The robot thus learned
to exploit a two-handed motor primitive to perform a one-
handed manipulation.

The results of the experiment demonstrated that the
proposed value function approach is suitable for creating
medium-length sequences of DMPs. The first task showed
that the robot was able to reconstruct the original sequences
of phase transitions and then execute the task motor primi-
tive. The robot additionally learned that it could exploit the
DMPs to push the box towards the center of the table for a
higher reward. The second task showed that the robot could
learn to create new sequences by reusing DMPs from the
demonstrated task. The experiments also showed that the
robot could use the model of the phases to determine the
effects of applying the task motor primitives in each phase.



Fig. 6. The images show two sequences of the bimanual grasping task. In the top row, the box was placed towards the left, and the high-level controller
approached the box first with the left hand. In the bottom row, the robot chose to approach with the right hand first, as the box was located on the right.

V. CONCLUSION

We proposed a method for learning hierarchical manipula-
tion skills that exploit the phase structure of tasks. The robot
first uses a STARHMM to extract the phase structure, which
defines a set of subtasks. The robot then learns a library
of DMPs for performing these subtasks using imitation and
reinforcement learning. Finally, the robot learns a high-level
policy for selecting motor primitives using policy iteration.

The proposed approach was successfully evaluated on a
bimanual grasping task. The experiments showed that the
learned DMPs reliably transition between different phases,
generalize between objects with different shapes, and can be
reused between tasks with similar phase transitions.

VI. ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7-ICT-2013-10) under grant agreements 610878
(3rdHand) and 610967 (TACMAN).

REFERENCES

[1] S. Andrews and P.G. Kry. Goal directed multi-finger manipulation:
Control policies and analysis. Computers and Graphics, 2013.

[2] D. Barber. Expectation correction for smoothed inference in switching
linear dynamical systems. JMLR, 2006.

[3] J. Barry, L. P. Kaelbling, and T. Lozano-Pérez. A hierarchical approach
to manipulation with diverse actions. In ICRA, 2013.

[4] L. E. Baum. An equality and associated maximization technique in
statistical estimation for probabilistic functions of markov processes.
Inequalities, 1972.

[5] J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp
synthesis - a survey. TRo, 2014.

[6] J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins. Learning from
demonstration using a multi-valued function regressor for time-series
data. In Humanoids, 2010.

[7] Z. Chen, N. Y. Lii, T. Wimboeck, S. Fan, M. Jin, C. Borst, and H. Liu.
Experimental study on impedance control for the five-finger dexterous
robot hand dlr-hit ii. In IROS, 2010.

[8] F. R. K. Chung. Spectral Graph Theory. American Mathematical
Society, 1997.

[9] C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Learning
sequential motor tasks. In ICRA, 2013.

[10] T. Debus, P. E. Dupont, and R. D. Howe. Contact state estimation
using multiple model estimation and hidden markov models. In ISER,
2002.

[11] M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy
search for robotics. Foundations and Trends in Robotics, 2013.

[12] J. R. Flanagan, M. C. Bowman, and R. S. Johansson. Control strategies
in object manipulation tasks. Curr Opin Neurobiol, 2006.

[13] O. Fuentes, R.P.N. Rao, and M. Van Wie. Hierarchical learning of
reactive behaviors in an autonomous mobile robot. In International
Conference on Systems, Man and Cybernetics, 1995.

[14] D.H. Grollman and O.C. Jenkins. Incremental learning of subtasks
from unsegmented demonstration. In IROS, 2010.

[15] S. Hart and R. Grupen. Learning generalizable control programs.
TAMD, 2011.

[16] K. Hauser and V. Ng-Thow-Hing. Randomized multi-modal motion
planning for a humanoid robot manipulation task. IJRR, 2011.

[17] A. Ijspeert, J. Nakanishi, and S. Schaal. learning attractor landscapes
for learning motor primitives. In NIPS, 2003.

[18] J. A. Ijspeert, J. Nakanishi, and S. Schaal. movement imitation with
nonlinear dynamical systems in humanoid robots. In ICRA, 2002.

[19] R. S. Johansson and J. R. Flanagan. Coding and use of tactile signals
from the fingertips in object manipulation tasks. Nat Rev Neurosci,
2009.

[20] J. Kober and J. Peters. Learning elementary movements jointly with
a higher level task. In IROS, 2011.

[21] G.D. Konidaris, S.R. Kuindersma, R.A. Grupen, and A.G. Barto.
Robot learning from demonstration by constructing skill trees. IJRR,
2012.

[22] M. Koval, N. Pollard, and S. Srinivasa. Pre- and post-contact policy
decomposition for planar contact manipulation under uncertainty. In
R:SS, 2014.

[23] O. Kroemer and J. Peters. A non-parametric approach to dynamic
programming. In NIPS, 2011.

[24] O. Kroemer and J. Peters. Predicting object interactions from contact
distributions. In IROS, 2014.

[25] O. Kroemer, H. van Hoof, G. Neumann, and J. Peters. Learning to
predict phases of manipulation tasks as hidden states. In ICRA, 2014.

[26] S. Levine, N. Wagener, and P. Abbeel. Learning contact-rich manip-
ulation skills with guided policy search. In ICRA, 2015.

[27] F. Meier, E. Theodorou, F. Stulp, and S. Schaal. Movement segmen-
tation using a primitive library. In IROS, 2011.

[28] J. Mugan and B. Kuipers. Autonomous learning of high-level states
and actions in continuous environments. TAMD, 2012.

[29] S. Niekum, S. Chitta, B. Marthi, S. Osentoski, and A. G. Barto.
Incremental semantically grounded learning from demonstration. In
R:SS, 2013.

[30] P. Pastor, M. Kalakrishnan, L. Righetti, and S. Schaal. Towards
associative skill memories. In Humanoids, 2012.

[31] J. Peters, K. Muelling, and Y. Altun. Relative entropy policy search.
In AAAI, 2010.

[32] J. Romano, K. Hsiao, G. Niemeyer, S. Chitta, and K. J. Kuchenbecker.
Human-inspired robotic grasp control with tactile sensing. TRo, 2011.

[33] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert. learning movement
primitives. In ISRR, 2004.

[34] V. Soni and S. Singh. Reinforcement learning of hierarchical skills
on the sony aibo robot. In ICDL, 2006.

[35] F. Stulp, E. Theodorou, and S. Schaal. Reinforcement learning with
sequences of motion primitives for robust manipulation. TRo, 2012.

[36] R. S. Sutton and A. G. Barto. Reinforcement Learning an Introduction.
The MIT Press, 2000.

[37] C. K. Tham. Reinforcement learning of multiple tasks using a
hierarchical CMAC architecture. Robotics and Autonomous Systems,
1995.

[38] M. Waechter, S. Schulz, T. Asfour, E. Aksoy, F. Woergoetter, and
R. Dillmann. Action sequence reproduction based on automatic
segmentation and object-action complexes. In Humanoids, 2013.


