
A Comparison of Contact Distribution Representations for
Learning to Predict Object Interactions

Simon Leischnig, Stefan Luettgen, Oliver Kroemer, and Jan Peters

Abstract— Different contacts between objects afford different
interactions between them. For example, while contacts below
an object can provide support, contacts on opposing sides can
be used for pinching. Hence, a robot can learn to predict which
interactions are currently afforded based on the set of contacts.

However, representing sets of contacts is not trivial, as the
number of contacts is not fixed nor are the contacts ordered.
In this paper, we compare different methods for representing
contacts, including bag-of-features, probability product kernels,
and random forests. These approaches model the distribution
over the contacts without relying on task-specific features. The
methods were evaluated on both simulated grasping data, as
well as real robot grasps. The random forest and the normalized
expected likelihood kernel approaches achieved the highest
accuracies for the simulated experiments. In the case of the real
robot data, the more robust exponential χ2 and Bhattacharyya
kernels achieved higher accuracies.

I. INTRODUCTION

In order to perform a wide range of manipulations, a robot
needs to be able to learn when certain interactions between
objects occur. For example, the robot may need to learn
when its hand is placed such that it can push an object,
or when one object is being supported by another. Many
interactions between objects are based on direct physical
contacts. The set of afforded interactions between the two
objects is determined by these contacts. A robot can learn to
predict the potential interactions between objects based on
their contacts.

However, representing sets of contacts is not trivial.
Contacts are not ordered, nor is the number of contacts
constant across different situations. Therefore, it is difficult to
establish a one-to-one relationship between contacts across
different situations. Instead of considering individual con-
tacts, one could alternatively consider the distribution over
the contacts. In this manner, the robot could first learn a
model of the contact distribution, and then employ machine
learning methods for classifying the distributions in order to
predict object interactions.

In this paper, we present a comparison of different meth-
ods for predicting object interactions from contact distribu-
tions. We formalize the problem of predicting interactions
between objects as classifying sets of contacts. The methods
were evaluated in a simulated grasping experiment, similar
to the one proposed in [7], as well as a real robot grasping

All authors are members of the Technische Universitaet Darmstadt,
Germany. Oliver is also a member of the University of Southern California.
Jan Peters is also a member of the MPI for Intelligent Systems.
{simon.leischnig}@stud.tu-darmstadt.de
{stefan.luettgen}@stud.tu-darmstadt.de
{oli, jan}@robot-learning.de

Fig. 1. Example grasps used to create the robot grasp dataset. The robot
is equipped with a ReFlex hand, with tactile sensors along the finger pads
and palm [26]. The robot uses the tactile data to estimate the set of contact
points and normals before lifting, in order to predict the quality of the grasp.

experiment, in which the robot tries to predict the success
of the specific interaction of grasping and lifting an object.
Three different types of methods for representing the grasps
were compared in our evaluations.

The first type is a bag-of-features approach, which was
inspired by the work of Dang and Allen [7]. In this approach,
the contact distribution is represented using a dictionary of
prototypical contacts, which is learned using k-means clus-
tering. The resulting representation has a similar form to a
histogram. We therefore also evaluated using an exponential
χ2 kernel between the histograms.

The second type of approach is based on probability
product kernels [14], and was inspired by the work of
Kroemer and Peters [18]. This approach uses a continuous
density estimate to represent the contact distribution, and
then computes a kernel between these densities. We evaluated
two kernels for representing the contacts: the Bhattacharyya
kernel and the normalized expected likelihood kernel.

The third type of approach is based on random forests [4].
Random trees learn to partition the input space and classify
samples accordingly. In this manner, random trees directly
combine feature learning with classification. We employ a
version of the random forests that can handle sets of contacts,
by using tests with two stges. The first stage selects a region

of the space of contacts, and the second stage tests the
proportion of contacts that fall within this region.

The remainder of this section formalizes the problem of
predicting interactions from contacts and discusses related
work. The different methods are described in Section II. The
simulated and real robot evaluations, are given in Section III.

A. Problem Statement

From a machine learning perspective, we can consider the
problem of predicting object interactions from contacts as
a classification problem. However, rather than classifying
a single element, the robot has to classify a set of ele-
ments. We refer to a group of elements as a sample. The
ith sample Xi consists of ni unordered elements Xi =
{xi1,xi2, . . . ,xini

}, where each element is defined in a d
dimensional space x ∈ Rd. Each sample also corresponds
to a binary label Yi ∈ {0, 1}, which indicates the class of
the sample. These labels are known for the training data, but
need to be predicted for the test data.

For predicting interactions from contacts, the elements
correspond to contacts and the samples correspond to grasps.
In our experiments, we represent contacts using a d = 6
dimensional feature vector that includes the 3D position
and the surface normal of the contact. The vector could
potentially be extended with additional information, such as
forces and friction coefficients. However, this information is
often not readily available to the robot. The label is positive
Yi = 1 if the interaction is occurring between the objects
for the corresponding sample, and zero otherwise. As object
interactions are generally not mutually exclusive, the robot
can learn to predict multiple interactions between objects by
learning a separate classifier for each one.

B. Related Work

Learning object interactions is an important ability for
robots to define symbolic states of objects [30] [31]. For ex-
ample, Kulick et al [20] proposed an active learning approach
for determining relational symbols between objects based on
their relative positions and geometric properties. Rosman and
Ramamoorthy [28] learn spatial relations between objects,
e.g. on and adjacent, using k-means classifiers based on the
normals of the contact points. Sjoo et al. [29] learn to select
relevant features for determining spatial relations between
objects using an automatic relevance determination approach.

Learning object interactions can also be used to predict
whether the environment affords a certain manipulation.
Jiang et al. [17] proposed a method for classifying locations
to place an object based on local geometric features of the
scene. Hermans et. al [11] learned locations on objects for
pushing based on their overall shape and the local geometry
around the pushing point. A considerable amount of work
has focused on learning grasping interactions. The quality of
a grasp depends on the contacts made between the hand and
the object [3], [27]. Suitable contact points are often learned
implicitly based on the local shape of the object [8], [12],
[19] or tactile data [22], [2]. The robot can also attempt to
explicitly model the locations of the contact points [7], [18].

[x]1

[x]2

[x]1

[x]2

Bag-of-Features Random forest

[x]1

[x]2

[x]1

[x]2

Bhattacharyya kernel NEL Kernel
Fig. 2. The figure illustrates the different types of contact distribution
representations used by the compared methods. The red and blue dots
represent contact elements from two different grasps. The gray lines
represent partitions of the space of contacts into discrete parts. The gray
dots represent cluster centers. The ellipses represent Gaussian distributions.
The red and blue dots on the left side are closer together than on the right.
As a result, these contacts tend to cause the distributions to overlap more,
which increases the similarity between the samples.

Thus, the robot ignores changes in the object’s shape or the
tactile readings that do not change the contacts.

The problem of classifying sets of contact points is closely
related to multi-instance classification [1] and set classifi-
cation [25] problems. However, these problem formulations
generally assume that each element is associated with a class
label, and the sample’s label is defined by the proportions
of the element’s labels. This assumption does not hold
for classifying sets of contacts, as the interactions often
rely on the relationships between different contacts. Hence,
many multi-instance and set classification methods are not
applicable to this problem.

Many of the representations evaluated in this paper are
based on probability density estimates, e.g., histograms,
Gaussians, and kernel density estimates. These similarities
are a result of modeling the proportion of contacts in different
regions of the element space Rd, and should generally not
be interpreted as actual probability distributions.

II. CONTACT DISTRIBUTION REPRESENTATIONS

In this section, we present three different types of ap-
proaches for representing contact distributions. In Sections
II-A and II-B, we present methods based on bag-of-feature
and probability product kernels respectively. These represen-
tations are used together with classifiers, such as logistic
regression, to predict interactions between sets of contacts.
In Section II-C, we explain the random forest approach,
which automatically creates features for representing sets
of contacts. An overview of the different representations is
shown in Fig. 2.

A. Bag-of-Features

The first approach is based on the Bag-of-Features method.
This approach involves computing a histogram over the
elements of a sample, and then using this histogram to
classify the sample.

In order to use a bag-of-features representation, we first
compute a dictionary D of ñ prototypical elements D =
{x̃1, x̃2, . . . , x̃ñ}, x̃ ∈ Rd. These prototypes x̃ represent the
bins of the histogram according to a Voronoi decomposition
of the space of elements Rd. The prototype elements are
often computed by performing k-means clustering to the
set of all elements in the training set. In our experiments,
we computed the set of prototype elements using k-means
clustering.

Assigning an element to the nearest neighboring prototype
can result in discretization effects, wherein small amounts of
noise can drastically alter the assignment. In order to reduce
the discretization effects, we employ a soft assignment of
the elements to the bins. The weight of the jth bin for
representing the ith sample is thus given by

Pj(Xi)=
1

ni

ni∑
m=1

exp(−(x̃j − xim)TΣ−10 (x̃j − xim))∑ñ
l=1 exp(−(x̃l − xim)TΣ−10 (x̃l − xim))

,

where Σ0 is a diagonal matrix of d squared length scales
corresponding to the dimensions of the elements, and the as-
signed weights are inversely proportional to the exponential
of the distance to the respective prototype. The distribution
over elements inXi can then be described by a feature vector
φ(Xi) ∈ Rñ+1, where the jth component of the vector is
given by Pj(Xi), and the last component is a constant bias
term of 1.

Rather than directly using the histogram weights as fea-
tures, the robot can also use a exponential χ2 kernel [13] for
comparing the histograms of different samples. The kernel
is given by

kχ(Xi, Xj) = exp

(
−

ñ∑
l=1

(Pl(Xi)− Pl(Xj))
2

0.5(Pl(Xi) + Pl(Xj))

)
This kernel is often used to compare histograms in computer
vision [30], and has also been used to learn locations on
objects for pushing [11].

Having defined a feature vector and a kernel for represent-
ing the contact distributions, the robot can now use them to
classify interactions from contacts using standard classifiers.
In our experiments, we use logistic regression and kernel
logistic regression as basic classifiers.

B. Probability Product Kernels

Instead of a histogram, the distribution over elements in a
sample can also be represented by a kernel density estimate
or a Gaussian distribution. These distributions can then be
used to compute probability product kernels (PPKs) between
samples [14]. By directly comparing the distributions, these
approaches avoid the need for computing a dictionary of
prototypical elements.

Fig. 3. The set of objects used for the real robot experiment, together
with the ReFlex hand for comparison [26]. The object set was selected to
contain objects with primitive and complex shapes.

The first PPK is based on a Gaussian representation of
the distribution of elements within a sample. Hence, each
sample Xi is represented by a mean µi ∈ Rd and a
covariance matrix Σi ∈ Rd×d. We used the maximum-
likelihood estimate to compute the mean µi. The covariance
matrix Σi is given by the maximum likelihood estimate of
the covariance of the elements in the sample Xi, plus the
diagonal length scale matrix Σ0. In this manner, the matrix
Σ0 defines the similarity between individual samples.

After representing the samples by Gaussian distributions,
the robot can compute the Bhattacharyya kernel [15] between
the samples

kB(Xi, Xj) =

ˆ √
N (x|µi,Σi)

√
N (x|µj ,Σj)dx.

This kernel has a value of 1 if and only if the two distri-
butions are equal, and it tends towards zero as the overlap
between the distribution decreases. The kernel value can be
computed in closed-form as

kB(Xi, Xj) = C exp (−M/4) ,

where the values of C and M are given by

C = 0.5−d/2 ˆ|Σ|
1/2
|Σi|−1/4 |Σj |−1/4 ,

M = µTi Σ
−1
i µi + µTj Σ

−1
j µj − µ̂

T Σ̂µ̂.

The vector µ̂ is given by µ̂ = Σ−1i µi + Σ−1j µj , and the
matrix Σ̂ is computed as Σ̂ = (Σ−1i + Σ−1j)−1.

The second PPK is based on a kernel density estimate of
the distribution of elements. This approach is computation-
ally more expensive, but allows the robot to capture more
details of the distribution than a single Gaussian can. The
distribution over elements for the ith sample is therefore
given by

pi(x) = n−1i

ni∑
j=1

z−1 exp(−0.5(x− xij)TΣ−10 (x− xij)),

where z is a normalization constant, and Σ0 is again a
diagonal matrix of d squared length scales corresponding to

0 200 400 600 800 1000
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nr. Training Samples

Ac
cu

ra
cy

BoF
Expr2

Bhat
NEL
Forest

Fig. 4. The results of the simulation experiments with large training
sets. The comparison includes bag-of-features (BoF), the exponential chi-
squared (Expχ2), the Bhattacharyya kernel (Bhatt), the normalized expected
likelihood kernel (NEL), and the random forest (Forest) approaches. The
error bars indicate one standard deviation.

the dimensions of the elements. We then compute a kernel
between two samples as

kC(Xi, Xj) =

´
pi(x)pj(x)dx√´

pi(x)pi(x)dx
√´

pj(x)pj(x)dx
.

This kernel is closely related to the Cauchy-Schwarz diver-
gence between probability distributions [16], and also has a
value between 0 and 1. The integral

´
pi(x)pj(x)dx is the

expected likelihood kernel [15], which we compute as

ni∑
k=1

nj∑
l=1

z̃−1 exp(−0.25(xik − xjl)TΣ−10 (xik − xjl)).

We therefore refer to this kernel kC as the normalized
expected likelihood kernel. The normalization factors z̃ do
not need to be computed, as the numerator and denominator
values cancel each other out when computing the kernel
function.

This kernel allows the robot to directly compare the
different elements between different samples, but is therefore
also more computationally expensive. In our experiments, we
again used kernel logistic regression to learn classifiers with
the probability product kernels.

C. Random Forests

The third type of approach is to use a variant of random
forests to classify the samples. Random forests employ an
ensemble learning approach, and consist of multiple random
trees. Each random tree is a separate classifier that provides
a vote for the label of an input sample. The label with the
majority of votes is then assigned to the sample. The trees
are trained by randomly creating sets of tests for splitting
the samples.

0 50 100 150 200
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nr. Training Samples

Ac
cu

ra
cy

BoF
Expr2

Bhat
NEL
Forest

Fig. 5. The results of the simulation experiments with small training
sets. The comparison includes bag-of-features (BoF), the exponential chi-
squared (Expχ2), the Bhattacharyya kernel (Bhatt), the normalized expected
likelihood kernel (NEL), and the random forest (Forest) approaches. The
error bars indicate one standard deviation.

Each tree starts with a single node, i.e. the root node,
which contains all of the training samples. In order to split
the node, κ random tests are generated and evaluated. In
order to handle sets of elements, we use a two-stage test
for splitting the samples. The first stage is the selection
stage. The robot first selects a random direction δ ∈ Rd and
projects all of the elements in the node into this dimension.
The robot then uniformly samples a threshold τ in the range
of the projected elements. In this manner, the robot separates
the space of elements into two halves. The sample Xi now
has ni0 elements above the threshold and ni1 elements below
it, such that ni = ni0 + ni1. Each sample can therefore be
described by the proportion of samples above the hyperplane
ni1/ni. The robot then uniformly samples a second threshold
ν in the range of these values. The test is considered positive
for sample Xi if ni1/ni > ν, and negative otherwise.

Once the κ tests have been generated and the samples
evaluated, the robot selects the test that best divides the
data. There are various criteria that one can use to select the
test [5]. In our experiments, we used the variance reduction.
Given that the test divided the samples into a positive set of
samples η+ and a negative set η−, then the test’s score is

Score(δ, τ, ε, ν) = −
∣∣η+∣∣Vari∈η+(Yi)−

∣∣η−∣∣Vari∈η−(Yi)

where |η| is the cardinality of the set η, and Vari∈η(Yi) is
the variance of the labels Y of the set. This score encourages
the robot to use tests that divide the samples into subsets that
have similar labels.

After selecting the test with the highest score, two child
nodes are created. The first child node receives the positive
samples of the test, and the second node receives the negative
samples. A child node is split further if it contains more than
α samples. If the new node contains less than α samples, then
it is considered a leaf node. A leaf node is assigned positive

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
0.05

0.1

0.15

0.2

0.25

Fig. 6. A side view of all the estimated contacts that were gathered in the
robot experiment. The thumb of the hand is on the left, the index and middle
finger on the right. The contact positions are shown in red, and the normals
are indicated by the corresponding blue lines. The contacts are defined in
the hand’s reference frame.

value Y = 1 if at least half of the samples within it are
positive, and negative otherwise.

Rather than learning a single decision trees, a random for-
est learns a set of ρ trees. In order to classify a new sample,
each tree first classifies the sample separately. Starting at the
root node, the sample is evaluated by the node’s test and is
passed onto the first child node if the test is positive, and
the second child node if it is negative. The sample is passed
on until it reaches a leaf node. The label of the leaf node Y
indicates the tree’s vote for that tree. The random forest then
assigns the label with the majority of votes to the sample.

III. EXPERIMENTS

The methods presented in Section II were evaluated on
both a simulated and a real robot grasping task. Grasping
is a challenging benchmarking task, as the success of a
grasp depends on the interactions between multiple contacts
between the hand and an object. In both experiments, the
robot had to predict whether a grasp was successful based on
the detected contacts. The simulation and robot experiments
are detailed in Sections III-A and III-B respectively, followed
by a discussion of all of the results in Section III-C.

A. Simulated Grasping Experiment

The simulated grasps were obtained using GraspIt [23]
and the Columbia Grasp Database [10]. This experiment was
strongly inspired by the work of Dang and Allen in the con-
text of learning stable grasps [7]. We used a simulated Barrett
hand to collect 2000 grasps from 19 classes of everyday
objects, including mugs, knives and other household objects.
The epsilon ε and volume v grasp metrics were computed for
each grasp [24], [9], [21]. A grasp was considered successful
if and only if it achieved both ε > 0.07 and v > 0.1. The task
can therefore be interpreted as predicting whether a set of
contacts will result in high grasp metric values. This success
criterion resulted in 900 successful and 1100 failed grasps.

The robot was provided with the 3D positions and normals
of all of the detected contacts between the object and the
hand, resulting in d = 6 dimensional contact elements.
For the length scale of the contacts we used σp = 36.45
for the position, as suggested in [7]. For the normals, we
set the length scale to σn =

√
0.5, such that orthogonal

normals are 2σn apart. For the random forest approach

(Forest), the contact data was scaled according to these
values. We also used ρ = 30 trees, κ = 20 random tests
per split, and α = 4 or less samples per leaf node. For
the evaluation with 100 to 1000 training samples, we set the
prepruning parameter α to five percent of the training sample
size. For the bag-of-features (BoF) and the exponential chi-
squared (exp χ2) approaches, we used the length scales
for the soft assignment of the contacts to the dictionaries,
with a Gaussian weighting function. In order to create the
dictionary, we used k-means clustering, with k = 64, applied
to all of the collected contacts. For the bag-of-features
representation, we also normalized all of the features as
part of the preprocessing. For the Bhattacharyya (Bhat) and
normalized expected likelihood (NEL) kernels, we used the
length scales to define the variances Σ0 of the individual
contacts.

The methods were evaluated using ten-fold cross-
validation, with each fold having a test set of 200 grasps. The
training sets were then randomly sampled from the remaining
1800 samples. For each fold, 10 separate classifiers were
trained using different training sets, and their results were
averaged. In this manner, the effects of the training set
sampling are reduced. For the dictionary-based methods, a
new dictionary was also computed for each set of these 10
classifiers.

The results of the simulated experiment are shown in Fig. 4
and Fig. 5. The figure shows the effects of the size of the
training set on the accuracy of the different classifiers. When
using 1000 training samples, the best results were obtained
by the three kernel methods, which all achieved an accuracy
of 81%. These were followed closely by the random forest
approach, with an accuracy of 80%, and then the bag-of-
features approach, which obtained a 78% accuracy. These
results are comparable to those of Dang and Allen [7],
which achieved an overall accuracy of 81.0% based on 24640
training examples, using a similar set of objects and the same
success criterion.

B. Robot Grasping Experiment

The second experiment evaluated the methods using a
set of 200 grasps collected with a real robot. The grasp
attempts were taken from 50 different objects, shown in
Fig. 3. The object set consists of objects with primitive and
complex shapes. Many of the objects are from the YCB
object database [6].

The robot’s arm consists of a Kuka lightweight robot
arm, and a three-fingered Right Hand Robotics ReFlex
hand [26]. Both the arm and the hand are compliant. The
hand is equipped with TakkTile sensors in the palm and
along the fingers. Contacts were detected by thresholding
the sensor values, and the contact’s positions and normals
were estimated using the forward kinematics of the hand.
A cylindrical preshape was employed for all of the grasp
attempts. The robot used a guarded motion to close the
fingers. A side view of the detected contacts is shown in
Fig. 6. Incorporating the normals of the contacts allows the

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nr. Training Samples

A
cc

ur
ac

y

BoF

Exp χ2

Bhatt
NEL
Forest

Fig. 7. The results of the real robot experiments. The comparison
includes bag-of-features (BoF), the exponential chi-squared (Exp χ2), the
Bhattacharyya kernel (Bhatt), the normalized expected likelihood kernel
(NEL), and the random forest (Forest) approaches. The error bars indicate
one standard deviation.

robot to more easily distinguish contacts on the thumb from
those on the opposing fingers.

The contacts were recorded after the robot attempted to
grasp the object, but before trying to lift it. A grasp was
considered a success if it could be used to firmly lift the
object from the table. If the object slid out of the hand, or
turned by more than 30 degrees during the lifting process,
it was considered a failed grasp. The objects were placed at
different positions and orientations on the table by the human
operator. Grasp attempts that failed to make contact with the
object were ignored as they would be trivial to label. This
approach resulted in a total of 119 successful and 81 failed
grasps. The robot was not provided with any information
regarding the objects’ shapes, masses, or material properties.

The position length scale was set to σp = 4.21cm.
This value corresponds to the length used in the simulated
experiment, scaled according to the finger spans of the
simulated and real robots. The length scale of the normals
was kept the same σn =

√
0.5. The dictionary size was kept

the same k = 64, as in the simulation experiment. For the
random trees, we set the parameters again to ρ = 30, κ = 20,
and α = 4. The 10-fold cross-validation was again performed
in the same manner as in the simulated experiments, except
with a test set of 20 samples for each fold. The results of
the experiment are shown in Fig. 7. In Fig., 8, we show
the results of using only the position, and not the normal
information.

C. Discussion

When we take the results of both the simulated and the
real robot experiments into account, we can identify certain
trends in the methods’ performances. The random forests and
the NEL kernel approaches achieved high accuracies in the
simulated experiment, using relatively few training samples.

0 20 40 60 80 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Nr. Training Samples

A
cc

ur
ac

y

BoF

Exp χ2

Bhatt
NEL
Forest

Fig. 8. The results of the real robot experiments using only the po-
sition information. The comparison includes bag-of-features (BoF), the
exponential chi-squared (Exp χ2), the Bhattacharyya kernel (Bhatt), the
normalized expected likelihood kernel (NEL), and the random forest (Forest)
approaches. The error bars indicate one standard deviation.

With the adaptive basis functions of the random forest, and
the flexible KDE representation of the NEL kernel, these
methods can both capture a lot of details of the contact
distributions. These details allow the methods to differentiate
between successful and failed grasps more accurately when
using the exact contact information from the simulation. For
the real robot experiments, these two methods also achieved
high accuracies given a small training set, but did not surpass
the other methods as in the simulated experiments. This
suggests that these methods may be overfitting slightly to
the more noisy real robot evaluations.

In comparison, the exponential χ2 kernel and the Bhat-
tacharyya kernel achieved the best results for the real robot
experiments. Both of these kernel methods use more coarse
approximations of the contact distributions, i.e. a dictionary
of elements and a single Gaussian respectively. These coarser
representations may be more robust to the noise in the real
robot data. The bag-of-features representation tended to learn
the slowest overall, and it achieved the worst performance
on the simulated experiments. This method is however the
fastest to compute, and therefore presents a tradeoff between
computation time and accuracy.

Overall, the differences in performance between all of the
methods were minor. The performances of some of the meth-
ods could potentially be increased by tuning their respective
hyperparameters. However, given that the accuracies in the
simulated experiment are close to these reported by Dang
and Allen [7] with tens of thousands of grasps, the robot
may also be reaching a performance limit for this type of
representation, i.e., the distribution of contacts.

As one would expect, the accuracies for the real robot
experiments are lower than for the simulated grasps. How-
ever, considering the variety of shapes, masses, and material

properties of the grasped objects, a 5% reduction in accuracy
is fairly small. In order to achieve higher accuracies, the
robot should take into account additional object attributes,
such as the material properties, and the object’s mass distri-
bution. For improving the overall performance, evaluating the
hyperparameters of the different methods also seems promis-
ing and could show a more varied performance between the
kernel-based and random forest methods.

When comparing Fig. 7 to Fig. 8, we can see a drop in
performance of approximately two percent when excluding
the contact normals. Including the the normal information
allows the representations to distinguish better between the
thumb’s contacts and contacts on the opposing fingers, as
can be seen in Fig. 6. These additional details seem to help
the robot to classify the grasps more accurately.

IV. CONCLUSION

In this paper, we compared different representations of
contact distributions for predicting interactions, such as sta-
ble grasps. We presented methods based on bag-of-features,
probability product kernels, and random forests.

These methods were compared on both simulated and
real robot grasping tasks. The experiments showed that the
random forests and NEL kernels could capture finer details
of the contact distributions, while the Bhattacharya and
exponential χ2 kernels’ coarser representations were slightly
more robust to noise. The bag-of-features approach was the
slowest to learn, but was the fastest to compute, and thus
presents a tradeoff between accuracy and computation time.

The experiments also suggest that the robot should addi-
tionally take into consideration other object properties, such
as the material and center of mass, in order to further increase
the accuracy of these methods.

V. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme (FP7-ICT-2013-10) under grant agreements 610878
(3rdHand) and 610967 (TACMAN).

REFERENCES

[1] J. Amores. Multiple instance classification: Review, taxonomy and
comparative study. Artificial Intelligence, 2013.

[2] Y. Bekiroglu, R. Detry, and D. Kragic. Learning tactile characteriza-
tions of object- and pose-specific grasps. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2011.

[3] A. Bicchi and V. Kumar. Robotic grasping and contact: A review. In
IEEE International Conference on Robotics and Automation, 2000.

[4] L. Breiman. Random forests. Machine Learning, 2001.
[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classifi-

cation and Regression Trees. Wadsworth International Group, 1984.
[6] Berk Çalli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter

Abbeel, and Aaron M. Dollar. Benchmarking in manipulation re-
search: The YCB object and model set and benchmarking protocols.
Computing Research Repository, abs/1502.03143, 2015.

[7] H. Dang and P. K. Allen. Learning grasp stability. In International
Conference on Robotics and Automation, 2012.

[8] R. Detry, C. Henrik Ek, M. Madry, J. Piater, and D. Kragic. Gen-
eralizing grasps across partly similar objects. In IEEE International
Conference on Robotics and Automation, 2012.

[9] C. Ferrari and J. Canny. Planning optimal grasps. Proceedings 1992
IEEE International Conference on Robotics and Automation, pages
2290–2295, 1992.

[10] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen. The Columbia
Grasp Database. In IEEE International Conference on Robotics and
Automation, 2009.

[11] T. Hermans, F. Li, J. M. Rehg, and A. F. Bobick. Learning contact
locations for pushing and orienting unknown objects. In IEEE-RAS
International Conference on Humanoid Robots, 2013.

[12] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, J. Bohg, T. Asfour,
and S. Schaal. Learning of grasp selection based on shape-templates.
Autonomous Robots, 2013.

[13] T. Hofmann, B. Schölkopf, and A. J. Smola. Kernel methods in
machine learning. Annals of Statistics, 2008.

[14] T. Jebara, R. Kondor, and A. Howard. Probability product kernels.
Journal of Machine Learning Research, 2004.

[15] T. Jebara and Risi Kondor. Bhattacharyya expected likelihood kernels.
In Conference on Learning Theory and 7th Kernel Workshop, 2003.

[16] R. Jenssen, J. C. Principe, D. Erdogmus, and T. Eltoft. The cauchy-
schwarz divergence and parzen windowing: Connections to graph
theory and mercer kernels. Journal of the Franklin Institute, 2006.

[17] Y. Jiang, M. Lim, C. Zheng, and A. Saxena. Learning to place new
objects in a scene. The International Journal of Robotics Research,
2012.

[18] O. Kroemer and J. Peters. Predicting object interactions from contact
distributions. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2014.

[19] O. Kroemer, E. Ugur, E. Oztop, and J. Peters. A kernel-based approach
to direct action perception. In IEEE International Conference on
Robotics and Automation, 2012.

[20] J. Kulick, T. Lang, M. Toussaint, and M. Lopes. Active Learning
for Teaching a Robot Grounded Relational Symbols. In International
Joint Conferences on Artificial Intelligence, 2013.

[21] Zexiang Li and S. Shankar Sastry. Task-oriented optimal grasping by
multifingered robot hands. IEEE Journal of Robotics and Automation,
4(1):32–44, 1988.

[22] M. Madry, L. Bo, D. Kragic, and D. Fox. ST-HMP: Unsupervised
Spatio-Temporal Feature Learning for Tactile Data. In IEEE Interna-
tional Conference on Robotics and Automation, 2014.

[23] Andrew T Miller and Peter K Allen. Graspit! a versatile simulator for
robotic grasping. Robotics & Automation Magazine, IEEE, 11(4):110–
122, 2004.

[24] A.T. Miller and P.K. Allen. Examples of 3d grasp quality computa-
tions. In IEEE International Conference on Robotics and Automation,
1999.

[25] X. Ning and G. Karypis. The set classification problem and solution
methods. In Eighth IEEE International Conference on Data Mining
Workshops, 2008.

[26] Lael U. Odhner, Leif P. Jentoft, Mark R. Claffee, Nicholas Corson,
Yaroslav Tenzer, Raymond R. Ma, Martin Buehler, Robert Kohout,
Robert D. Howe, and Aaron M. Dollar. A compliant, underactuated
hand for robust manipulation. International Journal of Robotics
Research, 33(5):736–752, 2014.

[27] M. A. Roa and R. Suàrez. Grasp quality measures: review and
performance. Autonomous Robots, 2015.

[28] B. Rosman and S. Ramamoorthy. Learning spatial relationships
between objects. The International Journal of Robotics Research,
2011.

[29] K. Sjoo and P. Jensfelt. Learning spatial relations from functional
simulation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2011.

[30] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels
for object detection. In International Conference on Computer Vision,
2009.

[31] Konstantinos Zampogiannis, Yezhou Yang, Cornelia Fermuller, and
Yiannis Aloimonos. Learning the spatial semantics of manipulation
actions through preposition grounding. In International Conference

on Robotics and Automation (ICRA), 2015.

