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Abstract— We present an approach for learning sequential
robot skills through kinesthetic teaching. The demonstrations
are represented by a sequence graph. Finding the transitions
between consecutive basic movements is treated as classification
problem where both Support Vector Machines and Gaussian
Mixture Models are evaluated as classifiers. We show how
the observed primitive order of all demonstrations can help
to improve the movement reproduction by restricting the
classification outcome to the currently executed primitive and
its possible successors in the graph. The approach is validated
with an experiment in which a 7-DOF Barrett WAM robot learns
to unscrew a light bulb.

I. INTRODUCTION

Despite the wide use of robots in industry nowadays,

their breakthrough in our everyday life is yet to come.

One underlying reason is their restriction to a small set

of pre-programmed tasks that they are capable to execute

very precisely in designated environments. Here, objects can

be manipulated by using accurate sensors and well-known

(non-)linear controllers. To be applicable more generally,

future robots have to learn from observing actions and to

generalize observed movements to new situations. Learning

from observations is known as imitation learning or learning

from demonstrations in robotics [1]. As these approaches

can be used as an intuitive programming technique, they

are also often referred to as programming by demonstration.

The overall concept can be subdivided into different learning

schemes depending on the human role in the learning process.

Observing and mimicking humans directly is challenging

due to the correspondence problem [2] and expensive due

to the need of a good measurement system for tracking

the movements. We therefore aim for a kinesthetic teaching

approach. Here, a human takes the robot by the hand and

guides it through the task several times, similar to how parents

teach their child a task. Another learning scheme is called

reinforcement learning, which allows for a self-exploration

of the robot’s state space based on the maximization of a

reward function. Both learning schemes can also be combined

by using imitation learning for bootstrapping the learning

process of a reinforcement learning method.
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Fig. 1: A 7-DOF WAM arm with a 4-DOF hand has to learn

how to unscrew a light bulb from kinesthetic demonstrations.

We evaluate our approach with this example in simulation as

well as on the real robot.

A. Problem Statement

A sequential skill is the ability to execute basic elementary

movements in order to perform a complex task. These

movements are often referred to as movement primitives

in literature [3], [4]. As we are aiming at learning sequential

skills, we assume for simplicity the primitives are given (as

they have been previously learned) and we do not have to

learn them at this stage. Subdividing a task into smaller parts

simplifies the overall problem and introduces a two-level

hierarchy, in which the lower-level primitives have to be

organized by the upper-level sequencing layer. Among other

problems the main question arising when learning sequential

skills on the upper-level is: When to execute which primitive?

In Sec. II, we present our approach and show one way

to answer this question. We use kinesthetic demonstrations

as a basis for learning of a skill. The demonstration data

is labeled manually and used to create a graph as skill

representation (see Fig. 1). The nodes of the graph correspond

to movement primitives and the transition conditions are

learned by applying machine learning methods. We validate

our approach with a set of experiments where a Barrett

WAM robot has to unscrew a light bulb. This task requires

fine force interaction between the robot and its environment

in order to not break the bulb or slip with the fingers



during unscrewing. Also, the sequence of primitives is

undetermined beforehand (e.g., the amount of unscrewing

repetitions depends on the position of the bulb in its socket).

Hence, the task has strong requirements on the generalization

capabilities of the algorithm as well as on the accuracy of

the whole system.

B. Related Work

The traditional way of modeling skills with a two-level

hierarchy is by interpreting the switching behavior as discrete

events in a continuous system [5], [6]. Here, an event is often

represented as a transition in a directed graph. In [7], an

event is added for every observed switch of the demonstration,

whereby the transition connects the involved primitives and is

labeled with the switching probability. A sequence can then

be generated by sampling randomly from the graph. Finite

state machines (FSMs) are akin to graphs and can also be

used to model transitions between primitives [8].

Graphs can also represent subgoals or constraints of a

task [9]–[11]. Such constraints can be used to extract sym-

bolic descriptions which implicitly determine the sequence

order. Symbolic approaches can perform sufficiently well for

predetermined settings, but lack generality as they rely on

predefined assumptions about the tasks. If these assumptions

do not apply to the desired task, they are likely to bias the

system towards bad decisions.

Instead of modeling the system’s policy as an event-based

switching behavior, it may be more suitable to treat the overall

system as continuous entity. For example, Luksch et al. [12]

model the system as a recurrent neural network (RNN) in

which primitives can be concurrently activated and are able

to inhibit each other. This RNN architecture leads to smooth

movements of the robots. The drawback is that their model is

hard to learn and the sequence has to be defined by hand. In

[13], primitives are encoded as dynamic movement primitives

and linked with expected sensory data. Succeeding movements

are selected by comparing the current sensor values with the

expected ones and choosing the best match. The sequence

representation is thus implicit and relies only on the sensor

data.

Kinesthetic teaching is a widely used method for learning

movements in robotics [14]–[17]. In addition, reinforcement

learning allows for self-improvement of the skill and/or the

underlying primitives [18]–[20]. It reduces the requirements

on the number of necessary demonstrations and makes the

robot more independent, but finding the right policies or value

and reward functions can be a hard problem.

Most work on sequences of movements concentrates either

on segmenting demonstrations into a set of known or unknown

movements and/or on learning the individual policies, whereas

the sequencing layer is mostly either very simplistic or

hand-crafted [7]. In these cases also the switching behavior

between movements is either deterministic or not learned at

all [21]. The focus of our work instead is on incorporating

several demonstrations with varying sequence orders into one

graph model and learning the switching behavior between

succeeding movements. The most similar work to ours is [8].

Here, a FSM on the sequential level is learned and a k-nearest

neighbor classifier is used to learn the switching behavior.

II. LEARNING SEQUENTIAL SKILLS

In the following sections we focus on our approach and

explain it in more detail. Similar to other work, the switching

between primitives is considered to be discrete. Therefore,

only one primitive is active at a time and the sequential

skill learning algorithm has to decide which primitive to be

executed at every time step. The current state of the robot

is represented by a set of features, whereby the features are

computed from raw sensor values. Finding a mapping between

the feature values and executed primitive is essential for

the learning algorithm. The straightforward way of applying

machine learning methods to this problem would be to train

a single classifier with the labeled demonstration data. The

skill could then be reproduced by choosing the classification

outcome of the current feature values as next executed

primitive. However, complex skills involve many different

primitives and due to feature ambiguities the classification

may yield unsatisfying results. We therefore introduce a graph

structure in which each node corresponds to a primitive. The

graph is learned from the demonstrations and the classification

outcome is restricted to the current node in the graph and its

successors as presented in the following.

A. Proposed Approach

Before going into details about the graph representation

and the learning algorithm, an overview of the system is

presented first. We assume a predefined set of N primitives

denoted as P = {p1, p2, ..., pN}. In this work a primitive is

a dynamical system (DS) with an attractor behavior. Each DS

has a goal in task space coordinates that should be reached if

the primitive is executed. A goal can be a desired position of

a robot body, joint angle, force or a combination thereof and

can be defined relative between bodies using reference frames.

Primitives may be terminated before their goal is reached,

for example if a sensor tells the system that an obstacle is

close to the robot. More general, the switching behavior can

be triggered based on the state of a feature set denoted as x.

The features are not global but assigned as output vectors to

primitives, leading to one output vector xi per primitive pi.
A more detailed view on our movement primitive framework

can be found in [12]. Please note, however, that our methods

are kept general and that they should be applicable to any

movement primitive framework and feature set.

Fig. 2 shows the overall flow of our approach based on

a simple toy example with only three different primitives.

The primitives are indicated by different colors. They are

chosen arbitrarily and have no further meaning, but show

the essential characteristics of our approach. In general, we

assume that M demonstrations have been performed.

We start with (labeled) sampled data of at least one

kinesthetic demonstration (Fig. 2a). Based on the observed

sequential ordering of the primitives, the skill then gets

represented by a sequence graph in which each node is linked

to a primitive (Fig. 2b). The representation will be explained
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(a) Sampled (labeled) data of one kinesthetic demonstration. The background
color indicates the activated primitive, while the plot colors show which
feature belongs to which primitive. In this simplified example each primitive
has only one associated feature.
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(b) Based on the sequential order of the demonstrations, the skill is
represented with a sequence graph. The labels correspond to the transitions
points (TPs, see left figure). A TP is a point in time at which a switch
between primitives occurs.
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(c) One classifier is created for each node in the graph. Only the features of
the previous primitive and its possible successors are used for training. In
this exemplary transition from the upper sequence graph, the red primitive
is not involved and hence its feature is not used.
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(d) Classification result for a Support Vector Machine. Based on the training
data (colored dots) the classifier finds a border separating both classes
(background). During reproduction, this border is used to decide either to
keep on executing the predecessor primitive or to switch to the successor.

Fig. 2: Overall flow of our framework. First, the labeled data from a set of demonstrations (a) is taken to extract a sequence

graph (b). Then, one classifier is created for each transition in the graph based on the linked data of the demonstrations

(c, d). The classifiers are then used together with the graph to decide which primitive to execute during reproduction. We

propose two different kinds of sequence graphs, as well as two different classifiers.

in detail in the following section, where we also present two

different types of sequence graphs, both showing different

ways of incorporating the ordering into the representation.

After generating the sequence graph, one classifier is

trained for each node in the graph (Fig. 2c). When reproducing

the skill, always one node in the graph is considered as active

and the corresponding primitive gets executed. The classifier

belonging to the node decides at every time step either to

continue with the execution of the current primitive or to

switch to one of the possible successors in the graph. We

evaluate two different types of classifiers: A Gaussian Mixture

Model (GMM) and a Support Vector Machine (SVM).

B. Representing Skills with a Sequence Graph

A sequence graph is a directed graph in which each node ni

is linked to a movement primitive. This mapping is not

injective which means a primitive can be linked to more than

one node. During reproduction, a primitive gets executed if a

linked node is considered active. Transitions in the graph lead

to succeeding primitives that can be executed if the current

primitive has finished. A transition tk,l is connecting the node

nk with nl. Each transition is linked with the corresponding

transition points (TP) at which it was observed during the

demonstration (black vertical lines in Fig. 2a). As the same

transition can be observed multiple times, multiple TPs are

possible.

Having m nodes in a graph, we use a m ×m transition

matrix T with elements tk,l to describe one sequence graph.

As it is always possible to continue with the execution of the

current primitive, the transition tk,k exists for all k.

Before creating a sequence graph, the sequential order Sj

for each demonstration is extracted from the sampled data,

resulting in one directed acyclic graph with nodes nj,i for

each trial. The main step is now to combine these graphs into

one representation of the skill, which can be a hard problem

as the algorithm has to work solely on the observations. For

example, a skill can be shown several times with different

sequential orders of the primitives. From the algorithmic

point of view it is not clear if the ordering is arbitrary for

the skill or if the differences can be linked to some traceable

sensor events. Hence, there are different ways of building

the graph structure for a skill and we show two possibilities

by investigating two different kinds of sequence graphs: The

local graph presumes the ordering to be arbitrary and is not

considering it in the representation, while the global graph

is trying to construct a more detailed description of the skill

based on the ordering of the primitives.

The local sequence graph assigns exactly one node to

each executed primitive and hence the number of nodes and

primitives is equal. The graph is initialized with one node

per primitive and no transitions. For each observed pair of

preceding and succeeding primitives a transition is added to

the graph. As only pairs and no history are considered, it is

irrelevant at which point in the sequence a transition occurs.

The corresponding graph for the toy example is shown in

Fig. 3.



25

220

60,110

175 85,140

Fig. 3: Local sequence graph for the toy example. Each

primitive appears only once in the graph. Thus, there are less

nodes and more involved classes for each transition.

The graph contains only three nodes, one for each executed

primitive. When reproducing the movement, a switch from

the red primitive to the blue one is always possible at

this level of the hierarchy and it is up to the classifier to

prevent such incorrect transitions. The major drawback of

this representation therefore are the strong requirements on

the feature set, as it has to be meaningful enough to allow

for a correct classification independent of the current state

of the actual skill sequence.

The global sequence graph tries to overcome this issue by

constructing a more detailed skill description. One essential

characteristic of the global sequence graph is that a node is

not only linked to a primitive but can also be considered to

be a state of the actual sequence. A primitive can appear

multiple times in one representation as depicted in the global

sequence graph of the toy example (Fig. 2b). Here, two

nodes are linked to the red primitive because the sequence

was considered to be in two different states when they were

executed. Still, the repeated appearance of the green-blue

transitions (see Fig. 2a) is represented by only two nodes as

in the local graph. The reason is that consecutive sequences

of the same primitives are considered to be a repetition which

can be demonstrated and reproduced an arbitrary number of

times. Repetitions are also advantageous when describing the

task of how to unscrew a light bulb, where you have to repeat

the unscrewing movement several times depending on how

firm the bulb is in the holder. As the number of repetitions

are fixed for each single demonstration, the algorithm has to

conclude that different numbers of repetitions of the same

behavior appeared in the demonstrations and incorporate this

information into the final representation of the task.

Note that even if a skill requires a fixed number of

repetitions, both presented sequence graphs will contain a

cycle in the representation. The robot is then only able to

reproduce the movement properly if the classifier would find

the transition leading out of the cycle after the correct number

of repetitions. While an improvement is not possible here for

the local graph, a fixed number of repetitions can be modeled

with the global graph by turning off the search for cyclic

transitions.

C. Employed Learning Algorithm

As the local sequence graph is created by simply looking

at the primitive pairs, we will not go into details here. For

creating a global sequence graph three major steps have to

be performed:

Algorithm 1 Graph folding

Require: T

S = getSequenceOrders(T );
repetition = findRepetition(S);
while repetition.found do

R = ∅;
r = repetition.end − repetition.start + 1;
for i = repetition.start to repetition.end do

mergeNodes(S(i+ r),S(i));
R = R ∪ S(i);

tail = findTail(S, repetition.end + 1);
repetition = findRepetition(S);
if !repetition.found and tail .found then

for i = tail .start to tail .end do

mergeNodes(S(i+ r),S(i));
R = R ∪ S(i);

removeNodes(R);
S = S \R;

1) Create one acyclic graph T j for each demonstration.

2) Replace repetitions of primitives with cyclic transitions.

3) Combine updated graphs to one global representation

T of the skill.

The first point is trivial as the acyclic graph represents

the primitive orders directly given by the observations. The

second point is called folding and its pseudo code is shown

in Alg. 1. The algorithm starts with the sequential order

S with m elements and searches for a repetition of l =
⌊m/2⌋ primitives, meaning longer repetitions are preferred

over shorter ones. The method findRepetition starts from the

left and compares the primitives of the nodes {n0, n1, . . . , nl}
with {nl+1, . . . , n2l+1}.

If both node chains match, the node pairs

{n0, nl+1} . . . {nl, n2l+1} get merged. If the chains

do not match, the starting position is shifted to the right and

the method starts from the beginning with n1 as starting

point. The shifting is done until the end of the list is reached.

Next, l is decremented by one and all previous steps are

repeated. The algorithm terminates if the cycle size is 1,

which means no more cycles can be found.

When merging two nodes nA and nB , the input and output

transitions of node nB become input and output transitions

of nA. If an equal transition already exists for nA, only the

associated TPs are added to the existing transition. Note that

the cyclic transition is introduced when merging the nodes

n0 and nl+1, as this leads to the input transition tl,l+1 being

rerouted to tl,0. After each iteration of the algorithm, the

nodes of the latter chain are not connected to the rest of the

graph anymore and can be removed from the representation.

To allow escaping a cycle not only at the end of a repetition,

the algorithm also searches for an incomplete cycle after a

found repetition. This tail is considered to be part of the

cycle and is also merged into the cyclic structure, as shown

in Fig. 2b. Here, the green-blue repetitions end incompletely

with the green primitive.



Algorithm 2 Graph merging

Require: TA, TB

SA = getSequenceOrders(TA);
SB = getSequenceOrders(TB);
for all sB ∈ SB do

cmax = 0;
for all sA ∈ SA do

c =
∑

compare(sB, sA);
if c > cmax then

cmax = c;
sA,max = sA;

nodes = 1;
for all i ∈ SA,max do

if nodes ≤ c then

mergeNodes(sA,max(i), sB(i));
else

addNode(TA, sB(i));
nodes = nodes + 1;

The final step of creating a global sequence graph is called

merging, as several separate graphs are merged into one

representation. The algorithm shown in Alg. 2 merges two

graphs and thus gets called M−1 times for M demonstrations.

The goal of the algorithm is to step through the representations

simultaneously from left to right, merging equal nodes and

introducing branches whenever the nodes differ.

First, the sequence orders are extracted from both graph

representations. Here, sequence orders are paths through the

graph where only left-to-right transitions are considered. The

toy example has two possible orders: red, green, blue and red,

green, red, blue. The algorithm considers two nodes as equal

if the columns of the corresponding matrices are equal, which

means both nodes use the same underlying primitive and have

the same input transitions. Before merging the nodes, the

algorithm looks for the best match between the sequence

orders of both representations. Doing it that way, branches

are introduces at the latest possible point in the combined

graph. Once branched, both representations are separated and

do not get merged together at a later point in the sequence.

After creating the graph representation, the next step is

to train the classifiers. Each node has its own classifier

which is used if the node is active during reproduction. It

decides either to continue with the execution of the current

primitive or to switch to a possible successor node. As a

node can have more than one outgoing transition, this is

a multiclass classification problem with the classes being

neighbor nodes in the graph. Due to the graph representation

we do not have to learn a overall classification f(x) = p
with p ∈ P and x being the combined output vector of

all primitives x = (xT
1 x

T
2 ... xT

N )T , but can restrict the

classes ci of each classifier to a subset Pi ⊆ P and the

data vector to the output vectors of the elements in Pi.

Restricting the number of classes increases the accuracy

of the system as unseen transitions between primitives are

prevented. A reduction of the output vector can be seen as

intuitive dimensionality reduction, as unimportant features

used by uninvolved primitives are not considered for the

decision.

Before introducing the classifiers themselves, we show

which data is used for the training (see Fig. 2c). After the

demonstrations, each transition in the acyclic graph is linked

to one TP in the sampled data. During the merging and folding

process of the global sequence graph or the pair search for

the local graph transitions are merged together, resulting in

multiple TPs for each transition. For each TP, the data points

between the previous and next TP in the overall data are

taken from the training and labeled with the primitive that

was active during that time. As all transitions have the same

predecessor for one classifier, the first part of the data will

always have the same labels, while the second part may differ

depending on the successor node of the transition.

We evaluated GMMs and SVMs as classifiers. As both

methods are state of the art, we focus on the specifics that

are important for our approach. For a deeper insight the

interested reader is referred to [22]. When using GMMs, one

mixture model is trained per class label. The classification

can then be performed by computing the likelihood of a

sample given each model and choosing the most likely

model as classification result. The number of mixtures within

each model is determined using the Bayes Information

Criterion (BIC). To prevent one class dominating the others,

the number of Gaussians are first computed for each class

separately using the BIC and then the maximum is chosen as

number of Gaussians for each class.

The behavior of probabilistic generative classifiers is often

unpredictable when being faced with unseen data that is

in a region of the feature space where absolutely no data

has been used for the training. Fig. 4 shows how the GMM

approximates the training data of the toy example with

Gaussian distributions. Although the data itself is modeled

properly, the classification result for data in the white region of

the feature space is often unpredictable. We therefore suggest

to use SVMs instead of GMMs, as they separate the feature

space into hyperplanes and belong to the maximum margin

classifiers. Each hyperplane represents one class. Data points

are assigned to classes depending on their position in the

feature space. We decided to use the freely available libsvm
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Fig. 4: Classification result of a Gaussian Mixture Model.

The GMM approximates the training data (colored dots)

with Gaussian distributions (ellipsoids). Despite the correct

modeling of the data, the classification result for the white

area often is not conclusive.



Fig. 5: Illustration of a successful unscrewing sequence. The robot starts in an initial position ( ) and first moves towards

the bulb ( ). Then it repeats the unscrewing movement ( ,  ,  ,  ) until the bulb loosens ( ) and subsequently, the bulb

is put into a bin ( ) and the robot returns to its initial position ( ).

library [23] as implementation for the SVM and we use radial

basis functions as kernels. For the multiclass classification,

the standard SVM formulation is used together with the one-

versus-one concept. Here, for k classes k(k − 1)/2 binary

classifiers are generated. The classification is done for each

classifier and the feature vector is assigned to the class that

was chosen most frequently.

III. RESULTS

In this section we will present the results of our work. We

evaluated our approach both in simulation and with a real

7-DOF Barrett WAM robot with an attached 4-DOF Hand. As

a scenario we chose to unscrew a light bulb. In Sec. III-A

we outline details of the experiments. The results are then

presented in Sec. III-B and discussed in Sec. III-C.

A. Experimental Setup

For the representation of the skill we chose seven different

movement primitives. The robot starts in an initial position

and first moves towards the bulb. Next, the actual unscrewing

movement starts which consists of four different primitives:

The hand is closed, rotated counterclockwise, opened and

rotated clockwise. These primitives are executed repeatedly

until the bulb loosens. Subsequently, the robot puts the bulb

into a bin and again returns to its initial position. We chose to

unscrew the light bulb by caging it. Here, the robot encloses

the bulb with its hand and grasps it below the point with the

largest diameter. The detailed task flow is illustrated in Fig. 5.

For positioning the robot, the end effector coordinates

defined relative to the light bulb holder are set. When opening,

closing or rotating the hand, either the three DOFs of the

fingers or the angle of the wrist joint are controlled by the

primitive. The unscrewing primitive rotates the closed hand

counterclockwise, holds the current horizontal position and

applies a force in upward direction to the robot’s hand to

ensure contact with the bulb. All DOFs that are not controlled

by a primitive are handled by the underlying control system.

One feature g is assigned to each primitive. The feature

is called goal distance and can be directly derived from the

primitive’s goal in task space sgoal:

∆ = sgoal − s (1)

g = 1− exp(−0.5(∆T
Σ

−1
∆)). (2)

Here, s ∈ R
n is the current state of the robot in task space

coordinates and Σ is a predefined n × n diagonal matrix.

Eq. (2) depends on the distance between the position of the

robot and the primitive’s target position. The goal distance

has several advantages over using the Euclidean distance as a

feature. First, the values are in the range [0, 1] and no further

data scaling is necessary. In addition, the feature variation

around the robot’s goal can be shaped with the parameters

of Σ. For low parameter values, the goal distance starts to

decrease only if the robot is already close to its goal.

In addition to the goal distances, the velocity of the hand

is used as feature to check if the light bulb is loose. To avoid

the velocity dominating the other features, it is scaled by

subtracting the mean, dividing by the standard deviation and

then shifted by 0.5 and clipped to [0, 1]. The scaling is done

automatically for the complete data used for training the

classifiers. Given the goal distances and the velocity of the

hand, the overall feature dimension is 8 for seven primitives.

As a kinesthetic teaching is not possible in simulation, we

used a teaching method we called automatic demonstration.

Here, the primitives are executed in a predefined order using

a state machine. For modeling variations in the switching

behavior, the transition points are chosen randomly from a

certain range. For example when going down to the bulb, the

succeeding primitive can be activated if the goal distance of

the primitive is in the range [0, 0.1]. The exact transition point

is chosen randomly from this range every time the primitive

starts its execution and hence the transition point could be

for example 0.09 and 0.02 for two different demonstrations.

The intention of the automatic demonstration was to create

a switching behavior which is similar to that of a human

teacher.

For the kinesthetic teaching, we activated the gravity

compensation mode of the robot and executed the task by

guiding its arm. Switches between primitives were indicated

by pressing a key every time we considered a movement as

complete. We also chose to activate the opening and closing

of the hand by pressing a key rather than using compliant

fingers in order not to influence the force torque sensor at

the wrist. The labeling was then done based on the generated

switching points. Examples of a demonstration and successful

reproductions can be seen in the attached video.

B. Results

We evaluated our approach with multiple demonstrations

along with all possible combinations of classifiers and

sequence graphs. For all demonstrations, our approach was

able to find the correct sequence graphs of the skill which are

shown in Fig. 6. The classification recall for the simulation
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(a) Global sequence graph for the light bulb task. (b) Local sequence graph for the light bulb task.

Fig. 6: Graph representations of the light bulb task. While the global graph gives a complete description of the task, the

local graph merges several nodes. The merging creates paths in the representation which were not demonstrated. An example

is the sequence marked as red which leads to a misbehavior of the robot if executed.

Demonstration Ref. L-GMM G-GMM L-SVM G-SVM

1 92.3 96.1 96.4 96.0 95.8
1+2 95.2 89.9 96.2 93.4 96.7

1+2+3 95.9 89.6 96.1 93.4 96.6
1+2+3+4 96.2 89.1 95.8 93.2 96.6

(a) Classification Recall: Simulation

Demonstration Ref. L-GMM G-GMM L-SVM G-SVM

1 56.3 37.5 43.8 81.3 87.5
1+2 81.3 43.8 50.0 93.8 100

1+2+3 62.5 62.5 68.8 93.8 100
1+2+3+4 81.3 62.5 75.0 93.8 100

(b) Reproduction: Simulation

Demonstration Ref. L-GMM G-GMMs L-SVM G-SVM

1 91.9 90.0 90.8 90.9 91.4
2 92.7 90.9 91.8 91.0 91.3
3 88.1 90.5 91.7 92.7 92.9

1+2 92.0 86.9 91.4 89.3 91.1
1+3 90.5 86.3 90.2 90.1 92.0
2+3 90.5 87.4 92.9 89.0 92.7

1+2+3 90.5 85.9 91.2 89.4 92.7

(c) Classification Recall: Real Robot

Demonstration Ref. L-GMM G-GMM L-SVM G-SVM

1 0.0 53.3 66.7 86.7 93.3
2 0.0 60.0 80.0 86.7 93.3
3 0.0 40.0 40.0 80.0 86.7

1+2 0.0 60.0 80.0 90.0 100
1+3 0.0 53.3 80.0 80.0 100
2+3 0.0 73.3 80.0 80.0 100

1+2+3 0.0 66.7 80.0 90.0 100

(d) Reproduction: Real Robot

TABLE I: Experimental results for the light bulb task. The upper tables show the results for the simulation and the lower

ones the results of the experiments with the real robot. For both experiments we tested the classification recall (left tables) as

well as the reproduction of the skill (right tables) for SVMs and GMMs both using the global (G-) and local (L-) sequence

graph. The results are compared to a reference classifier (Ref.), which is a SVM created without using a sequence graph. For

red entries the reproduction failed.

is shown in Table Ia. As reference we trained a SVM without

creating a graph representation using the complete labeled

data and hence no dimensionality reduction was used.

Table Ib shows the results for the reproduction of the

movement. The table outlines the percentage of successfully

reproduced transitions between primitives compared to the

overall transitions that were necessary to perform the task. If

an incorrect movement was chosen or the robot got stuck the

transition was marked as faulty. In that case the transition

was blocked and triggered manually in the next trial, so

that also all succeeding transitions could be tested. Entries

marked red indicate dangerous behaviors that could harm

the robot or break the light bulb. As our framework allows

for incorporating an arbitrary number of demonstrations into

one task representation, we were able to test all possible

trial combinations. For the teaching, we performed three

kinesthetic demonstrations, hence seven different outcomes

are possible. Table Ic and Table Id show the classification

recall and reproduction results for the experiments on the real

robot. The reproduction with the reference classifier failed.

Hence, the reproduction rate was set to zero for all entries.

C. Discussion

The benefit of our approach becomes quite obvious when

comparing the results of the graph based approaches with

the reference classifier. Despite achieving comparable classi-

fication recall, the reproduction with the reference classifier

works worse in simulation and not at all on the real robot,

as indicated by the red entries in Table I.

The presented results also emphasize the advantages of the

global over the local sequence graph as well as of the SVMs

over the GMMs. No local representation was able to reproduce

the task successfully and when using GMMs even dangerous

behaviors were possible. The reason is the fusion of the initial

state and the return to the initial position after unscrewing

the light bulb in the local representation (see Fig. 6). The

fusion allows wrong sequences and the potentially dangerous

sequence is marked as red in the image. Here, the robot returns

to its initial position with the bulb in its hand and immediately

goes back to the bulb holder while opening its hand instead

of going to the bin. The misclassification comes from the

features which are not meaningful enough to be separated



well. While the global representation overcomes this issue by

disallowing the incorrect transition, the local representation is

not able to encode the skill properly without using additional

features. Note that the global representation performs only

better if the skill is modeled properly as in our case. When

introducing false transitions the system can be biased towards

wrong decisions, resulting in a worse performance than by

using the more general local representation.

GMMs perform worse than SVMs, but still manage to

reproduce most transitions for the global representation if

enough demonstrations are available. As the training of each

state’s GMM is done locally, the models are prone to overfit the

data and the behavior for unseen data is uncertain in advance

(see Fig. 4). Due to the overfitting GMMs achieve a similar

classification recall as SVMs, but the reproduction is not

competitive. To avoid the overfitting, we suggest not using the

expectation-maximization algorithm for the training of a GMM

and recommend training methods which are trying to find

large margins (e.g., [24]) or other probabilistic classifiers such

as logistic regression. The overall winner is the combination

of SVMs and global sequence graph. Only two trials were

necessary to perform the skill properly both in simulation

and with the real robot. Although the other approaches were

not able to execute the overall task completely, they were

able to unscrew the light bulb, which was the main goal of

the project. The fixed amount of seen unscrewing repetitions

were generalized to an arbitrary number and most approaches

were able to recognize when the bulb was loose.

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed to use a graph structure for

representing sequences of robot movements. Based on this,

a sequential manipulation skill was learned by creating a

classifier for each node in the graph, which decided either

to continue with the execution of the current movement

or to switch to another one by taking a transition in the

graph. We showed how the observed sequence order of

kinesthetic demonstrations can be incorporated into the

graph representation. This leads to an intuitive class and

dimensionality reduction which is the main benefit of our

approach and allows for a reproduction of the skill. We

evaluated two different classifiers (SVMs and GMMs) for

their skill learning suitability, as well as two different types

of sequence graphs. Our approach was validated with an

experiment in which the robot unscrews a light bulb, both in

simulation and with a real Barrett WAM. Here we showed,

that our approach is able to learn the switching behavior from

very few demonstrations. Most often two demonstrations were

enough to reproduce the demonstrated skill properly.

In future work some simplifications made in this paper

will be relaxed. One target is to consider more complex

structures within the folding and merging algorithms, e.g., by

reuniting branches or looking for common substrings. We also

aim at learning skills that require co-articulation and parallel

execution of primitives. Therefore we have to synchronize

concurrently active primitives which for example control two

different end effectors.
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