
Probabilistic Progress Prediction and Sequencing

of Concurrent Movement Primitives

Simon Manschitz1,2, Jens Kober3, Michael Gienger2, and Jan Peters1,4

Abstract— Classical approaches towards learning coordi-
nated movement tasks often represent a movement in a sequen-
tial and exclusive fashion. Introducing concurrency allows to
decompose such tasks into a number of separate sequences, for
instance for two different end-effectors. While this results in a
compact and generic representation of the individual movement
primitives (MPs), it is a hard problem to learn their temporal
and causal organization. This paper presents a concept for
learning movement tasks that require the coordination of
several controlled effectors of a robot. We firstly introduce
a concept to learn and estimate the progress of individual
MPs from a low number of demonstrations. Secondly, we
propose a representation of the task that incorporates several
concurrent sequences of MPs. Combining these two elements
allows to learn and reproduce coordinated bi-manual movement
tasks robustly. The synchronization of the concurrent MPs is
achieved implicitly using the progress prediction. The approach
is evaluated in two simulation studies with a 25 degrees of
freedom two-arm robot performing a pick-and-place task.

I. INTRODUCTION

Imagine the problem of teaching an anthropomorphic

robot the task of bi-manually slicing a block of cheese. The

task can be decomposed into three sub-tasks: Grasping a

knife with one hand, fixing the cheese on the plate with

the second hand and finally slicing it. If the sub-tasks are

performed in a purely sequential way, we have to make

several decisions. Firstly, we need to decide for a sequential

order of the preparatory steps “holding” and “grasping”,

even though the order doesn’t really matter for the task.

Secondly, we need to represent the coordinated parts of the

task (“slicing” while “fixing”) into one complex movement

primitive (MP), which is rather specific and therefore does

not generalize well to different situations. If the sub-tasks

are instead performed concurrently, “fixing” and “grasping”

are independent MPs, and can be carried out with each

end effector independently and at the same time. Thus,

introducing concurrency leads to a) a shorter execution time,

and b) a more flexible overall behavior for this task. However,

slicing the cheese requires some kind of synchronization. If

the fixing hand doesn’t push on the cheese, it will slip away

1S. Manschitz and J. Peters are with the Institute for Intelligent
Autonomous Systems, Technische Universität Darmstadt, 64289
Darmstadt, Germany, manschitz@ias.tu-darmstadt.de,
mail@jan-peters.net

2S. Manschitz and M. Gienger are with the Honda
Research Institute Europe, 63073 Offenbach, Germany,
michael.gienger@honda-ri.de

3J. Kober is with the Delft Center for Systems and Control,
Delft University of Technology, 2628 CD, Delft, The Netherlands,
j.kober@tudelft.nl

4J. Peters is with the Max Planck Institute for Intelligent Systems, 72076
Tübingen, Germany

Fig. 1: The system is supposed to learn how to sequence concurrent
movement primitives. We evaluate our approach on a bi-manual task where
a robot has to pick up a box. Depending on the size of the box, the system
has to use different strategies for picking it up.

when slicing it. The task therefore requires a synchronization

of “fixing” and “slicing” in order to successfully continue the

task.

In this paper, we focus on the class of problems with

exactly these properties. Having several independent flows

of MPs, a synchronization is needed at distinct points in

the overall sequence. The novelty of our contribution is to

learn from demonstrations when to activate which MP in the

concurrent sequences in order to reproduce the task. Con-

currency in this context means that the MPs controlling the

robot’s effectors can be activated independently and concur-

rently at each point in time. In contrast to other approaches in

the field of bi-manual manipulation, concurrency is not only

limited to the robot’s end effectors. Instead, for example,

the position and orientation of one end-effector could also

be formulated as concurrent sequences. Also a coordination

of eyes and hands could be learned. Concurrency therefore

allows to decompose the task into smaller and more compact

MPs, which are more intuitive and easy to reuse.

The key concepts of our approach are two-fold. Firstly, we

propose a probabilistic model for learning and estimating

the progress of each MP. The parameters of this progress

estimation are learned from a low number of demonstrations

of the task. It is an important property of our approach

that the progress estimator is learned from a feature set

influenced by the overall state of the system. These features

are composed of pre-processed sensor information and are

influenced by all MPs. During reproduction, the learned esti-

mator maps this feature vector to a scalar progress coordinate

for each MP. In our framework, the estimated progress is not

necessarily a representation of the internal phase of a MP,

which determines how close a MP is to it’s goal position

or how long it has been activated. Instead, the conditioning

on a feature set allows the progress to be decoupled from



the actual motion. For example, the progress might increase

only if a certain event happens, even though the MP’s goal

position has already been reached. The second key concept is

that we represent the demonstrated task as a set of concurrent

sequences of MPs. The transition between consecutive MPs

of each sequence is determined by interpreting the progress

of an individual MP as entry and exit probability. We pro-

pose a transition indicator that is composed of the current

MPs exit probability and the next MPs entry probabilities.

Combining both progress prediction and concurrent sequence

representation allows to reproduce a demonstrated task. The

concurrent sequences are synchronized with each other only

implicitly, as the individual MP entry and exit probabilities

are conditioned on the global feature state influenced by all

MPs. Our approach is also able to learn structural variations

in the task, for instance performing a task with one or

two hands depending on the feature values. The presented

approaches are evaluated in two simulation studies in a pick

and place task. To evaluate the experiments as realistic as

possible, we utilize a physics simulation engine.

A. Related Work

The learning from demonstration (LFD, [1]) paradigm has

received a lot of attention in robotics research over the past

years. Demonstration data can be acquired via kinesthetic

teaching or by tracking human movements, e.g., via motion

capturing or computer vision systems. The recorded data can

be used to learn movements directly or for bootstrapping the

learning process, e.g., by using it as prior knowledge for

a reinforcement learning method. A movement can be inter-

preted either as a single complex movement or as a sequence

of simpler movements. In literature, those simple movements

are often referred to as movement primitives (MPs) [2],

[3]. There are various MP representations available, includ-

ing dynamic movement primitives (DMPs, [3]), probabilistic

movement primitives (PROMPs, [4]), or based on Gaussian

mixture models [5]. Often, MPs encode a desired trajectory

in joint or task space and are activated exclusively. This

concept can also be extended to bi-manual movements.

Here, a single MP has to encode the desired trajectory

of both end-effectors. One advantage of such an encoding

is the straightforward use of existing methods. The main

disadvantage is that the resulting MPs can be rather complex

and are hardly reusable in different situations. Therefore,

an alternative approach is to activate MPs concurrently. We

argue, that if movements of two end-effectors (or of two

independent control variables in general) are represented

independently, the representations become simpler and are

more intuitive. The drawback is, that the coordination is more

difficult, as the system has more possibilities for activating

the MPs. Luksch et al. [6] introduced a framework where

MPs can be activated concurrently without any restrictions.

The MPs are coordinated using recurrent neural networks.

Due to the various possible combinations of MPs, learning

the sequences is a hard problem. Therefore, the parameters

of the network had to be defined by hand. A stronger

coupling of the concurrent movements can be achieved, for

example, by using DMPs and adding a coupling term to

the original formulation [7], [8], [9]. In general, such a

coupling term allows for conditioning a DMP on external

signals. For coupling concurrent movements, one DMP can

be conditioned for example on the state of another DMP.

The representation of a sequence is often independent of

the underlying MP representation. Most concepts are based

on a hierarchical architecture. Usually, the hierarchy consists

of two layers, where the upper-layer sequencing layer modu-

lates the lower-layer MPs. Kulić et al. [10] represent MPs with

hidden Markov models and sequences in a motion primitive

graph. The transition probabilities between consecutive MPs

depend on how often the transition has been observed in the

demonstrations. A movement is then generated by sampling

MPs from the graph. Pastor et al. [11] encode not only the

desired trajectory with DMPs, but also the expected sensor

traces. As soon as a MP approaches its goal position, the most

likely successor can be found by nearest neighbor classifica-

tion using the current sensor signal and the expected sensor

traces. The same method for finding the most likely successor

is also used by Niekum et al. [12]. Here, the sequential layer

is represented using a finite state machine (FSM) and learned

with a beta process auto-regressive hidden Markov model,

which also segments the demonstrations automatically. The

approach is similar to that of Butterfield et al. [13], which

use a hierarchical Dirichlet process hidden Markov model.

Another possibility for representing a sequence are Petri

nets [14].

Instead of having either pure sequential or concurrent MPs,

it is also possible to have master and slave systems. For bi-

manual tasks, for example, the movements of the second

end-effector can be conditioned on the movements of the

first end-effector. In that case, the movements of the first

end-effector can be learned independently of the second

end-effector. For example, Maeda et al. [15] condition the

movements of an end-effector on the movements of a human

co-worker for learning collaborative tasks.

B. Proposed Approach

We adopt the idea of concurrent MPs. In contrast to other

approaches on bi-manual manipulation, the concurrency is

not limited to the movements of the two end-effectors.

Instead, we allow an arbitrary number of control variables.

In the later examples, these are the position and orientation

of each end-effector, as well the finger angles of each hand.

For each control variable, one MP is active at the same time.

The goal is to learn from demonstrations when to activate

which MP. The novelty of our approach is that we have con-

current MP sequences that are implicitly synchronized. The

concurrency keeps the MP and task descriptions simple, while

the implicit synchronization ensures that the MP activations

of the concurrent sequences are still conditioned on each

other.

The sequence of MP activations for each control variable

is represented independently with a graph. For each node in

a graph, the entry and exit probabilities are learned from a

global feature set, which represents the state of the entire



Algorithm 1 Graph generation

Require: Features X(M), Labels y(M)

1: g = graph(); // Empty Graph
2: for m = 1 : M do

3: if !g. hasNode(y
(m)
1 ) then

4: node = g. addNode(y
(m)
1 ); // Label of first point

5: g. setInitialNode(y
(m)
1 , true); // Mark as initial node

6: node. startNewTrajectory(); // Indicate new trajectory starts

7: node. addData(X
(m)
1 ); // Add single data point

8: for i = 2 : nm do

9: if y
(m)
i

6= y
(m)
i−1 then

10: if !g. hasNode(y
(m)
i

) then

11: node = g. addNode(y
(m)
i

);

12: if !g. hasTransition(y
(m)
i−1 , y

(m)
i

) then

13: g. addTransition(y
(m)
i−1 , y

(m)
i

);

14: node. startNewTrajectory();

15: node. addData(X
(m)
i

);

16: return g; // Return graph

system. Therefore, even though the MPs of each control

variable can be activated concurrently, the transition behavior

is implicitly conditioned on the state of the entire system.

In this paper, a MP is a first-order dynamical system (DS)

with a linear attractor behavior. Each DS has a goal in task

space coordinates that is reached if the MP is activated.

Depending on the control variable, a goal can be a desired

position or orientation of a robot body, joint angle, force or

a combination thereof and can be defined relative between

bodies using reference frames. In previous work, we showed

how the attractor goals and reference frames can be extracted

from kinesthetic demonstrations [16], [17]. For the remainder

of the paper, we therefore impose the following assumptions:

We assume to know the number of concurrent sequences. We

also assume that the concurrent sequences are represented

in independent task spaces, so that they are not competing

against each other. Even though non-independent task spaces

of MPs are an interesting research problem, they are out of the

scope of this paper. Finally, we assume that a previous stage

the utilized MPs have been learned at and that the training

data has been labeled with the active MPs over time.

The remainder of this paper is organized as follows. In

Section II, the graph framework is introduced. In Section III,

we show how the transition behavior between MPs can be

learned by predicting their progress. The approach will be

evaluated with a simulation study where different boxes have

to be picked up bi-manually in Section IV. Finally, a con-

clusion and outlook on future work are given in Section V.

II. CONCURRENT SEQUENCE GRAPHS

In this section, we show how a sequence of MPs is

represented using a graph, which we call sequence graph.

In a sequence graph, every node is linked to a MP. Dur-

ing reproduction, the graph determines which MP may be

activated next. Within our concurrent MP framework, one

graph is used for representing the sequence of activated

MPs for each control variable. We assume that a task has

been demonstrated M times, resulting in a data set X(m) ∈

Var 3

Var 2

Var 1

Time

(a) Active MPs

A B C

D E F

G H
f(φG(x), φH(x))

(b) Sequence Graphs

Fig. 2: Labels (active MPs) and resulting sequence graphs for three different
control variables (Var). Each MP is represented by a different background
color. Initial nodes are indicated by thick borders. A graph represents the
sequence of MP activations of one control variable and is independent of
all other graphs on this layer. The transition behavior is determined by the
predicted progress φ of the current node and its successors. As the progress
of each node depends on the same global feature state x, the MPs are still
implicitly coupled.

R
d×nm and a set of labels Y (m) ∈ R

c×nm . Here, m, d, c,

and nm indicate the demonstration, dimension of the feature

space, number of control variables and the number of data

points for demonstration m, respectively. The labels indicate

the active MPs for each control variable and time step. The

recorded data represents the state x ∈ R
d×1 of a hand-

crafted feature set for each point in time. The feature state

can be comprised of any measurable magnitude, for example,

external sensor signals or the joint angles of the robot. As the

feature state is used for synchronizing the concurrent MPs, it

is important that it represents the state of the entire system.

Each graph is build separately. Therefore, the vector y(m)

will be used as notation in the following for the labels of a

single graph.

The pseudo code for the generation of a single graph is

shown in Algorithm 1. A graph is initialized with a single

node and without any transitions. The node is marked as

initial node and linked to the first activated MP of a sequence.

For each observed transition between MPs in y(m), one

transition is added to the graph if it does not exist yet. If

an observed MP is not yet linked to a node in the graph, the

corresponding node is created first. During construction, the

data is split according to the labels and assigned to the nodes.

Thus, each node is linked to the data that was recorded when

the corresponding MP was active during the demonstration.

The data linked to one specific node will be referred to

as X̃
(j)

. Here, j ∈ {1, . . . , k}, where k is the number of

times the node was activated during the demonstrations. The

data will be used for the learning the progress prediction, as

shown in the following section. Fig. 2 depicts the labels and

resulting sequence graphs for a demonstration of a task with

three different control variables. If multiple demonstrations

have been performed, there may be more than one initial

node within a single graph. In this paper, each graph contains

one node for each activated MP and one transition for each

observed pair of succeeding MPs. For more sophisticated

sequential graph structures, the interested reader may have a

look at our previous work [17].



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Feature 1

F
ea

tu
re

2

20

40

60

80

P
re

d
ic

te
d

P
ro

g
re

ss
[%

]

Fig. 3: Example for the progress prediction with synthetic data in a two-
dimensional feature space. Four support points are chosen per trajectory,
indicated by the black crosses. The trajectories start in the blue and end in
the red area. The background color depicts the predicted progress for the
entire feature space.

III. PROGRESS PREDICTION

In this section, we show how the demonstration data can

be used for learning to predict the progress of a MP. The

progress φ is a real number between zero and one and is

used to transition between MPs during reproduction of a task.

Ideally, the predicted progress of a MP is zero when it gets

activated and a transition to a successor is triggered if the

progress approaches one. Basis for the learning is the data

which was assigned to the MPs node during the construction

of the graph. For each activation j and time point i, an

expected progress of a MP can be computed according to

φ
(j)
i = φ

(j)
i−1 +

∥

∥

∥
X̃

(j)

i − X̃
(j)

i−1

∥

∥

∥

1
, φ

(j)
0 = 0, (1)

which is basically a line integral over the feature space

trajectory. Subsequently, φ is normalized, so that the last φ

of one activation equals one. The line integral ensures that

the expected progress increases proportionally to the feature

difference between two successive data points. Thus, the

expected progress is independent of time (unless the time

is included in the feature set), as it does not increase if

the features are not changing. Based on the data and the

expected progress, the goal is to learn a function, which maps

the current feature state x onto the desired interval [0, 1].
Mapping an input to a continuous valued output is usually

treated as regression problem in machine learning. Typical

regression methods are not directly applicable here, as their

output can be any real number. Therefore, they require an

additional stage, which maps a real number onto the desired

interval. Such a mapping could be achieved with a Sigmoid

function or by clipping. Still, it is not obvious which method

to choose, as it is for example not clear whether an output

value larger than one should trigger a MP transition or not.

Our method does not require an additional stage, as it

inherently maps the feature state onto the interval [0, 1]. The

key idea is, that the progress can be also interpreted as an

0 0.5 10
0.5

1
0

2

Expected φ

Predicted
φ̃

L
o

ss
fu

n
ct

io
n

Fig. 4: Loss function for the entire range of expected and predicted progress
values for a single data point. The plot indicates that the minimum is reached
if prediction and expectation are equal and also, that data points close to
the interval borders have the biggest impact on loss function.

exit and entry probability of a node as follows

pexit = φ, (2)

pentry = 1− φ. (3)

Learning both probabilities can be achieved by formally

treating the progress prediction as binary classification prob-

lem. The difference to usual classification problems is, that

we do not use the usual 1-of-K coding scheme where class

labels are either one or zero. Instead, the expected progress

is used directly as label. Thus, the binary state of the labels is

extended to a continuous space where a label can be anything

between zero and one. As we are not interested in the actual

class labels but rather in the class probabilities, the classifier

can also be seen as a regression method in our case.

We use kernel logistic regression (KLR) for learning, but in

general any probabilistic binary classifier can be used [18].

The progress predicted by the KLR model is

φ̃i =
1

1 + exp
(

∑S

s=1 wsk(X̂s, X̃i)
) , (4)

where ws is an element of the parameter vector w ∈ R
S×1,

X̂s is a support point and k is a kernel function applied

to a support point and the current data point X̃i. We use

radial basis functions as kernels, so that k(X̂s, X̃i) =
exp(−γ‖X̂s − Xi‖

2). In the standard formulation of the

KLR model, all data points are also chosen as support

points. The resulting large number of free parameters often

leads to overfitting. We therefore suggest to distribute the

support points equidistant along the trajectories and to scale

their number proportionally to the final value of φ before

normalizing it to one. The value is a good indicator for

the non-linearity of a trajectory (if the features have similar

magnitudes or are scaled to a fixed range) and comes at no

further cost, as it has to be computed before. Additionally,

scaling the number proportionally to the non-linearity of a

trajectory avoids having too few support points, which may

decrease the prediction performance. In general, any sparse

kernel method can be used to adjust the number of support

points (e.g., [19]).



The model parameters are learned by minimizing the loss

function l, which is the negative log-likelihood

lNLL = −

N
∑

i=1

φi log(φ̃i) + (1− φi) log(1− φ̃i). (5)

Here, N is the total number of data points assigned to

the node, φ is the expected normalized progress computed

with (1) and φ̃ is the predicted progress by the KLR model.

Note that even if a data point is not used as support point,

it still has an impact on the loss function (5). Fig. 3 shows

four example trajectories and the predicted progress in a two-

dimensional space.

Two important properties of using continuous class la-

bels are worth emphasizing here. Firstly, minimizing (5) is

still a convex problem. Thus, the parameters can be found

straightforwardly, for example, with iterative reweighted least

squares [20]. Secondly, the loss function becomes minimal

only if prediction and expectation are both close to either

zero or one, as depicted in Fig. 4. Still, for a given expecta-

tion the minimum is achieved if prediction and expectation

are equal. The slope also indicates, that data points where

either expectation or prediction are close to the interval

border have the biggest impact on the cost function. This

insight is important, as it is a desired property. As the

predicted progress is used for transitioning between MPs, the

prediction has to be more accurate at the start and end of a

MP activation, for avoiding premature, too late or incorrect

transitions.

When reproducing a task, for each graph the node with

the highest entry probability among all initial nodes is

activated first. During execution, a transition probability is

computed for each possible successor of the current node by

multiplying the exit probability of the current node with the

entry probability of the successor. If a transition probability is

above a certain threshold (0.65 for our experiments) and has

not improved over the last 50ms, the system starts to activate

the most likely successor. The values have been found via

experimental validation.

IV. EVALUATIONS AND EXPERIMENTS

For evaluating our approach, we perform a simulation

study where a two-armed robot has to pick up boxes with

varying sizes. After picking it up, it has to be lifted up

and put into a container. The simulation setup is shown

in Fig. 5. The robot has two arms and in total 25 degrees

of freedom (DOF). In the following, we will refer to the

both robot arms as the left and the right arm. Each arm has

seven DOF, while the hand of the left and right arm have

four and seven DOF, respectively. For performing the task,

the system has to activate the MPs for the six independent

control variables correctly. As already mentioned, the control

variables are the position and orientation of each end-effector

and the fingers angles of each hand. The width and depth of

the box are varied randomly. For performing the task, the

system has to use three different strategies, depending on

the size of the box (e.g., grasp it bi-manually if the box is

❶

❷

❸

Fig. 5: Task flow for the experiment (from left to right). Different strategies
are needed for achieving the task. The robot starts in its initial position.
Subsequently, a box is placed on the gray plate. Width and depth of the
box are set randomly. Depending on the size of the box, either both end-
effectors ❶ or only the right ❷ or left end-effector have to be used ❸ for
grasping the box. Subsequently, the box has to be lifted and put into a
container. Finally, the robot returns to its initial position.

big). The strategies are also depicted and explained in Fig. 5.

The initial position of the robot is always the same.

We manually define a total of 20 MPs for the task.

Seven MPs control the position of an end-effector in world

coordinates. One MP controls the left end-effector relative to

the right end-effector. This MP controls the left arm when

lifting the box bi-manually. Four MPs control the finger

angles of a hand, respectively and two MPs control the

orientation of the corresponding end-effector, respectively.

For the simulation, the Vortex physics engine is utilized. No

additional sensor noise or execution inaccuracies have been

taken into account. The feature set is comprised of the size

and position of the box and the positions of the end-effectors

in world coordinates. Additionally, for each MP controlling

either the orientation (relative to the world) of an end-effector

or the finger angles of a hand, one feature f is computed

according to the equation

f = 1− exp(−0.5∆T
Σ

−1
∆). (6)

Here, ∆ is a difference measure between the current state

of the robot in task space coordinates and the MPs attractor

goal. For the finger angles, the difference between state and

goal is used, while for the orientations, the angle error is

computed. The diagonal matrix Σ can be used to shape the

feature around the attractor goal [6]. In general, our approach

works with arbitrary features. However, the advantage of (6)

is that the feature is intrinsically in the range [0, 1], which

makes further data scaling superfluous. Additionally, there is

no danger of flipping signs for the orientations (e.g., jumps

from −π to π). In total, the dimension of the feature space

is 24. The positions and box sizes have been scaled, so that

they are also roughly in the range of [0, 1].

A. Evaluation of Progress Prediction

In a first experiment, the progress prediction is evalu-

ated. First, 15 demonstrations are performed, five with each

different strategy. For the demonstrations, we predefine the



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Expected Progress

P
re

d
ic

te
d

P
ro

g
re

ss

Desired

Demonstrations

3

6

9

Fig. 6: Predicted and expected progress (ground truth), averaged over all
MP activations and five demonstrations. Ideally, the prediction would be a
straight line with slope one (black line). The background colors show the
hull of two standard deviations. The box sizes used in the demonstrations
are chosen randomly and therefore different than during the training phase
of the progress predictors.

sequences using finite state machines and the transition

behavior between MPs using thresholds. The demonstrations

are split into a training set (nine demonstrations) and a test

set (six demonstrations). Subsequently, the parameters of the

progress predictors are learned using the training set. For

the experiments, the kernel width of the RBF kernels is set

to 4.0. After the training, the test set is used to evaluate

the progress prediction, as depicted Fig. 6. The results show,

that the improvement in the prediction accuracy is small for

more than six demonstrations. Furthermore, the minimum

of the standard deviation is reached at the start, center and

end of the trajectory. The reason is that for the experiments

the support points where chosen equidistant in feature space,

and their minimum number was set to three. Therefore, the

accuracy increases in the vicinity of the start, center and end

of a trajectory. Even though the progress prediction works

well for this task, we recommend to use a feature reduction

method before training if the feature set is high-dimensional

or contains many irrelevant features.

B. Evaluation of Concurrent Framework

In a second experiment, the overall performance of the

system is evaluated by using the progress prediction for

transitioning between the MPs, according to Sec. III. A

successful reproduction requires a transition to the correct

MPs at the correct states. The MPs that are activated first

during a demonstration vary depending on the size of the

box (e.g., if the box is small, the left arm is not moving

at all, while it has to approach the box for the other two

cases). Therefore, each sequence graph has multiple initial

nodes and at the start of a reproduction, the system has to

choose the correct ones. The chosen initial nodes is what we

call a strategy. As the initial position of the robot is always

the same, the chosen strategy depends only on the size of

the box. Fig. 7 depicts the different strategies chosen by the

system.

If the system chooses the correct initial nodes, the task

is reproduced until it is completed or a transition to an

incorrect MP is triggered. Table Ia summarizes the results

0.05 0.15 0.25
0.05

0.15

0.25

Width

D
ep

th

(a) Desired Behavior

0.05 0.15 0.25
0.05

0.15

0.25

Width

D
ep

th

(b) 3 Demonstrations

0.05 0.15 0.25
0.05

0.15

0.25

Width

D
ep

th

(c) 6 Demonstrations

0.05 0.15 0.25
0.05

0.15

0.25

Width

D
ep

th

(d) 9 Demonstrations

Fig. 7: Actual and desired initial strategy depending on the size of the box.
In the green area, the box has to be grasped bi-manually. In the yellow
area, the right arm has to grasp it and in the blue area the left arm. In the
red area, the system chooses a movement which was not demonstrated at
all (e.g., it tried to grasp a box with a wrong orientation). Crosses mark the
box sizes seen in the demonstrations.

D W I C

3 3/20 4/20 13/20
6 3/20 2/20 15/20
9 2/20 2/20 16/20

(a) Reproduction Summary

D µ σ
3 0.13 0.08
6 0.07 0.04
9 0.06 0.03

(b) Mean Distance Error

TABLE I: Table (a) summarizes the results of the experiments. For three, six
and nine demonstrations, the percentages of wrong initial movements (W),
incomplete (I) and complete (C) reproductions are given. A reproduction is
incomplete if the system chooses a correct initial movement, but triggers
a transition to a wrong MP during execution. Table (b) shows the mean
and standard deviation of the Euclidean distances between the desired and
triggered states in feature space for all complete reproductions.

of the experiments for the reproduction with 20 random

box sizes. For successful reproductions, additionally the

Euclidean distances between the states where transitions are

triggered and the desired states are measured in feature space.

Table Ib summarizes the measured distances. When training

the system with the entire training set of nine demonstrations,

the system is able to reproduce the task in 18 of the 20 cases.

In two cases, the task could not be reproduced successfully,

even though the initial nodes were chosen correctly.

C. Discussion

The results of Table Ia show that the system sometimes

performs a movement which was not demonstrated at all.

The reason is the loose coupling between the graphs. There

may be cases where the entry probabilities of two nodes

in more than one graph are similar. The system then picks

the highest entry probability for both graphs, which may

lead to an incorrect behavior. As an example, consider a

task where a robot has to grasp two different cups, both

requiring a different grasp and a different orientation of the



end-effector. If the task is demonstrated with these two cups

and then reproduced with a cup which is similar to both

cups, all entry probabilities will be quite similar. The system

then may for instance pick the grasp of the first cup and the

orientation of the second cup. Such mixtures of demonstrated

movements are undesired in our case, but may also be useful

for other tasks. Therefore, we plan to couple the graphs

stronger and dynamically in the future. A stronger coupling

can be for example achieved by learning the MP activations

globally from the predicted progress of all MPs. The goal is

to combine the strength of concurrent and purely sequential

MP frameworks. While concurrent MPs are simpler and easier

to reuse, sequential frameworks are more predictable due to

their deterministic behavior. Instead of coupling the graphs

stronger in general, another possibility is to learn a dynamic

coupling factor. Such a factor reflects the fact that a tasks

consists of phases where concurrent movements have to be

coordinated more accurately and phases where they are more

independent.

For two trials, the reproduction failed even though the

chosen strategy was correct (for nine demonstrations). Most

often, the reason for failing was a decrease of the exit

probability of a current movement, caused by a MP transition

in a different graph. The decrease of the exit probability

sometimes led to a deadlock, as the threshold for transition-

ing to a new movement was not reached. Solving such cases

requires a better synchronization between the concurrent

movements, which is another reason for the stronger coupling

between the graphs. Additionally, the progress prediction

is conditioned on the entire feature set at the moment.

The prediction might benefit from a feature selection (or

extraction) method, as it could reduce the dependency on

irrelevant features that are influenced by transitioning to a

new movement in a different graph.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a task representation which

incorporates several concurrent MP sequences into one con-

sistent framework. For the individual MPs, we introduced a

concept for learning and estimating their progress. Combin-

ing both concepts allows to reproduce coordinated bi-manual

movement tasks robustly. The synchronization of the concur-

rent MPs is achieved implicitly using the progress prediction.

We evaluated the approach in two simulation studies with a

25 degrees of freedom two-arm robot performing a pick-and-

place task.

The results showed that the proposed approach can ef-

fectively learn a complex bi-manual task from very few

demonstrations. In future work, we will investigate how to

couple the graphs dynamically without loosing the benefits

of a concurrent system in more detail. Additionally, we will

perform experiments with the real robot and use the progress

prediction for generating co-articulated movements.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, 2009.

[2] T. Flash and B. Hochner, “Motor primitives in vertebrates and inver-
tebrates,” Current Opinion in Neurobiology, vol. 15, no. 6, pp. 660 –
666, 2005.

[3] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical systems
as movement primitives,” in IEEE-RAS Int. Conf. Humanoid Robots,
2000.

[4] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing

Systems, 2013.
[5] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,

“Statistical dynamical systems for skills acquisition in humanoids,” in
IEEE Int. Conf. Humanoid Robots, 2012.

[6] T. Luksch, M. Gienger, M. Muehlig, and T. Yoshiike, “Adaptive
movement sequences and predictive decisions based on hierarchical
dynamical systems,” in IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, 2012.
[7] T. Kulvicius, M. Biehl, M. J. Aein, M. Tamosiunaite, and F. Wörgötter,

“Interaction learning for dynamic movement primitives used in co-
operative robotic tasks,” Robotics and Autonomous Systems, vol. 61,
no. 12, pp. 1450 – 1459, 2013.

[8] A. Gams, B. Nemec, A. Ijspeert, and A. Ude, “Coupling movement
primitives: Interaction with the environment and bimanual tasks,”
IEEE Transactions on Robotics, vol. 30, no. 4, pp. 816–830, 2014.

[9] J. Umlauft, D. Sieber, and S. Hirche, “Dynamic movement primitives
for cooperative manipulation and synchronized motions,” in IEEE Int.

Conf. Robotics and Automation, 2014.
[10] D. Kulić, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental

learning of full body motion primitives and their sequencing through
human motion observation,” Int. J. Rob. Res., vol. 31, no. 3, pp. 330–
345, 2012.

[11] P. Pastor, M. Kalakrishnan, L. Righetti, L. Righetti, and S. Schaal, “To-
wards associative skill memories,” in IEEE-RAS Int. Conf. Humanoid

Robots, 2012.
[12] S. Niekum, S. Osentoski, G. D. Konidaris, S. Chitta, B. Marthi,

and A. G. Barto, “Learning grounded finite-state representations
from unstructured demonstrations,” International Journal of Robotics

Research, vol. 34, no. 2, pp. 131–157, 2015.
[13] J. Butterfield, S. Osentoski, G. Jay, and O. Jenkins, “Learning from

demonstration using a multi-valued function regressor for time-series
data,” in IEEE-RAS Int. Conf. Humanoid Robots, 2010.

[14] G. Chang and D. Kulić, “Robot task learning from demonstration
using petri nets,” in IEEE Int. Symp. Robot and Human Interactive

Communication, 2013.
[15] G. Maeda, M. Ewerton, R. Lioutikov, H. Amor, J. Peters, and G. Neu-

mann, “Learning interaction for collaborative tasks with probabilistic
movement primitives,” in Int. Conf. Humanoid Robots, 2014.

[16] J. Kober, M. Gienger, and J. Steil, “Learning movement primitives for
force interaction tasks,” in IEEE Int. Conf. Robotics and Automation,
2015.

[17] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to
sequence movement primitives from demonstrations,” in IEEE/RSJ Int.

Conf. Intelligent Robots and Systems, 2014.
[18] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn-

ing, vol. 20, no. 3, pp. 273–297, 1995.
[19] J. Zhu and T. Hastie, “Kernel logistic regression and the import vector

machine,” in Journal of Computational and Graphical Statistics,
pp. 1081–1088, MIT Press, 2001.

[20] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., 2006.


	Introduction
	Related Work
	Proposed Approach

	Concurrent Sequence Graphs
	Progress Prediction
	Evaluations and Experiments
	Evaluation of Progress Prediction
	Evaluation of Concurrent Framework
	Discussion

	Conclusions and Future Work
	References

