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Guiding Trajectory Optimization by
Demonstrated Distributions
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Neumann1

Abstract—Trajectory optimization is an essential tool for mo-
tion planning under multiple constraints of robotic manipulators.
Optimization-based methods can explicitly optimize a trajectory
by leveraging prior knowledge of the system and have been used
in various applications such as collision avoidance. However, these
methods often require a hand-coded cost function in order to
achieve the desired behavior. Specifying such cost function for
a complex desired behavior, e.g., disentangling a rope, is a non-
trivial task that is often even infeasible. Learning from demon-
stration (LfD) methods offer an alternative way to program robot
motion. LfD methods are less dependent on analytical models
and instead learn the behavior of experts implicitly from the
demonstrated trajectories. However, the problem of adapting the
demonstrations to new situations, e.g., avoiding newly introduced
obstacles, has not been fully investigated in the literature. In this
paper, we present a motion planning framework that combines
the advantages of optimization-based and demonstration-based
methods. We learn a distribution of trajectories demonstrated by
human experts and use it to guide the trajectory optimization
process. The resulting trajectory maintains the demonstrated
behaviors, which are essential to performing the task successfully,
while adapting the trajectory to avoid obstacles. In simulated
experiments and with a real robotic system, we verify that our
approach optimizes the trajectory to avoid obstacles and encodes
the demonstrated behavior in the resulting trajectory.

Index Terms—Motion and Path Planning, Collision Avoidance,
Learning and Adaptive Systems, Manipulation Planning.

I. INTRODUCTION

MOTION planning is an essential component of robotic
systems. However, it is not trivial to plan robot motions

to perform tasks successfully under various constraints, such
as the kinematics of manipulators. In the field of motion
planning, there are three promising categories: optimization-
based approaches, sampling-based approaches, and learning
from demonstration (LfD) approaches.

Sampling-based methods such as the Probabilistic Roadmap
(PRM) and Rapidly exploring Random Tree (RRT) algorithms
are used in various applications [1], [2]. Since sampling-based
methods can deal with complex situations, they are often
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Fig. 1: Motion for grasping an object. Motion planning is an
essential component of robotic systems.

used for path planning of mobile robots. However, sampling-
methods are computationally inefficient for motion planning
of robotic manipulators [3], [4].

Optimization-based methods such as Covariant Hamiltonian
Optimization for Motion Planning (CHOMP) [3] and TrajOpt
[4] are popular in the field of motion planning with robotic
manipulators as they can efficiently deal with constraints,
including obstacles and joint limits [3], [4]. These methods
formulate motion planning as an optimization problem and
can handle complex environments if the model of the envi-
ronment is available. However, optimization-based methods
require hand-coded cost functions to formulate the desired
behavior, and it is often not practical to manually construct
a task-specific cost function for complex robotic tasks, e.g.,
disentangling a rope.

Learning from demonstration (LfD), or programming by
demonstration (PbD), offers an alternative, more intuitive way
to specify the desired behavior as we can teach robotic motions
simply by demonstrating the trajectories needed to execute
the tasks [5], [6]. However, it is not feasible to demonstrate
trajectories in all possible situations. Hence, additional pro-
cesses are often necessary to adapt the predicted trajectory to
the actual given situation. For example, if there are obstacles
that were not present in the demonstrations, the trajectory
prediction needs to be modified to avoid the obstacles. In order
to address the motion planning with collision avoidance, it is
desirable to develop a method that combines the advantages
of optimization-based motion planning and LfD methods.

In this paper, we present a motion planning method based
on functional gradient trajectory optimization and statistical
trajectory learning. We model a distribution of the trajectories
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demonstrated by human experts and use it to define the cost
function of the optimization process. Our cost function is com-
posed of several objectives, including smoothness, obstacles
avoidance and similarity to the demonstrated distribution. We
automatically tune the weight of each cost term such that the
resulting trajectories match the demonstrations. A trajectory
is optimized with a functional gradient as in CHOMP, and
our cost function is dependent on the learned distribution.
Our method is capable of handling complex environments and
constraints as well as existing optimization-based methods. In
addition, the trajectories planned by our method implicitly
encode features of the trajectories demonstrated by human
operators in a similar manner as LfD methods.

II. RELATED WORK

Optimization-based trajectory planners have been developed
for decades. One of the classical methods is called “elastic
band”, and was proposed by Quinlan and Khatib [7], [8]. In
this method, a trajectory is represented as a elastic band and
is optimized based on the potential field of the given environ-
ments. Zucker et al. proposed a covariant optimization based
on functional gradient, CHOMP, and showed the effectiveness
of their method on multiple robot platforms. Recent work by
Marinho et al. extended the functional gradient optimization
to Reproducing Kernel Hilbert Space (RKHS) [9]. Schulman
et al. formulated motion planning as a sequential convex
optimization and developed a motion planning framework
called TrajOpt in [4]. These optimization-based methods can
generate trajectories by explicitly optimizing the cost functions
that represent collisions with obstacles or the smoothness
of trajectories under various constraints if the model of the
environment is available.

In contrast, LfD methods have been investigated in recent
years as an approach for achieving intuitive robotic motion
programming. Paraschos et al. developed a framework called
ProMP to model the distribution of the trajectory in parameter
space [10]. The study by Osa et al. showed that online tra-
jectory planning could be achieved by learning the contextual
trajectory distribution [11]. These methods model the distri-
bution of the trajectories demonstrated by human operators
and generalize the trajectories to new situations based on the
learned distributions. They implicitly encode skills of human
operators without using hand-coded cost/reward functions.
Although robot LfD approaches can easily encode skills of
human operators, a main problem arises during generalization
of the demonstrated behavior in a complex environment. For
instance, adapting a trajectory generated by this approach to an
environment with new obstacles is still an ongoing research.
A typical way to achieve obstacle avoidance is to set repulsive
motions around obstacles or to diminish motions towards
obstacles [12], [13]. The study by Ghalamzan et al. proposed
to learn obstacle avoidance using inverse optimal control
[14]. Recent work in [15] addressed a problem of avoiding
a collision with a human operator based on the uncertainty
of her/his motion. Although real-time obstacle avoidance is
demonstrated in [12], [13], these methods consider only the
collision of the end-effector and do not address the constraints

of kinematics and the collision of body points other than the
end-effector.

Path planning using sampling-based methods has been ap-
plied to various robotic systems as they can be used in complex
environments [1], [2]. One approach to bridge the gap between
the LfD methods and sampling-based methods is shown in
[16]. Ye and Alterovitz extended sampling-based methods in
order to take into account the distribution of the demonstrated
trajectories. Although sampling-based methods can deal with
complex path planning scenarios, these methods are compu-
tationally inefficient compared to optimization-based methods
[3], [4]. Thus, it is desirable to bridge the gap between the
optimization-based and LfD methods.

In LfD, we can design a controller that adaptively deter-
mines the controller gain based on the variance of the trajec-
tories [10], [17]–[19]. For example, the studies by Calinon et
al investigated methods for learning the trajectory distribution
and controlling the system using LQR where the trajectory
distribution defines the cost function [18], [19]. Intuitively,
these methods control the stiffness of the robot manipulators
based on the variance of the demonstrated trajectories, but they
do not adapt the desired trajectory itself. Although Muhlig
et al. presented variance-based movement optimization [20],
they did not addressed collision avoidance. On the contrary, we
optimize a trajectory for obstacle avoidance and use functional
gradient optimization instead of LQR.

III. FUNCTIONAL GRADIENT TRAJECTORY OPTIMIZATION
GUIDED BY DEMONSTRATIONS

In this section, we introduce our new functional gradient
trajectory optimization algorithm to modify expert demon-
strations due to several constraints such as obstacle avoid-
ance and smoothness constraints. In the case of obstacle
avoidance, there is a trade-off between the collision risk and
human preference. In practice, the state of the obstacles is
not fully observable, and it is necessary to take margins
to avoid collisions with obstacles. However, deviation from
the demonstrated trajectories may lead to deviation from the
desired behavior. To control this trade-off between collision
risk and human preference, we use the distribution of the
demonstrated trajectories. We assume that a high variance of
the demonstrated trajectories indicates a weak preference of
the experts. Conversely, we assume that a low variance of the
demonstrated trajectories indicates a strong preference of the
experts. Based on this assumption, we embed the distribution
of the demonstrated trajectories in trajectory optimization. The
intuitive interpretation of our trajectory optimization is the
following: At a phase where the variance of the demonstrated
trajectory is low, the shape of the trajectory is rigid and its
deformation for avoiding obstacles is minimal. Meanwhile, at
a phase where the variance of the demonstrated trajectory is
high, the shape of the trajectory is flexible and its deformation
for avoiding the obstacle can be large enough even in the
presence of measurement noise of the obstacle positions. We
describe our cost functional in Section III-B Although we use a
few cost terms in our cost functional, the weights on each cost
term can be tuned by matching the demonstrated trajectories
as described in Section III-D.
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A. Modeling the Expert’s Trajectory Distribution

We assume that the trajectory τ is given by a sequence of
the states of the system x as τ = [x(0), · · · ,x(N)] where N
is the number of the time steps of the trajectory. We model
the distribution of the state at time t as a Gaussian distribution

p (x(t)) ∼ N (µ(t),Σ(t)). (1)

where µt and Σt are the mean and the covariance of the state
at time t. Therefore, the distribution of the trajectory τ is given
by

p(τ ) =

N∏
t=0

p (x(t)) =

N∏
t=0

N (µ(t),Σ(t)). (2)

We assume that the demonstrations are performed under
various contexts si. For example, the context could be given by
the target location of an object to grasp. We can now model the
conditional distribution of the demonstrated trajectory given
the context and generalize the demonstrated trajectories to new
scenes. The use of conditional distributions of the demon-
strated trajectory in our trajectory optimization is straight-
forward. In this paper, we use locally weighted estimation
to model such a conditional distribution [21], [22], however,
our approach is not limited to specific regression methods and
other regression methods such as Gaussian Mixture Regression
and Gaussian Process Regression could be used instead.

We assume that we have a dataset of M demonstrations
D = {τ i, si}Mi=1 where s is a vector that represents the context
of the task. Since the execution speed may be different be-
tween demonstrations, the time alignment of the demonstrated
trajectories needs to synchronized. Therefore, we synchronize
the demonstrated trajectories in time domain using Dynamic
Time Warping [23] in the same manner as in [24]. Given a
test context stest, the locality weight of the ith sample can be
computed as

wi = exp

(
− (si − stest)

>(si − stest)

h

)
, (3)

where h is a constant that determines the bandwidth of
the squared exponential kernel. The joint distribution of the
context and the state is given by a Gaussian distribution

p(x(t), s) = N

([
µx(t)

µs

]
,

[
Σx(t) Σxs(t)

Σxs(t)
> Σs

])
(4)

where the weighted mean and variance for the tth time step
are given by

µx(t) =

∑M
i=1 wix

i(t)∑M
i=1 wi

, µs =

∑M
i=1 wis

i∑M
i=1 wi

(5)

Σx(t) =

∑M
i=1 wi(x

i(t)− µx)(xi(t)− µx)>∑M
i=1 wi

, (6)

Σs =

∑M
i=1 wi(s

i − µs)(si − µs)>∑M
i=1 wi

, (7)

Σxs(t) =

∑M
i=1 wi(x

i(t)− µx)(si − µs)>∑M
i=1 wi

. (8)

Using the weighted mean and variance, the conditional expec-
tation and variance of the state x(t) given the context stest can
be computed as

E[x(t)|stest] = µx + ΣxtsΣ
−1
s (stest − µs),

Σx|stest(t) = Σx −ΣxsΣ
−1
s Σsx

(9)

We can obtain the conditional distribution of the trajectory
given the context by computing (9) for t = 0, · · · , N .

B. Demonstrated-Guided Cost Function

Let τ c denote the trajectory given by the sequence of the
robot configurations as τ c = [q(0), . . . , q(N)]. The trajectory
τ c can be considered as a function that maps time t ∈ [0, 1]
to a configuration q ∈ RD. At the same time, the cost
function can be represented as a function of the trajectory τ c.
Therefore, the cost function can be considered as a function of
a function, which is referred to as a functional as described in
[3], [7], [8]. In our approach, we minimize the cost functional

C(τ c) = λsmoothcsmooth(τ c) + λobscobs(τ
c)

+ λdemocdemo(τ c) + λmancman(τ c),
(10)

where csmooth(τ c) is the cost that induces the smoothness,
cobs(τ

c) is the term that penalizes the collision with obstacles,
cdemo(τ c) is the term that penalizes the deviation from the
mean of the demonstrated trajectories, and cman(τ c) is the
term that induces the manipulability of a robotic manipulator.
[λsmooth, λobs, λdemo, λman] are the weights on the cost terms.

1) Matching the Demonstrations: In our cost functional,
the term cdemo(τ c) penalizes the deviation of the end effector
trajectory from the demonstrated end-effector trajectory. As
described in the previous section, we model the distribution
of the end-effector trajectories demonstrated by experts as

p(xe(t)) ∼ N (µe(t),Σe(t)) , (11)

where xe(t) is the position of the end effector at time t. We
define cdemo(τ c) as

cdemo(τ c) =
1

2

∫
x̃>e Σ−1e x̃edt, (12)

where x̃e is given by x̃e = xe(t)− µe(t). By using this cost
term cdemo(τ c), the cost of the deviation from the demonstra-
tion is high at a phase when the variance of the demonstrated
trajectories is low. Conversely, at a phase when the variance of
the demonstrated trajectory is high, the cost of the deviation
from the demonstration is low. Similar cost functions appear
in [17]–[20], although these previous studies did not address
collision avoidance. The functional gradient of cdemo(τ c) is
given by

∇̄cdemo(τ c) = J>Σ−1e x̃e, (13)

where J is the Jacobian of the manipulator.
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2) Obstacle Avoidance: We additionally exploit the demon-
strated distribution in the cost functional associated with the
obstacle. In order to evaluate the obstacle cost of the whole
body of the manipulator, we consider body points of the
given manipulator. To formulate the obstacle cost, we use the
distribution of the body points in demonstrated trajectories in
task space

p (xu(t)) ∼ N (µu(t),Σu(t)) , (14)

where u is the index of the body point and xu(t) is the position
of the body point u in task space at time t. We define the
obstacle cost cobs(τ ) as

cobs(τ ) =
1

2

∫ 1

0

∫
B
c (xu(t))

∥∥∥∥ ddtxu(t)

∥∥∥∥ du dt, (15)

where B is a set of body points which comprise the robot
body, and the local collision cost function c(xu) is defined as

c(xu) =


0 if d(xu) > σmax

u ε,
1

2σmax
u ε

(d(xu)− σmax
u ε)2 if 0 < d(xu) < σmax

u ε,

d(xu) + 1
2
σmax
u ε, if d(xu) < 0,

(16)

The term σmax
u is defined as the maximum diagonal element

of the covariance matrix Σu, ε is a constant that scales the
margin, and d(xu) represents a signed distance between the
body point u and the nearest obstacle. d(xu) is negative
when the body point is inside obstacles, and zero at the
boundary. In this formulation of the collision cost, the margin
for the collision avoidance is proportional to the variance of
the demonstrated trajectories. In our formulation, the variance
of the demonstrated trajectories is used to control the trade-
off between the collision risk and the human preference The
functional gradient of cobs(τ

c) is given by

∇̄cobs(τ
c) =

∫
B
J> ‖ẋu‖

[(
I −

ẋuẋ
>
u

‖ẋu‖2

)
∇c− cκ

]
du, (17)

where κ is defined as

κ =

(
I − ẋuẋ

>
u

‖ẋu‖2

)
ẍu

‖ẋu‖2
. (18)

3) Smoothness: As in CHOMP, the smoothness cost
csmooth(τ ) is defined as

csmooth(τ c) =
1

2

∫ ∥∥∥∥ ddtτ c(t)

∥∥∥∥2 dt. (19)

Since we evaluate the smoothness of a discrete-time trajectory
τ c ∈ RT×d, the smoothness cost can be computed as

csmooth(τ c) =
1

2
‖Kτ c + e‖2 , (20)

where the finite differentiation matrix K ∈ RN×N and the
vector e ∈ RN×D are given by

K =



1 0 0 . . . 0 0 0

−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
...

. . .
...

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 0


, (21)

e =
[
−q1, 0, . . . , 0, qN−1

]>
. (22)

By using this representation, the functional gradient of
csmooth(τ c) is given by

∇̄csmooth(τ c) = K>(Kτ c + e). (23)

4) Manipulability: The manipulability is often used as a
metric of the capability of robotic manipulators in a given con-
figuration. By maximizing the manipulability, the trajectory
optimization finds a solution avoiding the singularity. We use
the cost functional associated with the manipulability defined
as

cman(τ c) = −
∫ √

det
(
J>(τ c(t))J(τ c(t))

)
dt. (24)

The gradient of the manipulability cost can be computed
numerically. In order to maximize the manipulability while
maintaining the end effector close to the demonstrated trajec-
tories, we project the gradient of the manipulability onto the
null space of the manipulator as (I − J†J)∇̄cman(τ c) where
J† is the pseudo-inverse of J .

C. Optimization of the Cost Functional

Based on the above discussion, the gradient of the total cost
functional is given by

∇̄C(τ c) = λsmooth∇̄csmooth(τ
c) + λobs∇̄cobs(τ

c)

+ λdemo∇̄cdemo(τ
c) + λman(I − J†J)∇̄cman(τ

c).
(25)

To optimize the total cost functional C(τ c), we linearize the
cost functional as

C(τ c) ≈ C(τ c
i ) + (τ c − τ c

i )
>∇C(τ c

i ) (26)

and optimize the optimization problem

τ ci+1 = arg min
τc

{
C + (τ c − τ ci )>∇C +

η

2
‖τ c − τ ci‖M

}
, (27)

where ‖τ c − τ c
i‖M denotes the distance between τ c and

τ c
i with respect to the Riemannian metric M given by

(τ c − τ c
i )
>M(τ c − τ c

i ). The last term in (27) behaves as
a regularization term in the optimization and penalizes a
large change in the trajectory update. If we set the metric
M = K>K as in CHOMP [3], the functional gradient will
be uniformly propagated to the whole trajectory. In contrast,
we use the Riemannian metric

M = K>WK (28)

where W is a diagonal matrix and its diagonal elements are
given by

Wtt = kw1 exp(−kw2σ
max
e (t)), (29)
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Fig. 2: The behavior of the proposed trajectory planner. Black circles represent the obstacles. (a) The distribution of the
demonstrated trajectories and the motions of the three-link manipulator. (b) At time steps where the variance of the demonstrated
trajectories is large, the trajectory is adapted flexibly. (c) At time steps where the variance of the demonstrated trajectories is
small, our approach keeps to stay close to the mean trajectory of the demonstrations.

kw1 and kw2 are constant and σmax
e (t) is the maximum value

of the diagonal elements of Σe(t). By using this Riemannian
metric, we can penalize large changes of the trajectory at time
steps where the variance is small in the demonstrations. Based
on the linearization as in (27), the trajectory update rule is
given by

τ c
i+1 = τ c

i − ηiM
−1∇̄C(τ c), (30)

where ηi is the step-size. Since we use the Riemanian metric
in (28), the functional gradient is propagated to the trajectory
based on the variance of the demonstrated trajectories.

D. Automatic Tuning of Weight Parameters

In our formulation of the cost function, we need to tune
the weight parameters θ = [λsmooth, λobs, λdemo, λman]. By
matching the demonstrated trajectories, these parameters can
be tuned without heuristic parameter selection.

In this procedure, human experts demonstrate how to avoid
obstacles, and we record the trajectory τ demo and the condition
of obstacle sobs. We can now obtain weight parameters such
that the optimized trajectories reproduce the collision avoid-
ance behavior of the experts. For this purpose, we use the
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) algorithm, which is a well-known stochastic optimization
method [25]. We used CMA-ES to optimize the objective
function

L(θ) =

M ′∑
i=1

∫ ∥∥τ i
θ(t)− τ i

demo(t)
∥∥ dt, (31)

where M ′ is the number of demonstrations, τ i
demo is the

trajectory demonstrated by the expert under the ith obstacle
condition, and τ i

θ is the optimized trajectory using our method
under the same condition using the parameter vector θ. In our
experiments, we fixed one of the parameters and tuned the rest
of the parameters with CMA-ES. Algorithm 1 summarizes
the procedure for automatic parameter tuning. Although we
used CMA-ES to optimize the weight parameters, any other
optimization method can be used.

Algorithm 1 Parameter Tuning by Learning from Demonstra-
tion

1: Collect the demonstration of avoiding obstacles
Davoid = {τ i

demo, s
i
obs}M

′

i=1

2: Run optimization, e.g. CMA-ES, to tune the weights θ

θ = arg min

M ′∑
i=1

∫ ∥∥τ i
θ(t)− τ i

demo(t)
∥∥ dt

IV. EXPERIMENTS

We illustrate the behavior of our motion planning algorithm
for a simulated three-link manipulator in 2D space at first.
Thereafter, we will show the benefit of guiding the trajectory
optimization by demonstrations in real robot experiments.

A. Simulated 3-Link Manipulator

We evaluated the performance of our approach with a three-
link manipulator in 2D space and compared our approach
with CHOMP. In this simulation, a point-to-point motion is
learned. Ten trajectories were given to the system as demon-
strations, and their distribution was modeled as described in
Section III. The distribution of the demonstrated trajectories
is visualized in Fig. 2 (a). To illustrate the behavior of our
trajectory optimization, we choose the demonstrations such
that the variance of the trajectories is high in the beginning
of the motion while it is much smaller in the end of the
motion. The weight parameters were tuned by matching the
demonstrations as described in Section III-D. For tuning the
weight parameters, four trajectories were demonstrated in
scenes with different obstacles positions. The parameters were
randomly initialized, and the result of the parameter tuning
was θ = [3.9, 0.15, 0.85, 0.15]. Our method and CHOMP
were initialized with the mean trajectory of the demonstrated
trajectories.

The results show that our approach adaptively controls
the flexibility of the trajectory in the trajectory optimization.
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Fig. 3: Comparison with CHOMP. (a)The smoothness cost of
the trajectory resulting from our method is lower than the
result of CHOMP. (b)The variance of the deviation from the
demonstrated trajectories is substantially large in our method.
This results indicates that our method adaptively controls the
deformation of trajectories.

As shown in Fig. 2 (a), the variance of the demonstrated
distribution is high in the beginning of the motion, and the
variance is low in the end of the motion. To demonstrate the
behavior of our approach, we show the two scenes in Fig. 2 (b)
and (c). In Fig. 2(b), the obstacle was placed at the beginning
of the trajectory where the variance is high. In Fig. 2(c), the
obstacle was placed at the end of the trajectory, i.e, with
small trajectory variance. As expected, the deformation of the
trajectory resulting from our method is large in Fig. 2 (b) while
it is much smaller in Fig. 2 (c). In contrast, the trajectories
obtained from CHOMP showed a similar behavior for both
scenarios as the algorithm is ignorant to the variance of the
demonstrated distribution.

To evaluate the quality of the planned trajectories, we
randomly placed an obstacle along the trajectory and computed
the sum of the norm of the acceleration over the trajectory∑∥∥∥ d2

dt2 τ (t)
∥∥∥2, and the deviation from the mean demonstrated

trajectory
∑
‖τ (t)− Edemo[τ (t)]‖2. The results are shown

in Fig. 3. The smoothness of the trajectories is comparable
between our method and CHOMP as shown in Fig. 3 (a). The
variance of the deviation from the demonstrated trajectories is
substantially larger in our method compared to CHOMP. This
result indicates that our method adaptively control the defor-
mation of the trajectories, while the deformation is uniform
over the trajectory in CHOMP.

B. Experiments with a Real Robot

To evaluate the performance of our method in 3D space,
we performed experiments with a robot manipulator with 7
DOF. In this experiment, a motion to disentangle a rope from
an object is learned. The task setup is shown in Fig. 4. The
rope is initially winded around a yellow can. The system
learned how to disentangle the rope from the yellow can from
demonstrations while using trajectory optimization to avoid
newly introduced obstacles. This motion involves performing a
loop around the entangled object, which is hard to represented
as a simple point-to-point motion. The demonstrations were
performed eight times with different positions of the entangled
object. Obstacles were not presented in the demonstrations.

(a) (b)
Fig. 4: A human demonstrated the disentangling motion by
kinesthetic teaching. The position of the object is measured
by a Kinect. The demonstrations were performed in scenes
without obstacles.

Time step Time step Time step

x
[m

]

y
 [

m
]

z 
[m

]

Fig. 5: Distribution of the demonstrated trajectories of the end
effector in the real robot experiment.

A human operator demonstrated the disentangling motion by
kinesthetic teaching as shown in Fig. 4. The context s of the
task is defined

s = [xtarget, ytarget, ztarget], (32)

where [xtarget, ytarget, ztarget] represents the position of the object.
By modeling the conditional distribution of the trajectories

as described in Section III-A, the motion can be generalized
to new contexts. The demonstrated trajectories and their dis-
tribution is shown in Fig. 5. An example of the conditional
distribution of the trajectory given a new context is shown
in Fig. 6. In the predicted distribution, the variance of the
trajectory is large in the end of the motion, and the variance
is relatively small in the middle of the motion. Considering
the task, this result is intuitive as the looping motion for
disentangling the object needs to be consistent, while the end
motion is not critical to the success of the task.

To evaluate our trajectory optimization algorithm, we placed
obstacles in the scenes as shown in Fig. 7. In the scene
shown in Fig. 7 (a), we placed an obstacle such that the
trajectory encounters the obstacle at the middle of the motion
where the variance of the trajectory distribution is low. In
the scene shown in Fig. 7 (b), we placed obstacles such
that the trajectory encounters the obstacles at the end of the
motion where the variance of the trajectory distribution is
high. The shape and position of the obstacles were captured
as point clouds using a Kinect. To compute the collision costs
efficiently, the obstacles were represented as set of spheres. In
this experiment, we heuristically chose the weight parameters.

The comparison between our approach and CHOMP is
illustrated in Fig. 8. The three lines in Fig. 8 show the
trajectory of the middle finger of the robot. The red line
represents the trajectory obtained from our approach, the blue
line represents the trajectory obtained from CHOMP, and the
magenta line represents the initial trajectory predicted as a
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(a) (b)
Fig. 8: Comparison of the resulting trajectories. The red line represents the trajectory obtained from our approach, and the
blue line represents the trajectory obtained from CHOMP. The magenta line represents the initial trajectory predicted as a
conditional expectation from the demonstrated trajectories. Scenes in (a) and (b) correspond to the scenes shown in Fig. 7 (a)
and (b), respectively. The green dots represent the point cloud of the obstacles, and the orange dots represent the point cloud of
the yellow can in Fig. 7. The trajectory obtained from CHOMP largely deviated from the demonstrated trajectory. In contrast,
the trajectory obtained from our method stays close to the demonstrated trajectory.

(a) (b)
Fig. 9: Motion of the manipulator executing the trajectory obtained from our approach. Scenes in (a) and (b) correspond to
the scenes shown in Fig. 8(a) and (b), respectively.
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m
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]
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]

Fig. 6: Distribution of the trajectory predicted for the context
shown in Fig. 8(a).

conditional expectation from the demonstrated trajectories. In
the scene shown in Fig. 8(a), where the obstacle was located
to perturb the looping motion, the trajectory from CHOMP
largely deviated from the predicted trajectory. In Fig. 8(b),
the trajectory generated by CHOMP largely deviated from the
predicted trajectories even in the phase which is far from
the obstacle. In contrast, the trajectory obtained from our
approach was close to the predicted trajectory in the middle of
the motion, while it largely deviated from the demonstration
to avoid obstacles only when the obstacle is close. On the
other hand, our approach generated the trajectory close to
the demonstrated trajectories. These results demonstrate that,

(a) (b)
Fig. 7: Initial state of the disentangling motion. A rope
is entangled with the yellow can. We placed obstacles in
different positions to evaluate the behavior of our trajectory
optimization. In Fig. (a), the obstacle was placed to perturb
the trajectory at the middle of the motion. In Fig. (b), the
obstacle was placed to perturb the trajectory at end of the
motion.

in our method, the trajectory is deformed flexibly in the
phase where the prediction variance is high and that the
trajectory stays close to the predicted trajectory when the
prediction variance is low. This result shows the advantage
of our approach against CHOMP. In CHOMP, the margin to
avoid the obstacles is constant over the trajectory while our
approach adaptively controls the margin to avoid the obstacle
based on the distribution of the demonstrated trajectories.

Fig. 9 shows the real robot executing the trajectory obtained
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(a) (b)
Fig. 10: The trajectory obtained from CHOMP failed to
perform the task properly in our experiments as the trajectory
obtained from CHOMP largely deviated from the demon-
strated behavior. (a) The rope was not totally disentangled in
the scene shown in Fig. 7 (a). (b) The yellow can fell down
during the task in the scene shown in Fig. 7 (b).

from our approach. The robot could disentangle the robe from
the object while avoiding obstacles. However, the task was
not properly performed when the robot executed the trajectory
obtained from CHOMP as shown in Fig. 10 since the trajectory
obtained from CHOMP largely deviates from the demonstrated
behavior. For example, in the scene shown in Fig. 10 (a),
the rope was not properly disentangled and in Fig. 10 (a) the
object entangled with the rope fell over during the motion.
Our experimental results indicate that the demonstrated tra-
jectories implicitly encode the demonstrator’s behavior, and
large deviations from the demonstrated trajectories may cause
unexpected results.

V. DISCUSSION AND CONCLUSIONS

The benefit of our approach is that the resulting trajectory
implicitly encodes the important components of the demon-
strated behavior. On the contrary, CHOMP only considers the
start and goal positions and collision avoidance as objectives.
However, in tasks such as the disentangle-a-rope task, the
topological shape of the entire trajectory is more important
than the start and goal positions. Hence, CHOMP failed on the
disentangle-a-rope task. Our approach attempts to match the
demonstrated behavior during the entire trajectory where the
demonstrated variance profile is used to adapt the flexibility
of the deformation.

We proposed a motion-planning framework with functional
gradient optimization that incorporates human demonstrations.
Our approach bridges the gap between LfD approaches and
optimization-based approaches for motion planning with col-
lision avoidance. By leveraging the distribution of demon-
strated trajectories for trajectory optimization, we can obtain
a collision-free trajectory that matches the behavior demon-
strated by human experts. Through experiments with simula-
tions and a real robotic system, we validated that our approach
optimizes the trajectory to avoid obstacles and encodes the
demonstrated behavior in the resulting trajectory.
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