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Abstract
This paper is about learning a continuous approxima-
tion of the Pareto frontier in Multi–Objective Markov
Decision Problems (MOMDPs). We propose a policy–
based approach that exploits gradient information to
generate solutions close to the Pareto ones. Differently
from previous policy–gradient multi–objective algo-
rithms, where n optimization routines are used to have
n solutions, our approach performs a single gradient–
ascent run that at each step generates an improved con-
tinuous approximation of the Pareto frontier. The idea
is to exploit a gradient–based approach to optimize the
parameters of a function that defines a manifold in the
policy parameter space so that the corresponding image
in the objective space gets as close as possible to the
Pareto frontier. Besides deriving how to compute and
estimate such gradient, we will also discuss the non–
trivial issue of defining a metric to assess the quality of
the candidate Pareto frontiers. Finally, the properties of
the proposed approach are empirically evaluated on two
interesting MOMDPs.

Introduction
Many real-world control problems (e.g., economic systems,
water resource problems, robotic systems, just to mention a
few) are characterized by the presence of multiple, conflict-
ing objectives. Such problems are often modeled as Multi-
Objective Markov Decision Processes (MOMDPs), where
the concept of optimality typical of MDPs is replaced by
the one of Pareto optimality, i.e., a set of policies pro-
viding a compromise among the different objectives. In
the last decades, Reinforcement Learning (RL) (Sutton and
Barto 1998) has established as an effective and theoretically-
grounded framework that allows to solve single-objective
MDPs whenever either no (or little) prior knowledge is
available about system dynamics, or the dimensionality of
the system to be controlled is too high for classical opti-
mal control methods. Despite the successful developments
in RL theory and a high demand for multi-objective con-
trol applications, Multi-Objective Reinforcement Learning
(MORL) (Roijers et al. 2013) is still a relatively young and
unexplored research topic.
MORL approaches can be divided into two main categories,
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based on the number of policies they learn (Vamplew et al.
2011): single policy and multiple policy. Although, the ma-
jority of MORL approaches belong to former category, in
this paper, we focus on latter approaches. Multiple-policy
approaches aim at learning a set of policies in order to ap-
proximate the Pareto frontier. When the number d of de-
cision variables (i.e., policy parameters) is greater than or
equal to the number q of objectives, the local Pareto–optimal
solutions form a (q−1)–dimensional manifold (Harada et al.
2007). The superiority of multiple–policy methods resides in
their ability to represent the Pareto–optimal manifold, allow-
ing a posteriori selection of the solution, through a graphical
representation of the frontier that can give a better insight
into the relationships among the objectives, and encapsulate
all the trade-offs among the multiple objectives. Since the
exact derivation of the Pareto frontier is generally impracti-
cal in real-world problems, the goal is to compute an approx-
imation of the Pareto frontier that includes solutions that are
accurate, evenly distributed, and covering a range similar
to the one of the actual front (Zitzler et al. 2003). Among
multiple–policy algorithms it is possible to identify two
classes: value–based (Lizotte, Bowling, and Murphy 2012;
Castelletti, Pianosi, and Restelli 2013) and gradient ap-
proaches (Shelton 2001; Parisi et al. 2014). While value–
based approaches suffer from curse of dimensionality and
have difficulties with continuous action spaces, gradient–
based techniques lack of guarantees about the uniformity of
the coverage of the Pareto frontier.
In this paper, we propose a novel gradient–based MORL
approach named Policy Manifold Gradient Algorithm
(PMGA) that generates a continuous approximation of the
local Pareto–optimal solution manifold in the policy space.
We exploit a parametric function to generate a manifold in
the policy parameter space, which maps to the objective
space through the expected return function. The goal is to
find the parameters that induce a frontier as close as pos-
sible to the Pareto one. Exploiting this approximation it is
possible to generate an arbitrarily dense representation of
the Pareto frontier. The main contributions of this paper are:
the derivation of the gradient approach in the general case –
i.e., independent from the metric used to measure the quality
of the current solution– , how to estimate such gradient from
sample trajectories, a discussion of frontier quality measures
that can be effectively integrated in the proposed gradient



approach, and an empirical evaluation of its performance in
a multi–objective extension of the Linear-Quadratic Gaus-
sian regulator and in a water reservoir management domain.

Preliminaries
Multi–Objective Markov Decision Processes (MOMDPs)
are an extension of the MDP model, where several pairs
of reward functions and discount factors are defined, one
for each objective. Formally, a MOMDP is described by a
tuple 〈S,A,P,R,γ, D〉, where S ⊆ Rn is the continuous
state space, A ⊆ Rm is the continuous action space, P is
a Markovian transition model where P(s′|s, a) defines the
transition density between state s and s′ under action a, R =
[R1, . . . ,Rq]T and γ = [γ1, . . . , γq]

T are q-dimensional col-
umn vectors of reward functionsRi : S×A×S → R and dis-
count factors γi ∈ [0, 1), respectively, and D is a distribution
from which the initial state is drawn. In MOMDPs, any pol-
icy π is associated to q expected returns Jπ =

[
Jπ1 , . . . , J

π
q

]
:

Jπi = E

[
T∑
t=0

γtiri(t+ 1)|x0 ∼ D,π

]
,

being ri(t + 1) = Ri(st, at, st+1) the i-th immediate reward
obtained when state st+1 is reached from state st and action
at, and T the finite or infinite horizon.

In policy–gradient approaches, a parametrized space of
policies Πθ =

{
πθ : θ ∈ Θ ⊆ Rd

}
(where πθ is a com-

pact notation for π(a|s,θ)) is considered. Given a policy
parametrization θ, we assume that the policy performance
J : Θ→ Rq is at least of class C2.
J is defined as the expected reward over the space of all pos-
sible trajectories T: J (θ) =

∫
T p (τ |θ) r(τ)dτ, where τ ∈ T is

a trajectory drawn from density distribution p(τ |θ) and r(τ)
represents the accumulated expected discounted reward over
trajectory τ : ri(τ) =

∑T
t=0 γ

t
iri(t+ 1).

In MOMDPs for each policy parameter θ, q gradient di-
rections are defined (Peters and Schaal 2008)

∇θJi(θ) =

∫
T
∇θp (τ |θ) ri(τ)dτ = E

τ∈T

[
∇θ log p (τ |θ) ri(τ)

]
= Eτ∈T

[
ri(τ)

T∑
t=1

∇θ log π (aτt |sτt ,θ)

]
,

where each direction ∇θJi is associated to a particular dis-
count factor–reward function pair < γi,Ri >. As shown in
previous equation, the differentiability of the performance
measure is connected to the differentiability of the policy
class by: ∇θ log p (τ |θ) =

∑T
k=1∇θ log π(ak|sk,θ).

Despite what happens in MDPs, in MOMDPs a single
policy which dominates all the others usually does not exist;
in fact, when conflicting objectives are considered, no policy
can simultaneously maximize all the objectives. For these
reasons, in Multi-Objective Optimization (MOO) a different
dominance concept is used. Policy π dominates policy π′,
which is denoted by π � π′, if:

∀i ∈ {1, . . . , q} , Jπi ≥ Jπ
′

i ∧ ∃i ∈ {1, . . . , q} , Jπi > Jπ
′

i .

If there is no policy π′ such that π′ � π, the policy π
is Pareto–optimal. In general, there are multiple Pareto-
optimal policies. Solving a MOMDP means finding the set

of Pareto-optimal policies Π∗ =
{
π | @π′, π′ � π

}
, which

maps to the so-called Pareto frontier F∗ =
{
Jπ
∗
|π∗ ∈ Π∗

}
.1

A remark on notation. In the following we will use the
symbol DXF to denote the derivative 2 of a generic function
F : Rm×n → Rp×q w.r.t. matrix X. Notice that the follow-
ing relationship holds for scalar functions of vector variable:
∇xf = (Dxf)T. Finally, the symbol Ix will be used to denote
an x× x identity matrix.

Gradient on Policy Manifold for Continuous
Pareto Front Approximation

Most of MORL approaches proposed so far produce dis-
crete approximations of the Pareto frontier. While such so-
lutions can be effective in finite MOMDPs, where the Pareto
frontier can be obtained by considering the convex hull of
a finite set of deterministic stationary policies (Roijers et
al. 2013), this is not the case for continuous MOMDPs.
In this paper we aim to build a continuous approximation
of the Pareto frontier exploiting a gradient–based method.
Differently from other MORL approaches (Shelton 2001;
Parisi et al. 2014), where policy–gradient methods are used
to generate a finite set of policies as close as possible to
the Pareto frontier, here we consider a parametrized func-
tion φρ that– by defining a manifold in the policy parameter
space–generates a continuous set of policies. Finally, these
points map to a curve in the objective space through the ex-
pected return J(θ) (see Figure 1). The goal is to find the
parametrization ρ that provides the best approximation of
the Pareto frontier. In the remainder of this section, we will
formalize the PMGA approach.

Let T be open in Rb with b ≤ q and let φρ : T → Θ be a
smooth map of class Cl(l ≥ 1), where t ∈ T and ρ ∈ P ⊆
Rk are the free variables and the parameters, respectively.
We think of the map φρ as a parameterization of the subset
φρ(T ) of Θ: each choice of a point t ∈ T gives rise to a
point φρ(t) in φρ(T ). This means that only a subset Θρ(T )
of the space Θ can be spanned by map φρ, i.e., Θρ(T ) is a b–
dimensional parametrized manifold (Munkres 1997) in the
policy parameter space

Θρ(T ) = {θ : θ = φρ(t), ∀t ∈ T } ,
and, as a consequence, the associated parametrized Pareto
frontier is the b–dimensional open set defined as

Fρ (T ) = {J (θ) : θ ∈ Θρ(T )} .
This manifold represents our approximation of the true

Pareto frontier. The goal is to find the best approximation,
i.e., the parameters ρ that minimize the distance from the
real frontier ρ∗ = arg minρ∈P I∗ (Fρ (T )) , where I∗ :
Rq → R is some loss function that measures the discrepancy
between the Pareto–optimal frontier and Fρ (T ). However,
since I∗ requires the knowledge of the Pareto frontier, a dif-
ferent indicator function is needed. The definition of such
metric is an open problem in literature. Recently (Vamplew

1As in (Harada, Sakuma, and Kobayashi 2006), we assume that
only global Pareto-optimal solutions exist.

2The derivative operator is well defined for matrices, vectors
and scalar functions. Details in (Magnus and Neudecker 1999).



Figure 1: Transformation map corresponding to two differ-
ent parametrizations ρ1 and ρ2.

et al. 2011), several metrics have been defined, but every
candidate presents some intrinsic limits that prevent the def-
inition of a unique superior metric. Furthermore, as we will
see in the rest of the paper, the proposed approach needs a
metric differentiable w.r.t. policy parameters. We will come
back to this topic later.

In general, MOO algorithms compute the value of the
frontier as sum of the value of the points composing the
discrete approximation. In our scenario, where a continuous
frontier approximation is available, it maps to an integration
on the Pareto manifold

J (ρ) =

∫
F(T )

IdV,

where dV is a symbol used to denote the integral w.r.t. the
volume of the manifold (Munkres 1997) and I : F (T )→ R
is a continuous indicator function that for each point of
F (T ) gives insights about its Pareto–optimality. A standard
way to maximize previous equation is to perform gradient
ascent, updating the parameters according to the gradient di-
rection: ρt+1 = ρt + αt ∇ρJ (ρ) . The gradient is provided
by the following theorem.

Theorem 1. Let T be an open set in Rb, let Fρ (T ) be a
manifold parametrized by a smooth map expressed as com-
position of maps J and φρ, (J ◦ φρ : T → Rq). Given a
continuous function I defined at each point of Fρ(T ), the
integral w.r.t. the volume is given by

J(ρ) =

∫
T

(I ◦ (J ◦ φρ))V ol (DθJ(θ)Dtφρ(t)) dt,

provided this integral exists and V ol (X) = (det (XT ·X))
1
2 .

The associated gradient w.r.t. the map parameters ρ is given
component–wise by
∂J (ρ)

∂ρi
=

∫
T

∂

∂ρi
(I ◦ (J ◦ φρ))V ol (T) dt

+

∫
T

(I ◦ (J ◦ φρ))V ol (T)
(

vec
(
TTT

)−T)T·
·Nb

(
Ib ⊗TT)Dρi

T dt,

where T = DθJ(θ)Dtφρ(t), ⊗ is the Kronecker product,
Nb = 1

2
(Ib2 +Kbb) is a symmetric (b2 × b2) idempotent

matrix with rank 1
2
b(b + 1) and Kbb is a permutation ma-

trix (Magnus and Neudecker 1999).

As the reader may have noticed, we have left the term
Dρi

T unexpanded. This term represents the rate of expan-
sion/compression of an infinitesimal volume block of the
manifold under reparametrization. The derivation of this

quantity is not trivial and requires a special focus. Exploiting
algebraic tools, we can write

Dρi
T =

(
Dtφρ(t)T ⊗ Iq

)
Dθ (DθJ(θ))Dρi

φρ(t)

+ (Ib ⊗DθJ(θ))Dρi
(Dtφρ(t)) ,

where Dθ (DθJ(θ)) is a transformation of the Hessian ma-
trix of the performance w.r.t. policy parameters, that is, it
contains the same elements, but in different order. In fact, the
Hessian matrix is defined as the derivative of the transpose
Jacobian, that is, HθJ(θ) = Dθ(DθJ(θ))T. The following
equation relates the Hessian matrix to Dθ (DθJ(θ)):

Hm,n
θ Ji =

∂

∂θn

(
∂Ji
∂θm

)
= Dp,n

θ (DθJ(θ)) ,

where p = i + q(m − 1) and q is the number of rows of the
Jacobian matrix. Up to now, little research has been done
on second order methods and in particular on Hessian for-
mulation. A first analysis was performed in (Kakade 2001)
where the authors provided a formulation based on the pol-
icy gradient theorem (Sutton et al. 1999). However, we pro-
vide a different derivation of the Hessian coming from the
trajectory–based definition of the expected discounted re-
ward for episodic MDPs (Furmston and Barber 2012).
Theorem 2. For any MOMDP, the Hessian HθJ(θ) of the
expected discounted reward J w.r.t. the policy parameters θ
is a (qd×d) matrix obtained by stacking the Hessian of each
component

HθJ(θ) =
∂

∂θT
vec

(
∂Ji(θ)

∂θT

)T

=

HθJ1(θ)
...

HθJq(θ)

 ,
where

HθJi(θ) =

∫
T
p (τ |θ) ri(τ)·

·
(
∇θ log p (τ |θ)∇θ log p (τ |θ)T +Dθ (∇θ log p (τ |θ))

)
dτ.

Gradient Estimation from Sample Trajectories
In the RL setting, having no prior knowledge about the re-
ward function and the state transition model, we need to es-
timate the gradient ∇ρJ(ρ) from trajectory samples. In this
section we present standard results related to the estimation
approaches used in RL literature and we provide a theoreti-
cal analysis of the Hessian estimate.

The formulation of the gradient ∇ρJ(ρ) provided in The-
orem 1 is composed by terms related to the parameteri-
zation of the manifold in the policy space and terms re-
lated to the MDP. Since the map φρ is chosen by the sys-
tem designer, the associated terms (e.g., Dtφρ(t)) can be
computed exactly. On the other hand, the terms related to
the MDP (J(θ), DθJ(θ) and HθJ(θ)) need to be esti-
mated. While the estimate of the expected discounted re-
ward and the associated gradient is an old topic in RL liter-
ature and several results have been proposed (Kakade 2001;
Pirotta, Restelli, and Bascetta 2013), the estimate of the Hes-
sian has not been yet addressed. Recently, the simultane-
ous perturbation stochastic approximation technique was ex-
ploited to estimate the Hessian (Fonteneau and Prashanth
2014). Here we provide a Hessian estimate from trajectory



samples obtained through the current policy, without the
need of generating policy perturbations.

Suppose to have access to a set of N trajectories of T
steps, since p (τ |θ) is unknown, the expectation is approx-
imated by the empirical average:

ĤθJi(θ) =
1

N

N∑
n=1

(
T∑
l=1

γl−1
i rni,l

)(
T∑
k=1

∇θ log πθ(ank |snk )·

·

(
T∑
k=1

∇θ log πθ(ank |snk )

)T

+

T∑
k=1

Hθ log πθ(ank |snk )

 , (1)

where
{
snk , a

n
k , r

n
·,k
}T
k=1

denotes the n-th trajectory. This for-
mulation resembles the definition of REINFORCE estimate
given in (Williams 1992) for the gradient∇θJ(θ). Such kind
of estimate, known as likelihood ratio methods, overcome
the problem of controlling the perturbation of the parame-
ters in finite–difference methods.

In order to simplify the theoretical analysis we make the
following assumptions.
Assumption 3 (Uniform boundedness). The reward func-
tion, the log–Jacobian, and the log–Hessian of the policy are
uniformly bounded: ∀i = 1, . . . , q, ∀m = 1, . . . , d, ∀n =
1, . . . , d, (s, a, s′) ∈ S ×A× S, θ ∈ Θ∣∣∣Ri(s, a, s

′)
∣∣∣ ≤ Ri, ∣∣∣Dm

θ log πθ(a|s)
∣∣∣ ≤ D,∣∣∣Hm,n

θ log πθ(a|s)
∣∣∣ ≤ G.

Lemma 4. Given a parametrized policy π(a|s,θ), under As-
sumption 3, the i–th component of the log–Hessian of the
expected return can be bounded by

‖HθJi(θ)‖max ≤
RiTγ

T

1− γ

(
TD

2
+G

)
.

Note that the max norm of a matrix is defined as ‖A‖max =
maxi,j {aij}. Previous results can be used to derive a bound
on the sample complexity of the Hessian estimate.
Theorem 5. Given a parametrized policy π(a|s,θ), under
Assumption 3, using the following number of T–step trajec-
tories

N =
1

2ε2i

(
RiTγ

T

(1− γ)

(
TD

2
+G

))2

log
2

δ
,

the gradient estimate ĤθJi(θ) generated by Equation (1) is
such that with probability 1− δ:∥∥∥ĤθJi(θ)−HθJi(θ)

∥∥∥
max
≤ εi.

Finally, the estimate of the integral can be computed using
standard Monte–Carlo techniques. Several statistical bounds
have been proposed in literature, we refer to (Robert and
Casella 2004) for a survey on Monte–Carlo methods.

Metrics for Multi–objective Optimization
In this section we review some indicator functions proposed
in literature underlying advantages and drawbacks and we
propose some alternatives.

Recently, MOO has focused on the use of performance in-
dicators to turn a multi–objective optimization problem into
a single-objective one by optimizing the indicator itself. The

indicator function is used to assign to every point a single–
objective measure, or, in other words, to give an approximate
measure of the discrepancy between the candidate frontier
and the Pareto one. Since, instead of optimizing the objective
function directly, indicator–based algorithms aim at finding
a solution set that maximizes the indicator metric, a natural
question arises about the correctness of this change in the
optimization procedure and on the properties the indicator
functions enjoy.

For instance, hypervolume indicator and its weighted ver-
sion are among the most widespread metrics in literature.
These metrics have gained popularity because they are re-
finements of the Pareto dominance relation (Zitzler, Thiele,
and Bader 2010). Recently, several works have been pro-
posed in order to theoretically investigate the properties of
hypervolume indicator (Friedrich, Horoba, and Neumann
2009). Nevertheless, it has been argued that the hypervol-
ume indicator may introduce a bias in the search. From our
perspective, the main issue of this metric is the high compu-
tational complexity3 and, above all, the non differentiability.
Several other metrics have been defined in the field of MOO,
we refer to (Okabe, Jin, and Sendhoff 2003) for an extensive
survey. However, MOO literature has not been able to pro-
vide a superior metric and among the candidates no one is
suited for this scenario. Again the main problems are the
non differentiability and the possibility of evaluating only
discrete representations of the Pareto frontier.

In order to overcome these issues we have tried to mix dif-
ferent indicator concepts in order to obtain a metric with the
desired properties. The insights that have guided our metric
definition are related to the MOO desiderata. Recall that the
goal of MOO is to compute an approximation of the frontier
that includes solutions that are accurate, evenly distributed,
and covering a range similar to the actual one (Zitzler et al.
2003). Note that the uniformity of the frontier is intrinsi-
cally guaranteed by the continuity of the approximation we
have introduced. Having in mind these concepts we need to
impose accuracy and extension of the frontier through the
indicator function.
Given a reference point p, a simple indicator can be obtained
by computing the distance between every point of the fron-
tier F and the reference point

I1(J,p) = ‖J− p‖22 .
As shown in the hypervolume indicator, the choice of the
reference point may be critical. However, a natural choice
is the utopia (ideal) point (pu), i.e., the point that optimizes
all the objective functions. In this case the goal is the min-
imization of such indicator function. Since any dominated
policy is farther from the utopia than at least one Pareto op-
timal solution, the accuracy can be easily guaranteed. On the
other hand, it is also easy to show that this measure forces
the solution to collapse into a single point. If the extension
of the frontier is the primary concern, maximizing the dis-
tance from the antiutopia (pau) results in a metric that grows
with the frontier dimension. However, since we are trying to
maximize a possibly unbounded function that is not related

3The computation of the hypervolume indicator is a #P–hard
problem (Friedrich, Horoba, and Neumann 2009).



to the Pareto optimality, this measure does not provide any
guarantees about accuracy.

Concerning the accuracy of the frontier, from a theoretical
perspective, it is possible to define a metric based on the
Pareto optimality. A point θ is Pareto optimal when

l(θ,α) =

q∑
i=1

αi∇θJi(θ) = 0,

q∑
i=1

αi = 1, α ∈ Rq+,

this means that it is not possible to identify an ascent di-
rection that simultaneously improves all the objectives. As
a consequence, any point on the Pareto frontier nullifies
the norm of direction l. Formally, a metric that reflects the
Pareto–optimality can be defined as follows

I2(J) = min
α
‖l(θ,α)‖22 ,

∑
i

αi = 1,α ∈ Rq+.

As for the utopia–based metric, the extent of the frontier is
not taken into account. To summarize, all the mentioned in-
dicators provide only one of the desiderata, but we deserve
more since achieving only one property may result in a fron-
tier arbitrary far from the actual one. In order to consider all
the desiderata we have decided to mix previous concepts into
a single indicator

I3(J) = I1(J,pau) · w(J),

where w(J) is a penalization term, i.e., it is a monotonic
function that decreases as I2(J) increases, e.g., w(J) =
1 − λL2(J). Metric I3 takes advantage of the expansive be-
havior of the antiutopia–based indicator and the accuracy of
the optimality–based indicator I2. In this way all the desider-
ata can be considered by a single scalar measure, that is also
Cl (l ≥ 1) differentiable.

Experiments
In this section, results related to the numerical simulations of
the PMGA algorithm, in continuous domains, are presented.
Performances are compared against value–based and gradi-
ent algorithms: Stochastic Dynamic Programming (SDP),
Multi-Objective Fitted Q–Iteration (MOFQI) (Castelletti,
Pianosi, and Restelli 2013), Pareto Following Algorithm
(PFA) and Radial Algorithm (RA) (Parisi et al. 2014). The
comparison has been performed by selecting MORL algo-
rithms that can operate in continuous domains. In all the ex-
periments the learning rate α was set by hand-tuning.

We start considering a multi–objective version of the
standard discrete-time Linear-Quadratic Gaussian regulator
(LQG) with multidimensional and continuous state and ac-
tion spaces (Peters and Schaal 2008). For a complete de-
scription of the LQG problem and for the settings, we refer
to (Parisi et al. 2014). This scenario is particular instructive
since all the terms can be computed exactly, so that we can
focus on the effects of using different parametrizations and
metrics, while we demand the analysis of the gradient es-
timation to the water reservoir domain. Initially we present
the results for a 2–dimensional LQG problem. The LQG is
a problematic domain since it is defined only for control ac-
tions in the range [−1, 0], controls outside this range leads
to divergence of the system. Our primary concern is related
to the boundedness of the control actions, leading to the fol-
lowing parametrization of the manifold in the policy space:

φ1
ρ(t) = − 1/1 + exp(ρ1 + ρ2t) and φ2

ρ(t) = − 1/1 + exp(ρ3 + ρ4t)

with t ∈ [0, 1]. While metrics I1 and I2 suffer from the prob-
lems described in the previous section that prevent PMGA
to obtain a good approximation of the Pareto frontier, mixed
metric (I3) achieves both accuracy and coverage. An ex-
ample of the learning process obtained setting λ to 2.5 (a
sensitive analysis w.r.t. λ is available in (Pirotta, Parisi, and
Restelli 2014)) and starting from ρ(0) = [1, 2, 0, 3]T is shown
in Figure 2(a). First the accuracy is increased by pushing
the parametrization onto the Pareto frontier, then the par-
tial solution is expanded toward the extrema thus improving
coverage.

An alternative approach consists in the computation of
the optimal parametrizations of the single objectives, for in-
stance through policy gradient techniques, exploiting such
information for constraining the policy manifold to pass
through these points. Recall that, in general, this informa-
tion is required to compute the utopia and antiutopia points.
Following such approach, two improvements can be eas-
ily obtained. First, the number of free parameters decreases
and, as a consequence, the learning process simplifies. Sec-
ond, the approximate frontier is forced to have a sufficiently
large area to cover all the extrema. In this way, the cover-
age problem shown by indicators I1 and I2 can be alleviated
or, in some cases, completely solved. For instance, forcing
the parametrization to cover the extrema, has permitted to
achieve both accuracy and coverage using metric I1 (utopia)
and I2 in the 2–dimensional LQG problem. Figure 2(b)
shows the learning process obtained through metric I2 un-
der these settings. Clearly, no advantages have been found
using the antiutopia–based metric. Although, this approach
is effective for almost all 2–objective problems, it does not
generalize to higher dimensions as shown in (Pirotta, Parisi,
and Restelli 2014) for a 3–dimensional LQG.

Consider the 3–dimensional LQG domain described
in (Pirotta, Parisi, and Restelli 2014). Despite the
parametrization was forced through the single objective op-
tima, the solution obtained with the utopia–based metric
tends to concentrate on the center of the frontier, i.e., toward
the points that minimize the distance from the utopia. It is
important to underline that all the obtained solutions belong
to the Pareto frontier, i.e., no dominant solutions are found.
The same happens with metric I2. Mixing the antiutopia
with the Pareto optimality, i.e., using metric I3, provides a
way to obtain both accuracy and coverage through the tuning
of the λ parameter. Figure 2(c) compares the Pareto frontier
with the approximation obtained using I3 with λ = 135.

Concerning the approximate framework, we consider the
water reservoir problem, a continuous MOMDP that, dif-
ferently from the LQG, does not admit a closed–form so-
lution. In order to compare the PMGA frontier with the ones
obtained by other algorithms, we consider the domain, set-
tings and policy parametrization as described in (Parisi et al.
2014). A second–order polynomial in t ∈ [0, 1] with 5 pa-
rameters has been used to parametrize the policy manifold.
The number of parameters is 5 since we have constrained
the policy manifold to pass through the optimal points. The
reader may refer to (Pirotta, Parisi, and Restelli 2014) for de-
tails. In order to show the capability of PMGA we have de-
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Figure 2: Experimental results. Figures (a) and (b) show some candidate frontiers obtained by PMGA during the learning
process in the 2D LQG problem without and with constraints, respectively. For sake of visualization we have decided to use a
discrete representation of the true Pareto frontier since it overlaps the result of PMGA . Only few iterations have been reported,
each one with the associated iteration number, where end denotes the frontier obtained when the terminal condition is reached.
Figure (c) compares the Pareto frontier with its approximation obtained with metric I3 in the 3D LQG. Figure (d) is related to
the water reservoir domain and represent frontiers obtained with different algorithms.

Table 1: 2D LQG: empirical sample complexity. Number of iterations and the evaluations of the model (averaged over 10 runs)
required to reach a loss from the weighted sum approximation less than 5 · 10−4 within 1000 iterations. The symbol ⊥ is used to
denote the hit of such threshold.

PMGA Parameters (#Episodes = 30, #steps = 30)
1 10 30 40 50

#t
#Iterations 390.6± 50.0 221.3± 32.9 157.0± 20.4 149.2± 21.9 111.5± 9.7

#Samples (105) 3.5 ± 0.5 19.9± 3.0 42.4± 5.5 53.7± 7.9 50.2± 4.4

PMGA Parameters (#t = 30, #steps = 30)
1 10 30 40 50

#Episodes
#Iterations ⊥ ⊥ 127.6± 11.0 71.0± 4.5 68.4± 5.0

#Samples (105) ⊥ ⊥ 34.5± 3.0 25.6 ± 1.6 30.8± 2.2

cided to test the simplest metric, that is, the utopia–based in-
dicator. The integral estimate was performed using a Monte–
Carlo algorithm fed with only 100 random points. For each
value of t, 100 trajectory by 100 steps were used to estimate
the gradient and Hessian of the policy performance. We start
the learning from an arbitrary parametrization with all the
parameters ρi set to −20. Figure 2(d) reports the final fron-
tier obtained with different algorithms. The approximation
obtained by PMGA is comparable to the other results, but
PMGA produces a continuous frontier approximation.

To conclude, another advantage of PMGA is the reduced
number of samples trajectories to approximate the Pareto
frontier. Let us consider the 2D LQR domain and let vary
the number of policies used to estimate the integral and the
number of episode for each policy evaluation. From Table 1
results that the most relevant parameter is the number of
episodes used to estimate MDP terms: J(θ), DθJ(θ) and
HJ(θ). This parameter controls the variance in the estimate,
i.e., the accuracy of gradient estimate∇θJ(ρ). By increasing
the number of episodes, the estimation process is less prone
to generate misleading directions, as happens, for instance,
in the 1–episode case where parameters move into wrong
direction. On the contrary, the number of points used to es-
timate the integral (denoted in table by #t) seems to have no
significant impact on the final performance of the algorithm,
but influences the number of model evaluations needed to
reach the prescribed accuracy.

Conclusions
In this paper we have proposed PMGA, a novel gradient–
based approach to learn a continuous approximation of the
Pareto frontier in MOMDPs. The idea is to define a para-
metric function φρ that describes a manifold in the policy–
parameter space, that maps to a manifold in the objective
space. Given a metric that measures the quality of the man-
ifold in the objective space (i.e., the candidate frontier), we
have shown how to compute (and estimate from trajectory
samples) its gradient w.r.t. the parameters of φρ. Updating
the parameters along the gradient direction generates a new
policy manifold associated to an improved (w.r.t. the chosen
metric), continuous frontier in the objective space. Although
we have provided a derivation that is independent from the
specific metric used to measure the quality of the candidate
solutions, the choice of such metric strongly influences the
final result. We have presented different alternatives, dis-
cussed pros and cons of each one, and shown their properties
through an empirical analysis.

Future research will further address the study of metrics
that can produce good results in general settings. Another
interesting research direction consists in using importance
sampling techniques for reducing the sample complexity in
the gradient estimate. Since the frontier is composed of a
continuum of policies, it is likely that a trajectory generated
by a specific policy can be partially used also for the estima-
tion of quantities related to similar policies.
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