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Abstract— This paper investigates the use of policy gradi-
ent techniques to approximate the Pareto frontier in Multi–
Objective Markov Decision Processes (MOMDPs). Despite the
popularity of policy–gradient algorithms and the fact that
gradient–ascent algorithms have been already proposed to
numerically solve multi–objective optimization problems, es-
pecially in combination with multi-objective evolutionary al-
gorithms, so far little attention has been paid to the use of
gradient information to face multi-objective sequential deci-
sion problems. Three different Multi-Objective Reinforcement-
Learning (MORL) approaches are here presented. The first two,
called radial and Pareto following, start from an initial policy
and perform gradient–based policy–search procedures aimed at
finding a set of non–dominated policies. Differently, the third
approach performs a single gradient–ascent run that, at each
step, generates an improved continuous approximation of the
Pareto frontier. The parameters of a function that defines a
manifold in the policy parameter space are updated following
the gradient of some performance criterion so that the sequence
of candidate solutions gets as close as possible to the Pareto
front. Besides reviewing the three different approaches and
discussing their main properties, we empirically compare them
with other MORL algorithms on two interesting MOMDPs.

I. INTRODUCTION

Many real–world control problems (e.g., economic sys-
tems, water resource problems, robotic systems, just to
mention a few) are characterized by the presence of multiple,
conflicting objectives. Such problems are often modeled
as Multi-Objective Markov Decision Processes (MOMDPs),
where the concept of optimality typical of MDPs is replaced
by the one of Pareto optimality. A policy is Pareto optimal if
it is not dominated (i.e., it does not perform worse w.r.t. all
the objectives) by any other policy. Solving a MOMDP
means to find the set of all the Pareto–optimal policies
forming the so–called Pareto front.

In the last decades, Reinforcement Learning (RL) [1] has
been established as an effective and theoretically–grounded
framework that allows to solve single–objective MDPs when-
ever either no (or little) prior knowledge is available about
system dynamics, or the dimensionality of the system to be
controlled is too high for classical optimal control methods.
Despite the successful developments in RL theory and a
high demand for multi–objective control applications, Multi–
Objective Reinforcement Learning (MORL) is still a rela-
tively young and unexplored research topic. For recent and
complete surveys of MORL, we refer the reader to [2].
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Traditionally, MORL approaches are based on value–
function techniques that provides a quality measure for each
state–action pair. The main problem of such approaches
are: 1) provide quality measure for each state–action pair,
2) bootstrapping may introduce bias in the measure when
functional approximation are used, and 3) value functions
are usually discontinuous, i.e., difficult to represent with
standard functional approximator. Policy gradient–or better,
policy search–techniques are able to overcome such limits
by directly performing a search in the policy parameter
space. In the last years, policy–gradient methods have been
established as the most effective RL techniques for com-
plex real–world control problems with continuous, high–
dimensional, and partially–observable properties, such as
robotic control systems [3]. Given a parameterized policy
space, usually designed to incorporate domain knowledge,
policy–gradient algorithms update policy parameters along
an estimated ascent direction of the expected return. Under
some mild assumptions on the learning rate used to update
the parameters, policy–gradient methods are guaranteed to
converge at least to a locally optimal solution. Despite the
effectiveness of policy–gradient methods, their application
to multi–objective sequential decision problems has been
largely overlooked until recently.

In [4] the authors propose two MORL algorithms that
exploit policy gradients to build a discrete approximation of
the Pareto front. The first, named radial (RA), builds a p–
dimensional1 approximation of the Pareto front by perform-
ing gradient–ascent optimization along p different (uniformly
spaced) directions within the ascent simplex defined by
the convex combination of single-objective gradients. The
second approach, named Pareto–following (PFA), starts by
performing a single–objective optimization in order to move
the solution into the Pareto front and then it moves along
the Pareto front by following individual gradient directions.
Although such methods proved to be effective in several
scenarios, they are not guaranteed to uniformly cover the
Pareto front (as all the other gradient approaches).

To overcome this issue a new approach that builds a
continuous approximation of the Pareto front was proposed
in [5]. The idea is to exploit a gradient–based approach to
optimize the parameters of a function that defines a manifold
in the policy parameter space so that the corresponding
image in the objective space gets as close as possible to the
Pareto frontier. The effectiveness of such approach is strongly
affected by the metric used to evaluate the quality of the

1p is the number of solutions that define the Pareto approximation.



candidate solutions. Several metrics have been proposed in
multi–objective optimization literature, but all of them have
pros and cons, so that the definition of a general measure for
the goodness of a candidate frontier is still an open problem.

In this paper, we review these gradient approaches and
perform a deep empirical analysis to show advantages and
limitations of each algorithm. In particular, we focus our
attention on the sample complexity, meant as the number of
simulation steps needed to approximate the Pareto front.

II. PRELIMINARIES

Multi-objective Markov Decision Processes (MOMDPs)
are an extension of the MDP model, where several pairs
of reward functions and discount factors are defined, one
for each objective. Formally, a MOMDP is described by a
tuple 〈S,A,P,R,γ, D〉, where S ⊆ Rn is the continuous
state space, A ⊆ Rm is the continuous action space, P is
a Markovian transition model where P(s′|s, a) defines the
transition density between state s and s′ under action a,
R = [R1, . . . ,Rq]T and γ = [γ1, . . . , γq]

T are q-dimensional
column vectors of reward functions Ri : S×A×S → R and
discount factors γi ∈ [0, 1), respectively, and D is the initial
state distribution from which the initial state is drawn. In
MOMDPs, any policy π is associated to q expected returns
Jπ =

[
Jπ1 , . . . , J

π
q

]
, where

Jπi = E

{
H∑
t=0

γtiri(t+ 1)|x0 ∼ D,π

}
,

being ri(t+1) = Ri(st, at, st+1) the i–th immediate reward
obtained when state st+1 is reached from state st and action
at, and H the finite or infinite horizon.

Despite what happens in classical MDPs, in MOMDPs
a single policy that dominates all the others usually does
not exist; in fact, when conflicting objectives are considered,
no policy can simultaneously maximize all the objectives.
For these reasons, in Multi-Objective Optimization (MOO)
a different dominance concept has been defined.

Definition 2.1: Policy π dominates policy π′, which is
denoted by π � π′, if:

∀i ∈ {1, . . . , q} , Jπi ≥ Jπ
′

i ∧ ∃i ∈ {1, . . . , q} , Jπi > Jπ
′

i .
Definition 2.2: If there is no policy π′ such that π′ � π,

the policy π is Pareto–optimal.
In general, there are multiple Pareto–optimal policies.

Solving a MOMDP is equivalent to determine the set of
Pareto–optimal policies Π∗ =

{
π |@π′, π′ � π

}
, that maps

to the so-called Pareto frontier J ∗ =
{
Jπ
∗ |π∗ ∈ Π∗

}
.2

III. MULTI-OBJECTIVE POLICY GRADIENT

In policy–gradient approaches, a parametrized space of
policies Πθ =

{
πθ : θ ∈ Θ ⊆ Rd

}
(where πθ is a compact

notation for π(a|s,θ)) is considered.
Given a policy parametrization θ, we assume the policy
performance J : Θ→ F to be at least C2. J is defined as the

2As done in [6], we suppose that local Pareto–optimal solutions that are
not Pareto–optimal do not exist.
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Fig. 1. The ascent cone and simplex
in a 2–parameters, 2–objectives prob-
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Fig. 2. The ascent cone and simplex
in a 2–parameters, 2–objectives prob-
lem. The Pareto ascent cone equals
the ascent cone. l represents a Pareto
ascent direction.

expected reward over the space of all possible trajectories T:
J (θ) =

∫
T p (τ |θ) r(τ)dτ, where τ ∈ T is a trajectory drawn

from density distribution p(τ |θ) with reward vector r(τ) that
represents the accumulated expected discounted reward over
trajectory τ : ri(τ) =

∑T
t=0 γ

t
iri(t+ 1).

In MOMDPs for each policy parameter θ, q gradient
directions are defined [7]

∇θJi(θ) =

∫
T
∇θp(τ |θ)ri(τ)dτ = E{∇θ log p(τ |θ)ri(τ)},

where each direction ∇θJi is associated to a particular dis-
count factor–reward function pair < γi,Ri >. As shown in
the previous equation, the differentiability of the performance
measure is connected to the differentiability of the policy
class by: ∇θ log p (τ |θ) =

∑T
k=1∇θ log π(ak|sk,θ).

Given the q gradient vectors, [8] showed that it is possible
to define the set of all ascent directions that simultaneously
improve all the objectives. This set, that we call Pareto
ascent cone, is the intersection of the ascent cone (i.e., the
intersection of all positive half spaces) with the ascent sim-
plex (defined by the convex combination of single–objective
gradients). When the solution θ is sufficiently distant from
the Pareto frontier, gradients are likely to be highly correlated
and the directions that lie in the ascent simplex will also
lie in the ascent cone (Figure 1). However, as the solution
approaches the Pareto frontier, gradient directions become
more and more divergent and the width of the ascent cone
decreases (Figure 2). A degenerate case is obtained when
gradients are coplanar, in this case the ascent cone cannot be
defined and the corresponding θ is a (possibly local) Pareto–
optimal solution.

Among all Pareto ascent directions, it is worth to consider
the direction that maximizes the minimum improvement
among all the individual objective improvements [8], i.e.,
the smallest (L2–norm) Pareto ascent direction. As done
in [8, 4], such direction is the solution of a Quadratic
Programming (QP) problem, in d + 1 variables with q
inequality constraints, that always admits a unique solution.



IV. MULTI-OBJECTIVE POLICY GRADIENT PARETO
APPROXIMATION

This section reviews the MORL gradient algorithms Ra-
dial (RA) and Pareto–Following (PFA) proposed in [4]. They
differ for the strategy followed for the generation of the
approximate Pareto front.

A. Radial Algorithm (RA)

Following any Pareto ascent direction, a solution belong-
ing to the Pareto front is reached. Consider the ascent simplex

S(λ,θ) =

q∑
i=1

λi∇θJi(θ) s.t.
q∑
i=1

λi = 1, ∀i, λi ≥ 0.

Following the extreme directions (individual steepest ascent
directions) one converges to the solution that maximizes
one objective, neglecting the others. Any other direction
in the ascent simplex will simultaneously increase at least
two objectives, ignoring the others. A uniform sampling of
the ascent simplex results in evenly distributed directions
pointing to the Pareto front with the goal of generating
Pareto-optimal solutions as evenly distributed as possible.

Let p ≥ q be the granularity of the sampling. The
algorithm starts with computing the individual gradients
at a single point θ(0) and identifies the set {li}pi=1 that
realizes the uniform partition of the ascent simplex. Note
that every direction li intrinsically defines a preference over
the objectives through λi. As a consequence, every candidate
solution θ

(t)
i , generated according to

θ
(t+1)
i = θ

(t)
i + αl

(t)
i , l

(t)
i = S

(
λi,θ

(t)
i

)
,

will be associated to the original preference vector λi.
Note that p points are created at the first iteration and are

successively updated according to the associated preference
vectors until they reach the Pareto front, as shown in Fig-
ure 3. The pseudo code is reported in Algorithm 1.

B. Pareto-Following Algorithm

Pareto-Following Algorithm extends the concept of di-
rected optimization on Pareto front, i.e., the ability of the
search algorithm to reside on a neighborhood of the front
throughout the optimization process, to the MORL scenario.

Moving a solution along the Pareto front improves some
objectives and degrades other ones, according to the followed
path. The main problem of directed algorithms is the choice
of the search path. In the case of a 2-objective problem, the
Pareto front is a line in the objective space, thus only two
search directions exist. When q ≥ 3, a solution on the Pareto
front can be moved along an infinite number of directions.

The idea of the Pareto-Following Algorithm is to build a
uniform approximation of the Pareto front by optimizing one
objective at a time. In this way the choice of the search path
is made unique for every parameterization θ.

The Pareto-Following Algorithm starts searching for an
extreme point of the Pareto front, by optimizing the first
objective J1(θ). When such a Pareto–optimal solution is
reached, it starts optimizing all the other objectives. Let θ[i]

be a solution on the Pareto front obtained by considering
only the i–th objective in the last step

θ[i] = Γ (θ + α∇θJi(θ)) ,

where θ is a solution on the Pareto front and Γ(x) is a
function that given a candidate solution x returns a solution
on the Pareto front (e.g., Γ can be obtained by repeat-
edly following the direction obtained from solving the QP
problem in [8]). This correction is necessary because, even
starting from a solution on the Pareto front, following the
steepest ascent direction of some objective may produce a
dominated solution. Pareto-Following Algorithm evaluates at
most (q−i+1) ascent directions associated to the i–th and to
the other objectives (see Figure 4 for a 3–objective example).
This means that for any solution θ[i], the Pareto-Following
Algorithm generates (q − i+ 1) points

{
θ
[k]
}

such that

θ
[k]

= Γ
(
θ[i] + α∇θJk

(
θ[i]
))

∀k = i, . . . , q. (1)

Then it recursively applies the same procedure to any solu-
tion θ

[k]
, neglecting solution θ[i] if it is optimal w.r.t. the i–th

objective. The pseudo code of the recursive Pareto-Following
Algorithm is reported in Algorithm 2.

V. GRADIENT ON POLICY MANIFOLD FOR CONTINUOUS
PARETO FRONTIER APPROXIMATION

Pareto–Following and Radial Algorithm overcome the
curse of dimensionality of many state-of-the-art MORL algo-
rithms and are able to identify concave frontiers, but return
discrete frontiers and lack of guarantees of uniform covering.
In this section we describe a gradient–based approach –
that we name Policy Manifold Gradient Algorithm (PMGA)–
designed to overcome these issues.

A. Parametric Pareto Frontier

It has been shown [9] that local Pareto–optimal solutions
locally form a (q − 1)–dimensional manifold, assuming
d > q. For instance, in two–objective problems, the Pareto–
optimal solutions can be described by curves both in decision
and objective spaces. The idea behind this approach is to
parameterize the local Pareto–optimal solution curve in the
decision space, in order to produce a continuous representa-
tion of the Pareto front. The result is a continuous, functional
representation of decision and objective spaces. Note that
the mapping between the decision (i.e., policy) and objective
space is represented by the expected discounted return J(θ).

The critical point is the definition of the parameterization
of the decision space. Let T be open in Rb with b ≤ q
named generative space. The high–dimensional analogous
of a parameterized curve is a smooth map φρ : T → Θ
of class Cl(l ≥ 1), where t ∈ T and ρ ∈ P ⊆ Rk
are the free variable and the parameters, respectively. The
set Θρ(T ) = ψρ(T ), together with the map ψρ consti-
tute a parameterized manifold [10] of dimension b, named
(parametric) policy manifold. The image of this manifold
through J(θ) represents our approximation of the Pareto
front Fρ(T ) = F(Θρ(T )) = J(Θρ(T )) (see Figure 5).



Algorithm 1 Radial Algorithm (RA)
Input: θ(0)

{λi}pi=1 ← uniform sampling of Rd

d
(0)
i ← S

(
λi,θ

(0)
)

for i = 1, . . . , p do
t = 1
while θ

(t−1)
i not Pareto-optimal do

θ
(t)
i ← θ

(t−1)
i + αd

(t−1)
i

d
(t)
i ← S

(
λi,θ

(t)
i

)
t← t+ 1

end while
end for

Algorithm 2 Pareto-Following Algorithm (PFA)
Input: the candidate solution θ, the index of the last gradient
followed i, the points of the Pareto front F

c← i
if θ is optimal w.r.t. the i-th objective then
c← i+ 1

end if
for k = c, . . . , q do

θ ← Γ (θ + α∇θJk (θ))
F ← Pareto-Following Algorithm

(
θ, k,F

)
end for
return F ∪ {θ}
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Fig. 3. Behavior of RA in a 2–objectives
problem. Four preferences λi are selected from
the ascent simplex in θ(0). When the initial point
θ(0) is close to the frontier, only a subset of the
Pareto frontier can be reached.
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Fig. 5. Transformation map. The function
φρ, together with generative and parameter
spaces, defines the parametrized policy manifold
Θρ(T ), that maps, through the expected return
J , to the approximate Pareto manifold Fρ(T ).

The goal is to find the best approximation, i.e., the parameters
ρ that produce a front that is as similar as possible to
the Pareto one: ρ∗ = arg minρ∈P I∗ (Fρ (T )) , where
I∗ : Rq → R is some loss function that measures the
discrepancy between the Pareto–optimal front and Fρ (T ).

However, since the Pareto front is not known, a different
indicator function is needed. We denote I : Fρ (T ) → R a
continuous indicator function that for each point of Fρ (T )
measures its Pareto–optimality. The definition of such metric
is an open problem in literature. We discuss about it in
Section V-B.

In general, MOO algorithms compute the value of the front
as sum of the value of the points composing the discrete
approximation. In our scenario, where a continuous front
approximation is available, it maps to an integration on the
Pareto manifold [5, Lemma 3.1]

J(ρ) =

∫
F(T )

IV dV

=

∫
T

(I ◦ (J ◦ φρ))V ol (DθJ(θ)Dtφρ(t)) dt,

where dV is a symbol used to denote the integral
w.r.t. the volume of the manifold [10] and V ol (X) =

[det (XT ·X)]
1
2 . A standard way to maximize the previous

equation is to perform gradient ascent, updating the parame-
ters along the gradient direction: ρt+1 = ρt + αt ∇ρJ (ρ) .

The associated gradient w.r.t. the policy manifold param-
eters ρ is given component–wise by

∂J (ρ)

∂ρi
=

∫
T

∂

∂ρi
(I ◦ (J ◦ φρ))V ol (T) dt

+

∫
T

(I ◦ (J ◦ φρ))V ol (T)
(

vec
(
TTT

)−T)T·
·Nb

(
Ib ⊗TT

)
Dρi

Tdt (2)

where T = DθJ(θ)Dtφρ(t), ⊗ is the Kronecker product,
Nb = 1

2 (Ib2 +Kbb) is a symmetric (b2 × b2) idempotent
matrix with rank 1

2b(b + 1) and Kbb is a permutation
matrix [11]. Note that

Dρi
T =

(
Dtφρ(t)

T ⊗ Iq
)
Dθ (D J(θ))Dρi

φρ(t)+

+ (Ib ⊗DθJ(θ))Dρi
(Dtφρ(t))

where Dθ (D J(θ)) is a transformation of the Hessian matrix
H J(θ) of the performance w.r.t. policy parameters, that
is, they contain the same elements, but in different order
Hm,n
θ Ji = Dp,n

θ (D J(θ)) , where p = i+ q(m−1) and q is
the number of rows of the Jacobian matrix. For the definition
of the Hessian matrix we refer to [5, Lemma 3.2].

The formulation of the gradient ∇ρJ(ρ) is composed
by terms related to the parameterization of the manifold
in the policy space and terms related to the MDP. Since
the map φρ is free to be designed, the associated terms
(e.g., Dtφρ(t)) can be computed exactly. On the other hand,



the terms related to the MDP (Jθ, ∇θJ(θ) and H J(θ))
need to be estimated. While the trajectory–based estimate of
the expected discounted reward and the associated gradient
is an old topic in RL literature and several results have
been proposed [12], the Hessian estimate has been recently
addressed in [5]. Finally, the integral in Equation 2 can be
estimated using standard Monte–Carlo techniques [13].

B. Metrics for Multi–objective Optimization

Although literature has proposed and analyzed several
metrics to measure how good are frontier approxima-
tions [14, 15], no consensus exists on appropriate perfor-
mance measure to be used for empirical evaluation. Recently,
continuous metrics have been proposed and empirically
compared in [5]. Inspired by such work, we have tried to
mix different indicator concepts in order to obtain a metric
with the desired properties: we want a frontier that includes
solutions that are accurate, evenly distributed and covering
a range similar to the Pareto one [16].

While the uniform distribution of the frontier is guaranteed
by the continuity of the PMGA, accuracy can be guaranteed
by minimizing the distance from the utopia point pU (i.e., the
point that optimizes all the objective functions). Generally,
a simple indicator function can be defined up to a reference
point p as follows:

Iref (J,p) = ‖J− p‖22 . (3)

Although, utopia–based metric is able to guarantee accuracy
of the solution (for every dominated point there exists a
Pareto–optimal point that minimizes the distance from the
utopia), it forces the solution to collapse into a single point.

In order to get the maximal extent of the frontier it is pos-
sible to maximize Equation (3) by considering the antiutopia
(pAU ) as reference point. However, the maximization of the
latter indicator may lead to very large fronts, but with very
bad dominated solutions. In fact, searching for solutions far
from the antiutopia does not imply to find solutions close to
the Pareto front.

Since such metrics, individually, do not satisfy all the
desiderata, we have decided to mix utopia– and antiutopia–
based metrics. We want solutions that are simultaneously far
from the antiutopia and close to the utopia. So, we consider
the following metric (to be maximized):

I(J) = β1
Iref (J,pAU )

Iref (J,pU )
− β2,

where β1 and β2 are free parameters. Notice that, if we knew
that the Pareto front is convex (i.e., the utopia is closer to
any point on the Pareto front than the anitutopia is), then it
would be reasonable to set β1 and β2 both to 1.

As for the hypervolume indicator [16], the definition of
the reference point is critical and has a relevant impact on
the final performances of the algorithm. However, compared
to other continuous indicators, it enjoys all the desiderata and
it is easy to differentiate. In the next section, we will show
that the proposed metric is effective to drive PMGA close to
the Pareto front both in exact and approximate scenarios.

VI. EXPERIMENTS

In this section, results related to the numerical simulations
of the proposed algorithms, in continuous domains, are pre-
sented. In particular, the performance of the proposed algo-
rithms is compared against some existing algorithms [17, 18]
using an extension of a previously defined metric [18] that
measures the distance of an approximation of the Pareto front
from a reference one. Since PMGA returns continuous fronts,
they have been discretized to evaluate such loss function.

In PFA and RA experiments the learning rate is fixed
by hand-tuning, while for PMGA an in–learning tuning is
performed to avoid oscillations. As terminal condition, PFA
and RA are stopped when the gradient norm gets below
some threshold. PMGA instead performs a fixed number of
iterations. Finally, all the results in the approximate setting
are averaged over 10 runs.

A. Domains

To illustrate the performance of the algorithms, we con-
sider the following MDPs.

1) LQG: The first case of study is a discrete–time Linear-
Quadratic Gaussian regulator (LQG) with multidimensional
and continuous state and action spaces [7]. For a complete
description of the LQG problem and for the settings, we
refer to [4]. This scenario is interesting since all the terms
can be computed exactly and the precision of the proposed
algorithms can be analyzed using both the exact and the
estimated functions. Further, since the Pareto front is convex,
a weighted sum (WS) method can be exploited in order to
obtain a reference front used to compare our approaches.

2) Water Reservoir: A water reservoir can be modeled as
a MOMDP with a continuous state variable s representing
the water volume stored in the reservoir, a continuous action
a that controls the water release, a state-transition model that
depends also on the stochastic reservoir inflow ε, and a set
of conflicting objectives. For a complete description of the
problem, the reader can refer to [4].

In this work we consider three objectives: flooding along
the lake shores, irrigation supply and hydropower supply.
Like in the original work, the discount factor is set to 1 for
all the objectives. However, different settings are used for
learning and evaluation. In the learning phase 1, 000 episodes
by 10 steps with initial state s0 ∼ Unif(0, 160) are used for
PFA and RA, and 100 episodes by 100 steps for PMGA.
The evaluation phase is the same for all the algorithms:
10, 000 episodes by 100 steps with initial state drawn from
a finite set. Policies are represented by parametric Gaussian
distributions over the continuous action space π(a|s,θ) =
N
(
φ(s)

T
κ, σ

)
, where φ : S → Rd−1 are the basis functions.

In PMGA setting σ = 0.1, while in order to prevent the
variance from becoming negative PFA and RA exploit a
logistic variance as presented in [4].

Since the optimal policies for the objectives are not linear
in the state variable, a radial basis approximation is used:
φ(s) =

[
e−

∥∥s − ci
∥∥
2/wi
]d−1
i=1

, where the centers ci are placed
at 0, 50, 120 and 160, and the widths are 50, 20, 40 and 50.



TABLE I
LQG: ALGORITHM COMPARISON IN EXACT AND APPROXIMATE SETTINGS

LQG 2-obj. LQG 3-obj.
Algorithm Loss #Iterations #Solutions Loss #Iterations #Solutions
RA ex. 1.9888e-4 2,081 101 1.6921e-4 3,840 989
PFA ex. 5.6975e-5 288 161 4.0863e-4 2,317 943
PMGA ex. 4.2515e-4 46 ∞ 0.0045 141 ∞
RA apx. 1.9868e-4 ± 3.7481e-5 1,654 ± 124.8047 94.6 ± 3.0067 XXX XXX XXX
PFA apx. 1.0202e-4 ± 2.6125e-5 637 ± 55.7512 406.3 ± 39.3956 2.64474-4 ± 3.1516e-5 6,664 ± 140.2 2,302 ± 180.3
PMGA apx. 1.3178e-4 ± 7.9188e-5 141 ∞ 5.2849e-4 ± 3.3856e-4 151 ∞

150 200 250 300

150

200

250

300

J1

J
2

LQG 2D – Radial Alg.

Pareto frontier

Alg. frontier

Starting point

150 200 250 300

150

200

250

300

J1

J
2

LQG 2D – Radial Alg.

Pareto frontier

Alg. frontier

Starting point

(a)

200

300

200

300

400

200

300

400

J1J2

J
3

LQG 3D – Radial Alg.

(b)

150 200 250 300

150

200

250

300

J1

J
2

LQG 2D – Pareto Following Alg.

150 200 250 300

150

200

250

300

J1
J
2

LQG 2D – Pareto Following Alg.

(c)

200

300

200

300

400

200

300

400

J1J2

J
3

LQG 3D – Pareto Following Alg.

(d)

Fig. 6. Approximate Pareto front obtained by RA ((a) and (b)) and PFA ((c) and (d)) in both 2D and 3D LQG problem. Initial parametrization are
θ0 = [−0.5, 0, 0,−0.5]T and θ0 = [−0.17, 0, 0,−0.17]T, for 2D PFA and 2D RA scenarios, respectively. For the 3D LQG both algorithms starts from
θ0 = [−0.5, 0, 0, 0,−0.5, 0, 0,−0.5]T.
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Fig. 7. Continuous approximate Pareto front for the LQG problem using PMGA . The parameterization φρ used is forced to pass through the extreme
points of the front. In the 2D case only few iterations have been reported, each one with the associated iteration number, where end denotes the front
obtained when the terminal condition is reached. In Figures (a) and (b) indicator function I is used, starting from ρ0 = [2, 2]T and ρ0 = 0, respectively.
Figures (c) and (d) report the results obtained using an antiutopia–based indicator (ρ0 = [1, 1]T) and an utopia–based indicator (ρ0 = 0).

B. Numerical results

For each of the previous domains, simulation results are
reported here, comparing them with the results obtained
using other algorithms. Since it is not possible to associate
weights with policies found by the gradient algorithms, for
each weight used in the reference solution, the policy that
minimizes the loss function is selected.

1) LQG: Concerning Pareto Following and Radial algo-
rithms, gradients ∇θJi(θ) are not normalized, neither are
objectives since the initial state s0 ensures they have the
same order of magnitude. Radial algorithm follows 101 and
989 directions (2-objective case and the 3-objective case,
respectively) uniformly sampled in the gradient simplex.
About the settings, since LQG problem is defined only for
control actions in the range [−1, 0], our primary concern
was related to the boundedness of the control actions. In
order to guarantee this constraint, the following parame-

terization of the manifold in the policy space was used
for the 2D LQG: φ1ρ(t) = −(1 + exp(ρ1 + ρ2t))

−1 and
φ2ρ(t) = −(1 + exp(ρ3 + ρ4t))

−1 with t ∈ [0, 1]. Similarly,
a complete second degree polynomial with |ρ| = 9 and
t ∈ simplex([0, 1]2) is used for the 3D LQG. Finally, both
parameterizations are forced to pass through the extreme
points of the front. For more details we refer to [5].

Figures 6(a) and 6(c) show the approximated front ob-
tained with the exact RA and PFA. It can be noticed that the
approximations are not completely uniform as the first has
more solutions concentrated near the knee of the front, while
the second is more dense at the extremity. This behavior can
be also observed in the 3-objective scenario. In the case of
PFA, this is due to the learning rate, that highly influences
solutions distribution. It is interesting that, even starting near
to the center of the front (Figure 6(a)), Radial Algorithm is
still able to reach its extremity. Compared to PFA, RA also



proved to be faster since it can use a larger learning rate and
still obtain a uniform front, while PFA needs smaller learning
rates to prevent sparse fronts. Better approximations can be
obtained with adaptive learning rates [12], but this does not
ensure to get a uniform approximation of the front.

On the contrary, with PMGA (Figure 7) we are able to
obtain continuous and accurate fronts using the mixed metric
proposed in Section V-B (β1 = 1 and β2 = 1; pU =
[150, 150] and pAU = [310, 310] for the 2D LQG, pU =
[195, 195, 195] and pAU = [360, 360, 360] for the 3D LQG).
In the 2-objective case PMGA returns a good approximation
of the Pareto front, while in the 3-objective case dominated
solutions are generated (Figure 7(b)). Figures 7(c) and 7(d)
show the fronts obtained using antituopia–based and utopia–
based indicators, respectively. In the first case solutions tend
to diverge from the Pareto front, while in the second they
concentrate on the knee of the front.

2) Water Reservoir: To evaluate the effectiveness of the
gradient algorithms we have analyzed their performances
against the solution found by Stochastic Dynamic Pro-
gramming (SDP, chosen as reference front, since the opti-
mal Pareto front is not available) using the weighted sum
method [18], Multi-Objective FQI [18] (using 20, 000 sam-
ples with a dataset of 200, 000 tuples) and the standard
FQI [17]. Both MOFQI and FQI have been trained using
10, 000 samples with a dataset of 50, 000 tuples for the 2–
objectives problem and 20, 000 samples with a dataset of
500, 000 tuples for the 3–objective problem. FQI scalarizes
the objectives using the same weights as SDP.

Concerning Pareto Following and Radial algorithms, since
the objectives J have different magnitude, they have been
normalized. Radial algorithm follows 21 and 66 directions
(2-objective case and the 3-objective case, respectively) uni-
formly sampled in the simplex. Furthermore, due to the fact
that the transition function limits the action in the range of
admissible values (at ∈ [at, āt]), there are infinite policies
with equal performance that allow the agent to release more
than the reservoir level or less than zero. A penalty term in
the reward p = −max(at − āt, at − at) is thus introduced,
in order to allow Pareto Following and Radial algorithms to
learn. In order to be able to compare the results with the
original work, the penalty is considered only in the learning
phase and not in the evaluation of the policy. On the contrary,
the penalty was not necessary for PMGA .

PMGA exploits the mixed indicator function (β1 = 1
and β2 = 1; pU = [−0.5,−9,−0.001] and pAU =
[−2.5,−11,−0.7]) and a complete first–degree polynomial
with one ρi for each of the five φiρ(t) (ρ0 = −20) and
t ∈ [0, 1] for the 2–objective case. Similarly, for the 3–
objective case a complete second–degree polynomial with
three ρi for each φiρ(t) and t ∈ simplex([0, 1]2) is used
(ρ0 = 0). In both cases the parameterization is forced to
pass near the extreme points of the front.

Figure 8 shows a graphical representation of the Pareto
points obtained by the algorithms when only the first two
objectives are considered, and Table II reports the loss

−2.5 −2 −1.5 −1

−10.5

−10

−9.5

J1 (Flooding)

J
2

(W
at

er
D

em
an

d)

SDP

PFA

RA

MOFQI

PMGA

Fig. 8. Approximate Pareto fronts for the 2–objective water reservoir.

achieved by the algorithms w.r.t. the SDP approximation.
Gradient algorithms achieved a better loss than MOFQI and
FQI. It is interesting to notice that PMGA attains the best
performance both in the 2–objective and 3–objective cases.

C. Empirical sample complexity analysis

Here we provide an empirical analysis of the sample
complexity of PMGA in the 2–dimensional LQR domain
by varying the number of policies used to estimate the
integral, the number of episodes for each policy and the
number of steps for each episode. As indicators, we take
the number of iterations and the number of evaluations of
the generative model required to reach a loss from the WS
approximation less than 5 · 10−4. This terminal condition
must be reached in 1, 000 iterations otherwise the algorithm
is forced to terminate. The symbol ⊥ is used to represent
the latter case. Table III reports the results averaged over 10
runs. Note that each row shows results obtained by varying
a single parameter (the one specified in the first column),
while the other two are fixed to 30.

From Table III results that the most relevant parameter is
the number of episodes used to estimate MDP terms: J(θ),
DθJ(θ) and HJ(θ). This parameter controls the variance in
the estimate, i.e., the accuracy of gradient estimate ∇θJ(ρ).
By increasing the number of episodes, the estimation process
is less prone to generate misleading directions, as happens,
for instance, in the 1–episode case where parameters move
into wrong direction. On the contrary, the numbers of steps
and points used to estimate the integral (denoted in table
by #t) seem to have no significant impact on the final
performance of the algorithm, but influence the number of
model evaluations needed to reach the prescribed accuracy.

The best behavior, from a sample–based perspective, has
been obtained by exploiting only one point for the integral
estimate. Although, it can be surprising, a simple explanation
exists. By forcing the parameterization to pass through the
single–objective optima, the information of correct estimate
of gradient direction of a single point t is sufficient to
move the entire front toward the Pareto one, i.e., to move
the parameters to the optimal ones. Under the settings of
Table I, if we force the PFA and RA to use the same sample
budget (3.52 · 105 samples), they would have performed
only 70 iterations, that correspond to 4 and 44 solutions for
RA and PFA, respectively. Clearly, an initial optimization
phase is required to obtain the single–objective optimal
parameterizations that have been exploited by PGMA.



TABLE II
WATER RESERVOIR: ALGORITHM COMPARISON WITH 2 AND 3 OBJECTIVES

Water 2-obj. Water 3-obj.
Algorithm Loss #Iterations #Solutions Loss #Iterations #Solutions
RA 0.1315± 0.0047 974.5± 42.7 12.1± 0.6 0.0218± 0.0010 2, 441± 125.9 64.3± 0.4
PFA 0.1013± 0.0069 347.5± 46.2 55.1± 2.8 0.0224± 0.0018 2, 096± 330.2 1126.7± 101.2
PMGA 0.0826± 0.0010 401 ∞ 0.0216± 0.0005 81 ∞
MOFQI [18] 0.1870± 0.0090 - - 0.0540± 0.0061 - -
FQI [17] 0.1910± 0.0100 - - 0.0292± 0.0010 - -

TABLE III
LQG 2–OBJ.: SAMPLE COMPLEXITY

PMGA Parameters
1 5 10 20 30 40 50

#t #Iterations 390.6± 50.0 307.8± 37.9 221.3± 32.9 158.8± 9.4 157.0± 20.4 149.2± 21.9 111.5± 9.7
#Samples (105) 3.5 ± 0.5 13.9± 1.7 19.9± 3.0 28.6± 1.7 42.4± 5.5 53.7± 7.9 50.2± 4.4

#Episodes #Iterations ⊥ ⊥ ⊥ ⊥ 127.6± 11.0 71.0± 4.5 68.4± 5.0
#Samples (105) ⊥ ⊥ ⊥ ⊥ 34.5± 3.0 25.6 ± 1.6 30.8± 2.2

#Steps #Iterations ⊥ 155.2± 17.0 185.9± 17.4 135.3± 13.0 139.1± 6.1 157.2± 11.3 162.5± 18.9
#Samples (105) ⊥ 7.0 ± 0.8 16.7± 1.6 24.4± 2.3 37.6± 1.6 56.6± 4.1 73.1± 8.5

VII. CONCLUSIONS

Multi–objective problems are relevant in many real–world
applications. However, few attention has been posed on
MOMDPs in the field of RL. This paper has investigated
three recent multi–objectives gradient–based methods; Two
approaches (RA and PFA) produce a discrete approximation
of the Pareto front, while the third (PMGA) learns a continu-
ous approximation. An extensive empirical analysis has been
carried out to investigate the performance of the individual
algorithms. In particular a sample complexity analysis has
been performed for the PMGA approach.

Future research will further address the study of metrics
that can produce good results in general settings. Another
interesting research direction consists in using importance
sampling techniques for reducing the sample complexity in
the gradient estimate. Since the frontier is composed of a
continuum of policies, it is likely that a trajectory generated
by some policy can be partially used also for the estimation
of quantities related to similar policies, thus decreasing the
number of samples needed for the estimate of the integral.
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