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Abstract
Reinforcement learning is a mathematical framework for agents to interact intelligently with their envi-
ronment. In this field, real-world control problems are particularly challenging because of the noise and
the high-dimensionality of input data (e.g., visual input). In the last few years, deep neural networks
have been successfully used to extract meaning from such data. Building on these advances, deep re-
inforcement learning achieved stunning results in the field of artificial intelligence, being able to solve
complex problems like Atari games [1] and Go [2]. However, in order to apply the same methods to
real-world control problems, deep reinforcement learning has to be able to deal with continuous action
spaces. In this thesis, Deep Deterministic Policy Gradients, a deep reinforcement learning method for
continuous control, has been implemented, evaluated and put into context to serve as a basis for further
research in the field.

Zusammenfassung
Reinforcement-Learning ist ein mathematischer Rahmen, um intelligent mit ihrer Umgebung intera-
gierende Agenten zu erzeugen. Regelungsprobleme in realen Umgebungen sind dabei wegen stark
verrauschten, hochdimensionalen Eingabedaten (z.B. Video) besonders anspruchsvoll. In den letz-
ten Jahren wurden dafür jedoch erfolgreich neuronale Netze benutzt. Deep-Reinforcement-Learning
(Reinforcement-Learning mit neuronalen Netzen) hatte bereits große Erfolge in der künstlichen Intel-
ligenz und war in der Lage komplexe Probleme wie Go [2] oder Atari-Spiele [1] zu lösen. Um diese
Methoden aber in der echten Welt anwenden zu können, muss Deep-Reinforcement-Learning mit kon-
tinuierlichen Handlungsräumen umgehen können. Deshalb wurde in dieser Thesis Deep Deterministic
Policy Gradients, eine Deep-Reinforcement-Learning-Methode für kontinuierliche Regelungen implemen-
tiert, evaluiert und in Bezug zu anderen Methoden gesetzt.
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1 Introduction
Reinforcement learning is a mathematical framework for agents to interact intelligently with their en-
vironment. Unlike supervised learning, where a system learns with the help of labeled data, reinforce-
ment learning agents learn how to act by trial and error only receiving a reward signal from their
environments. A field where reinforcement learning has been prominently successful is robotics [3].
However, real-world control problems are also particularly challenging because of the noise and high-
dimensionality of input data (e.g., visual input). In recent years, in the field of supervised learning,
deep neural networks have been successfully used to extract meaning from this kind of data. Building
on these advances, deep reinforcement learning was used to solve complex problems like Atari games
and Go. Mnih et al. [1] built a system with fixed hyperparameters able to learn to play 49 different Atari
games only from raw pixel inputs. However, in order to apply the same methods to real-world control
problems, deep reinforcement learning has to be able to deal with continuous action spaces. Discretizing
continuous action spaces would scale poorly, since the number of discrete actions grows exponentially
with the dimensionality of the action. Furthermore, having a parametrized policy can be advantageous
because it can generalize in the action space. Therefore with this thesis we study state-of-the-art deep
reinforcement learning algorithm, Deep Deterministic Policy Gradients. We provide a theoretical compar-
ison to other popular methods, an evaluation of its performance, identify its limitations and investigate
future directions of research.

The remainder of the thesis is organized as follows. We start by introducing the field of interest, machine
learning, focusing our attention of deep learning and reinforcement learning. We continue by describ-
ing in details the two main algorithms, core of this study, namely Deep Q-Network (DQN) and Deep
Deterministic Policy Gradients (DDPG). We then provide implementatory details of DDPG and our test
environment, followed by a description of benchmark test cases. Finally, we discuss the results of our
evaluation, identifying limitations of the current approach and proposing future avenues of research.
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2 Foundations
Machine learning is an approach to design and optimize information processing systems by directly
using data. As typically in real-world problems the training data is limited and does not cover all
possible scenarios, the system has to learn how to behave also in the presence of data which it has not
been trained on. In this regard, overfitting is one of the biggest challenges in machine learning and
consists in having a system that strictly adapts its behavior to the training data, without being able to
generalize to different unseen input data.
Machine learning is usually divided into supervised learning, reinforcement learning and unsupervised
learning. Supervised learning systems learn input-output mappings from a dataset of desired input-
output pairs, i.e. they are explicitly told how to behave. As we will see in the next section, most of deep
learning and neural network research so far has been done in the supervised setting. Reinforcement
learning systems, on the contrary, learn how to behave by receiving feedback from the environment
encoding a specific goal. For example, a trash-collector robot would receive a reward for collecting
trash or would be punished for hitting a wall. It is common for reinforcement learning to exploit
supervised learning techniques. Unsupervised learning, on the other hand, is about finding patterns in
data and will not be discussed further in this thesis. In the next sections we will describe in more detail
one of the most prominent supervised learning technique, namely deep learning and neural networks.

2.1 Deep Learning and Neural Networks

Deep learning is an area of machine learning concerned with deep neural networks. Neural networks
are non-linear parametric functions loosely inspired by the human brain. They are composed of layers
of units called neurons, as shown in Figure 2.1.

Figure 2.1: A canonical artificial neuron. The sum of the inputs x i weighted by wi and the bias b is
fed into the activation function f , producing the neuron output y = f (

∑

i wi x i + b). The
weights wi represent a pattern in the neurons input space. The closer the input is to that
pattern, the higher the output of the neuron will be.

Multiple parallel neurons form a layer, each characterized by outputs called activations y j =
f (
∑

i wi, j x i). Single layer (shallow) neural networks called perceptron have been first described by
Rosenblatt in 1958 [4]. However in deep neural networks multiple layers are stacked on top of each
other. In Krizhevsky et al. [5] achieved state-of-the-art computer vision results with an 8-layer, 500,000
neurons and 60-million parameter neural network. Since the outputs of a layer are non-linear features
of the input, the more layers are in the network, the more non-linear and abstract those features are

3



(a) Rectified Linear Unit (ReLU): f (x) =max(0, x). (b) Hyperbolic Tangent (tanh): f (x) = tanh(x).

Figure 2.2: Examples of activation functions f . Usually, the function is monotonically increasing and
saturates for low / negative inputs.

compared to the original input. This hierarchy of features enables neural networks to approximate com-
plex functions.

Neural networks are usually initialized randomly and then trained on a dataset with regard to a
cost function. Typically, cost functions are distance measures between the desired outputs (targets
t i) and the actual network outputs (yi). A common and simple cost function is the mean squared
error 1

n

∑n
i=1(yi − t i)2. Training a neural network consists in optimizing the network parameters

θ = (w1, b1, · · · , wn, bn) to minimize the cost on the training dataset. However, training a neural
network can be challenging. First, as the parameter space can be non-convex, neural networks are
usually optimized with techniques guaranteeing convergence to a local optimum (e.g., gradient de-
scent). Second, the number of parameters grows with the complexity of the network. As deep, complex
networks are typically required to learn difficult functions, the training can be highly demanding, both
in terms of computational time and data. Nevertheless, in practice neural networks can be optimized
quite reliably by gradient descent, as we will see in the next section.

Image "Sara"

Figure 2.3: Multi-layer (deep) neural network. Neurons in higher (leftmost) layers represent more ab-
stract features (top) of the network input.

2.1.1 Stochastic Gradient Descent

Using the gradient for optimization (i.e., first order optimization) is common to many machine learning
algorithms with high number of parameters, since zeroth order methods (e.g., genetic algorithms) need
several function evaluations and higher n-order methods are too expensive per evaluation. Therefore,
gradient descent is a key element of deep learning. It consists in following the direction pointed by
the gradient of the cost function with respect to the parameters of the system. In the case of neural
networks, the gradient of the cost function with respect to the network parameters θ tells us how to
change the parameters in order to reduce the cost. More specifically, given the gradient of the cost with
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respect to the parameters dC
dθ , we can update the parameters θnew ← θold − α

dC
dθ , where α is a learning

rate. However, computing the cost and the gradient on large datasets is expensive. Stochastic gradient
descent alleviates this issue by only computing the cost and the gradient for a small subset (minibatch)
of the dataset. Like gradient descent, stochastic gradient descent is guaranteed to converge to a local
minimum.

In high-dimensional optimization spaces like those of neural networks, optimization often gets stuck
near saddle points or valleys where gradients are only high in directions orthogonal to the valley in
which no progress can be made. This issue can be alleviated by having adaptive learning rates for each
parameter. A recent version of stochastic gradient descent using these techniques and used in this thesis
is ADAM [6]. Another interesting property of ADAM is that its stepsize is independent of the scale of the
gradients.

To compute the gradient in a neural network, we can use automatic differentiation, a technique to
compute derivatives in computational graphs in a modular way. It is based on the chain rule, which
says that the derivative of a composition y = f (g(x)) of two functions g : x → w and f : w→ y can be
decomposed into d y

d x =
d y
dw

dw
d x = g ′(w) · f ′(x). In a computational graph, we can compute the derivative

of any edge y with respect to any other edge x by first computing the derivative of the last node g ′(w)
and then compute the derivative of all the previous nodes f ′(x) by decomposing them in the same way.
Derivatives are then passed backwards through the computational graph. An example is depicted in
Figure 2.4.

Figure 2.4: Learning iteration in a computational graph. First, the network output and cost C are com-
puted (left). Subsequently, a backward pass is executed to compute derivatives (right).

2.1.2 Normalization

Neural network training is highly sensitive to the mean and variance of the data. They affect the cost,
gradients, activations and the operation region of the activation functions. This issue makes it hard
to select good learning rates, parameter initializations and to set other hyperparameters. Also, scale
differences between dimensions within a dataset result in skewing the cost surfaces (Figure 2.5a), thus
resulting in a wrong direction of the gradients. Normalizing the data to zero mean and unit variance
alleviates these issues (Figure 2.5b). Furthermore, normalization is not only important for the network
inputs and targets but also for the activations inside the network. During training, each layer has to
constantly adapt to its changing input distribution caused by the optimization of the previous layers.
For alleviating this issue, Ioffe and Szegedy [7] proposed batch normalization, a techniques consisting
in ensuring zero mean and unit variance for activations for each minibatch resulting in training time
reduction by an order of magnitude.

In the next section we extend the discussion of deep learning techniques to reinforcement learning.
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(a) Skewed cost surface due to unnormalized data.
The gradient (red arrow) points in a direction
almost orthogonal to the optimum.

(b) Normalized cost surface. The red arrows (gradi-
ents at each timesteps) correctly point towards
the optimum.

Figure 2.5: Examples of contour plots of cost surfaces of one neuron with two weights.

2.2 Reinforcement Learning

Reinforcement learning is concerned with learning through interaction with an environment. At every
timestep, a learner or decision-maker called agent executes an action and the environment in turn yields
a new observation and a reward, as shown in Figure 2.6. The task of the agent is to maximize the sum
of rewards received during the interaction with the environment.

Agent

Environment

actionrewardstate

Figure 2.6: Agent-environment interaction in reinforcement learning. The agent can be anything inter-
acting with an environment and able to improve its behavior (a human, an animal, a control
system). Everything not learned is part of the environment (sensors, motors, rewards).

More formally, we can define a state s ∈ S ⊂ Rds as all the information the agent has about the environ-
ment at a given timestep. Generally, this information might not include the full state of the environment
(e.g., in a card game the state would include the agent’s hand but not all opponents hands even though
they are part of the full state of the game).
An action a ∈ A ⊂ Rda encodes how the agents can interact with the environment. The mapping from
states to actions is called policy π : S→ A. A policy can either be stochastic (e.g., a probability distribu-
tion of actions over states) or deterministic.
The reward r ∈ R is a feedback informing the agent about the immediate quality of its actions. Typically,
the function generating the rewards is defined by an expert and can depend on the last state and action
r : S × A→ R. The reward signal can encode the goal of the agent at different levels. For instance, in
chess the agent can be rewarded at each capture or only at the end of the match.
The goal of the agent is to maximize the sum of the rewards received by the environment, namely the
return R =

∑

t γ
t rt . The discount factor γ ∈ (0, 1] is to guarantee the convergence of the sum if the

time horizon is not finite (infinite horizon). In the next section, we present a brief overview of classical
approaches to solve reinforcement learning problems.
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2.2.1 Learning Approaches

Reinforcement learning algorithms can be categorized as either value-based, policy-based or a combina-
tion of the two. Value-based methods consist in explicitly learning the value of all states and using it to
select the action that leads to the highest-valued state. In this setting, the value function V is defined as
the expected return of the agent being in state st and then following the policy π, while the action-value
function Q is defined as the expected return of the agent being in state st , executing action at and then
following the policy π. The advantage function A connects both.

Vπ(st) = Eri≥t ,si>t∼E; ai≥t∼π

�

T
∑

i=t

γ(i−t)r(si , ai)
�

,

Qπ(st , at) = Eri≥t ,si>t∼E; ai>t∼π

�

T
∑

i=t

γ(i−t)r(si , ai)
�

,

Aπ(st , at) = Qπ(st , at)− Vπ(st).

For deterministic policies, Q can be formulated recursively by the so-called Bellman equation

Qπ(st , at) = Ert ,st+1∼E [rt + γQ
π(st+1,π(st+1))].

Knowing Qπ
∗
(st , at) for each state-action pair, the best policy π∗ is to select the action with the highest

action value at every timestep, i.e., π∗(st) = argmaxa Qπ
∗
(st , a). In practice we neither know Qπ

∗
nor

π∗ in the first place. However, even when starting from a random Q, it is possible to iteratively update
Q by exploiting the Bellman equation and to converge to Qπ

∗
(and therefore to π∗). This powerful ap-

proach is a key element in recent Deep-Q-Networks (DQN), which will be discussed further in Section 3.1.

In continuous action spaces, however, maximizing over Q is infeasible as there are infinite actions to con-
sider. Even discretizing the action space becomes intractable for relatively low dimensional action spaces
(curse of dimensionality). To overcome this issue, it might be better to directly learn a (parametrized)
policy instead of a value function. Algorithms following this approach are called policy-based. One of the
most successful class of policy-based algorithms is policy gradient [8, 9, 10]. Policy gradient approaches
directly optimize the policy parameters ξ by following the direction of the gradient of the expected re-
turn with respect to the policy parameters (∇ξ R), which can be directly estimated from samples.

A mixture of the value-based and policy-based approaches are actor-critic algorithms. These approaches
make use of both a parametric policy (actor) and a value function estimator (critic), used to improve
the policy. A very recent actor-critic approach for learning deterministic policies is Deterministic Policy
Gradients (DPG) [11]. DPG uses a differentiable action-value function approximator to obtain the pol-
icy gradient by taking the derivative of its output with respect to the action input dQ/da. The policy
gradient is then computed as ∇ξQ = ∇aQ · ∇ξπ. Deep Deterministic Policy Gradient (DDPG), a DPG
with neural network function approximators, will be discussed further in Section 3.2.

2.2.2 Exploration and Exploitation

One of the biggest issues in reinforcement learning is the tradeoff between exploration and exploitation.
Acting greedily (exploitation) with respect to an approximated function (e.g., Q-function) and choosing
the current best action might prevent the agent from discovering new better states and therefore prevent
improvement of the policy. On the contrary, excessive exploration might slow down the learning or even
results in harmful policies. A tradeoff is therefore necessary. Usually, noise is added to the actions
during training. In the case of discrete actions, the ε-greedy policy is a common solution: the agent
acts randomly with probably ε and greedily with probability 1 − ε. In the case of continuous actions,
Gaussian noise could instead be added. In this thesis, we will use these simple strategies. However,
the exploration-exploitation tradeoff is still an open problem in reinforcement learning. Alternative
exploration strategies might consist in artificially rewarding exploration or even leaving the decision
about exploration completely to the agent. We will come back to this topic in Section 6.2.
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3 Deep Reinforcement Learning
As discussed in the previous section, reinforcement learning heavily relies on either approximating
the Q-function (in the case of value-based algorithms) or on the policy parameterization (in the case
of policy-based algorithms). In both cases, the use of rich function approximators or policies allows
reinforcement learning to scale to complex problems. Neural networks have been successfully used as
function approximators in supervised learning and are differentiable, a useful quality for many reinforce-
ment learning algorithms. In this section, we focus on two recent reinforcement learning algorithms.
The first one, Deep Q-Network (DQN) [1, 12], is a value-based algorithm successfully able to play 49
Atari games from pixels better than human experts. The second one, Deep Deterministic Policy Gradients
(DDPG) [13], is an actor-critic algorithm, an extension to DQN for continuous actions.

3.1 Deep Q-Network (DQN)

DQN is a value-based algorithm using a neural network Q(s, a|θ ) to approximate the optimal action-
value Q∗ of each action in a given state. The training targets for Q are computed via the Bellman
equation y j = r j + γQ(s j ,π(s j |θ ′) |θ ′). The network is trained to minimize the mean squared error with
respect to the Q-function, i.e.,

C(θ |θ ′) =
1
m

∑

j

�

r j + γ Q
�

s j+1,π(s j+1|θ ′)
�

�θ ′
�

︸ ︷︷ ︸

y j

− Q
�

s j ,π(s j |θ )
�

�θ
�

�2

=
1
m

∑

j

�

r j + γ max
a

Q
�

s j+1, a
�

�θ ′
�

︸ ︷︷ ︸

y j

− max
a

Q
�

s j , a
�

�θ ′
�

�2

.

However, the dependence of the Q targets on Q itself can lead to instabilities or even divergence during
learning. Having a second set of network parameters θ ′ = LP(θ ), where LP is a low-pass filter (e.g.,
exponential moving average), stabilizes the learning.

Additional instabilities can arise from training directly on the incoming states and rewards, since,
unlike supervised learning, the input data (state-action pairs) is highly correlated as they are part of
a trajectory. Furthermore, the policy and therefore data distribution might change quickly as Q evolves.
DQN solves both issues by storing all (st , at , rt , st+1) transitions in a replay memory dataset D and then
learning on minibatches consisting of random transitions from D. This trick breaks the correlation of
the input data and smoothes the changes in the input distribution. It also increases data efficiency by
allowing the agent to perform multiple gradient descend steps on the same transition.

s Q

q(a1)
. . .

q(an)

arg max

π
a

Figure 3.1: Architecture of DQN. The Q-Network outputs an estimate of the action-value function for
each action. Subsequently, the policy π chooses the action with the highest value.

Finally, to ensure sufficient exploration, a simple ε-greedy policy, i.e., π(s|θ ) = argmaxa Q(s, a|θ ). This
off-policy approach is possible because the algorithm does not learn on full trajectories but only on iso-
lated transitions. The complete algorithm is shown in Algorithm 1.
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Algorithm 1: DQN

1 Initialize replay memory D
2 Initialize Q with random weights θ
3 Initialize target weights θ ′← θ
4 for t = 1 to T do
5 Select action at = ε-greedy [argmaxa Q(st , a|θ )]
6 Execute at and observe reward rt and next state st+1
7 Store transition (st , at , rt , st+1) in D
8 Sample random minibatch of m transitions from D
9 Set targets y j = r j + γmaxa Q(a, s j+1|θ ′)

10 Perform gradient descent on cost C = 1
m

∑

j(y j −Q(s j , a j |θ ))2 with respect to θ
11 Update θ ′← LP(θ )
12 end

3.2 Deep Deterministic Policy Gradient (DDPG)

As discussed in the introduction, a parametrized policy is advantagous for control because it allows for
learning in continuous actions spaces. Since DDPG is an actor-critic policy gradient algorithm, there
is a policy network π(s|ξ) with parameteters ξ in addition to the action-value network Q(s, a|θ ) with
parameters θ .
The training targets for Q are computed as in DQN, with the only difference that π now depends on ξ.
Using the mean squared error, we derive the cost function for Q

C(θ | θ ′,ξ′) =
1
m

∑

j

�

r j + γ Q
�

s j+1,π(s j+1|ξ′)
�

�θ ′
�

︸ ︷︷ ︸

y j

− Q
�

s j ,π(s j |ξ)
�

�θ
�

�2

.

As the targets depend on the explicit policy network, we also need the target policy parameters
ξ′ = LP(ξ). Here, LP will be an exponential moving average with update rule ξ′ ← τξ + (1 − τ)ξ′
and θ ′← τθ + (1−τ)θ ′.

The policy is trained via policy gradient

∇ξ Q
�

s j ,π(s j |ξ)
�

�θ
�

=∇aQ
�

s j ,π(s j |ξ)
�

�θ
�

· ∇ξ π(s j |ξ),

that is, Q is the cost function for π

C(ξ | θ ) = - Q
�

s j ,π(s j |ξ)
�

�θ
�

.

As actions are continuous, correlated Gaussian noiseMt is added to the actions to ensure exploration.
More specifically,Mt+1← ϑ ·Mt +N (0,σ)), where N (0,σ) a normal distributed random variable and
ϑ a hyperparameter controlling the frequency of the noise. Again, this off-policy approach is possible
because the algorithm does not learn on trajectories but only on isolated transitions. Algorithm 2 shows
the complete learning procedure.

s
π

Q q
a

Figure 3.2: Architecture of DDPG. The policyπ is trained by back-propagating the q-gradient with respect
to the action a.
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Algorithm 2: DDPG

1 Initialize replay memory D
2 Initialize π with random weights ξ and target weights ξ′← ξ
3 Initialize Q with random weights θ and target weights θ ′← θ
4 for t = 1 to T do
5 Select action at = π(st) +Mt
6 Execute at and observe reward rt and next state st+1
7 Store transition (st , at , rt , st+1) in D
8 Sample random minibatch of m transitions from D
9 Set Q targets y j = r j + γQ(s j+1,π(s j+1|ξ′) |θ ′)

10 Perform gradient descent on cost C = 1
m

∑

j(y j −Q(s j , a j |θ ))2 with respect to θ
11 Perform gradient ascent on Q(s j ,π(s j |ξ) |θ ) with respect to ξ
12 Update θ ′← LP(θ )
13 Update ξ′← LP(ξ)
14 end
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4 Implementation
A big challenge in deep reinforcement learning implementations are efficient neural network routines.
The most critical part are the inner products of inputs and weights and the respective derivatives in
each layer. We first coded in MATLAB, a machine learning popular tool providing efficient linear algebra
routines. Due to the lack of automatic differentiation, we implemented gradient propagation routines,
as well as the RMSProp and ADAM optimizers. The code can be found on the CD of this thesis.
However, due to the high computational demands of neural networks, we also developed a TensorFlow
implementation. TensorFlow [14] is an open source Python / C++ library providing fast routines
(∼ 30 times faster than MATLAB from our experience) for deep learning, accomplished through GPU
support. It features automatic differentiation and therefore allows for much more flexible network and
algorithm design. Additionally, TensorFlow provides a wide variety of built-in optimizers (e.g., ADAM)
and operations (e.g., batch normalization). The results shown in this theses have been produced by the
TensorFlow implementation, which can be found on the CD of this thesis.
Another concern in setting up the testing framework regarded the ability to run several experiments
on computing clusters with job schedulers while having a changing codebase. For this purpose, we
wrote ezex, a small framework that provides basic operations (e.g., starting and aborting jobs) and a
visualization of running and finished LSF (or SLURM) jobs via Jupyter Notebooks.

Figure 4.1: With ezex it is possible to visualize experiments located in a central folder on a (shared) file
system. It also provides routines for aborting jobs and deleting experiments.

4.1 DDPG

Our DDPG implementation is as close as possible to the original paper. Its evaluation is performed on
low-dimensional true state inputs and not on visual inputs due to time and software limitations. Figure
4.2 shows the layouts of the neural networks used, while Table 4.1 the hyperparameters used. The
layers are initialized with small random weights.

State

s

ReLU

400
Units

ReLU

300
Units

Tanh
Action

a

(a) Layout of the policy network.

State

s

Action

a

ReLU

400
Units

ReLU

300
Units

Linear

q

(b) Layout of the action-value network.

Figure 4.2: DDPG networks layout. Each network has about 130,000 parameters.
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Hyperparameter Value Note

Minibatch size m 32

Policy learning rate 10−4 Step size for ADAM

Critic learning rate 10−3 Step size for ADAM

Policy weight decay 0

Critic weight decay 10−2 L2 cost for each parameter

Target update rate τ 10−3

Replay memory size 500, 000 Older transitions are discarded

Exploration noise σ 0.2

Exploration noise reversion rate ϑ 0.15 The overall noise variance is 0.13

Reward discount γ 0.99

Warm-up time 50, 000 Timesteps until training starts

Table 4.1: Hyperparameters for DDPG.

4.2 The Cart-Pole Problem

Although the final goal is to apply deep reinforcement learning in real-world settings (e.g., robotics),
testing in these environments can be dangerous and expensive both in terms of money and human expert
labor. Simulated environments are well suited for testing reinforcement learning systems extensively as
the testing process is cheap and can be easily automated. For these reasons, both DQN and DDPG
have been originally evaluated in simulated environments. In the original works DQN was tested on
several Atari games using the simulator ALE [15], while DDPG has been evaluated in more than 20
physical environments using the MuJoCo [16] simulator. The authors showed that the algorithms and
the same hyperparameters work on a wide variety of tasks without the need of hand-tuning them for
each individual task. In our implementation, we also used MuJoCo but, because of time constraints,
we evaluated DDPG only on the cart-pole (Figure 4.3), a standard reinforcement learning benchmark
problem. The task is a standard non-linear control task. The goal is to indirectly swing-up and balance a
pole placed on a cart by a applying control force to the cart. Environment details (e.g., masses, friction
coefficients, etc.) can be found in the MuJoCo model file cartpole.xml.

Figure 4.3: The cart-pole environment. The state consists of four dimensions: the vertical cart position
s0 ∈ [−1, 1], the angle of the pole s1 ∈ [−π,π) and their derivatives s2 = ṡ0 and s3 = ṡ1. In
our case the agent is able to fully observe the state.
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5 Evaluation
Even though DDPG turned out to be highly sensitive to the reward functions, they have not been in-
cluded in the original paper. Among the several reward functions we tried, the most reliable one is

r = 0.5 · cos(s1) − 0.03 · a2 − 0.015 · |s0| − 0.2 · s2
3.

Here, cos(s1) has the highest influence, giving -1 when the pole is hanging down and 1 when it is stand-
ing up. The additional terms consist in penalties for the action a, the cart position s0 (for not being in
the middle) and the rotation speed of the pole s3. However, we noticed that even slight changes to the
parameters of the reward functions impaired the learning dramatically.

Below, we report results on varying the reward function and the hyperparameters. In particular, we
evaluate the effects of batch normalization, experience replay and the use of a target network. All
experiments have been averaged over ten trials.

5.1 Reference Results Without Batch Normalization

Here, we report the best results we achieved. The reward function used it the handcrafted one described
above and we did not use batch normalization. With this settings, the agent was consistently able to
learn the optimal swing-up and balance policy. The returns and some sample trajectories over the course
of the learning process are depicted in Figure 5.1 and Figure 5.2, respectively.

We stress that, even though we used constant episode lengths, shifting the rewards (i.e., adding a con-
stant) had an impact on the learning stability. At first we added a bias to ensure the returns for the
initial policy were zero to match the initial Q values, but having a negative bias (introduced by cos(s1))
improved the learning consistency significantly.

(a) Trajectory after 0 timesteps of learning. (b) Swing-up after ∼ 10,000 timesteps.

(c) Balance after ∼ 100,000 timesteps. (d) Near optimal after ∼ 200, 000 timesteps.

Figure 5.1: Cart pole test trajectories, showing the action a (blue), the cart position s0 (green) and the
normalized pole angle s1 (red). An angle of -1 or 1 indicates that the pole is hanging down,
while 0 that it is standing up.
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Figure 5.2: Expected return with the handcrafted reward function and without batch normalization.
The black line denotes the mean, while the blue area the interquartile range. During the
warm-up time the agent is acting according to the initial policy (i.e., randomly) and is only
filling the replay memory, therefore the expected return does not improve.

5.2 Applying Batch Normalization

We then evaluated the same reward function with batch normalization. Surprisingly, we observed much
worse results, as shown in Figure 5.3. Even though we tried the canonical as well as the non-standard
batch normalization used in the DDPG paper, the agent was never able to balance after swinging up. This
behavior might be due to the cart-pole environment, as the original paper also reported slightly inferior
results for batch normalization on cart-pole. It could also be due to the fact that batch normalization
introduces additional noise during learning. A very recent method claiming to alleviate this issue and
that could be interesting for future research is weight normalization [17].

Figure 5.3: Expected return with batch normalization. The agent only learns to swing up and fails at
balancing.

5.3 Disabling Target Network and Replay Memory

Consistent with the findings from the original paper, we observed reduced performance when disabling
the target networks (Figure 5.4) or the replay memory (Figure 5.5).

Figure 5.4: Expected return without target networks (i.e., setting the target update rate τ= 1).
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Figure 5.5: Expected return without experience replay (i.e., the neural network is trained on the last
collected 32 transitions).

5.4 Sparse Reward Functions

As already discussed, we found DDPG to be very sensitive to the reward function. Initially, we were
able to learn only with smooth reward functions, while using a sparse reward function encoding only
the actual goal (i.e., rewarding the agent only when the pole is standing upright r = (|s1| < 0.01)),
there was no improvement over the initial policy at all, as shown in Figure 5.6. At first, we thought that
this behavior might be due to poor exploration of the state space and that the agent, never reaching
the goal state, does not know where to get positive rewards. While this might in fact be an issue in
more complicated environments, it was not the issue in the cart-pole. Instead, we found that increasing
the magnitude of the reward and increasing the warm-up time helped the agent to learn good action
value function and policy, as shown in Figures 5.7, 5.8 and 5.9. In general, extending the warm-up time
stabilized learning tremendously. This behavior might be due to the fact that transitions from initially
diverging policies have a lower chance to get sampled from the replay memory since the replay memory
is already filled with many transitions from the warm-up time.

Figure 5.6: Expected return with r = (|s1|< 0.01)−0.03·a2 and twarump = 10,000. With a sparse reward
function and a short warm-up time, there is no learning at all.

Figure 5.7: Expected return with r = 4 · (|s1| < 0.01)− 0.03 · a2 and twarump = 10,000. Increasing the
magnitude of the positive reward helped the agent, although the learned policy is far from
the optimal one.

15



Figure 5.8: Expected return with r = 4 · (|s1| < 0.01)− 0.03 · a2 and twarump = 50,000. Increasing the
warm-up time further increased the performance.

Figure 5.9: Expected return with r = 4 · (|s1| < 0.01) − 0.03 · a2 and twarump = 100,000. With both a
high-magnitude positive reward function and a sufficiently large warm-up time, the agent is
able to always learn a near optimal policy.
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6 Conclusion and Future Work
With this thesis, we have provided an analysis of state-of-the-art the deep reinforcement learning al-
gorithm DDPG. The results from the original papers have been reproduced and we successfully trained
an agent for solving the cart-pole balance and swing-up tasks with continuous actions. We provided an
analysis of the performance for sparse reward functions and evaluated the use of batch normalization,
target network and replay memory.

We showed that DDPG was able to learn a non-trivial control policy, but there are several limitations
that need to be solved before it will be possible to apply it to robotics. Below, we identify the major
weaknesses and propose future avenues of research.

6.1 Data Efficiency

The first significant issue of deep reinforcement learning is data efficiency. In our test cases we expe-
rienced that in order to learn high-quality policies, the algorithm had to be fed with a high number of
samples. Considering that real control problems are much harder that the simple task we evaluated,
DDPG is not ready for real world problems.

There are, however, several papers improving DQN and some of the techniques proposed can be ap-
plied to DDPG with slight modifications. Prioritized experience replay [18] is for instance a technique
for improving data efficiency by not sampling transitions uniformly from the replay memory but instead
sampling according to the importance of a transition. Using the temporal difference error as a measure
of importance, the authors achieved new state-of-the-art results on the DQN Atari benchmark games.

An alternative way to reduce the number of parameters (and therefore the number of required samples)
is to move the first layers of the both the policy and the Q networks to a common preprocessing network
φ, as shown in Figure 6.1. Since neurons in the first layers have to be useful to many other neurons in the
following layers, they tend to learn task independent features anyway (e.g., for visual inputs these are
typically edge filters as in Figure 2.3) and could therefore combined in a single network. Such a network
would then be trained by the gradients from both π and Q. Having φ would also allow us to introduce
additional function approximators for the value function V (s) or to learn model st+1 = M(st , at) without
much parameters overhead. Furthermore, learning a model and a value function could serve as a
good regularizer for φ since transition data (model) and value data are currently unused in the DDPG
framework.

s φ

π

Q q
a

Figure 6.1: DDPG with a preprocessing network φ.

Moreover the model and the value function can be used to estimate another policy gradient, since the
expected return can be also expressed via E[R] = r(st ,π(st)) + γ V (M(st ,π(st))). This approach is
called value gradient. Because it assumes a deterministic model, it is only applicable in deterministic
environments. However, there have been recent advances in expressing stochasticity in neural networks
[19]. Building on this idea, Heess et al. [20] presented Stochastic Value Gradients, extending the value
gradient approach to stochastic neural network models and policies. Even though these approaches
have not been covered in this thesis, they seem a promising direction for further research.
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6.2 Exploration

Another possible improvement to DDPG regards more efficient exploration. More specifically, stochastic
policies that are able to encode multiple good actions instead of relying on ε-greedy exploration can
speed up learning exponentially as Osband et al. [21] showed for DQN. As already mentioned in the
introduction, rewarding exploration can be a way to enable the agent to actively explore. By learning
a transition model for DQN and using the model error as a proxy for exploration (i.e., rewarding ac-
cording to the model error) Stadie et al. [22] were able to improve performance especially where the
original DQN performed poorly.

6.3 Imitation

In robotics, a simpler way to adopt complex behavior or to bootstrap the learning is imitation, consisting
in using target trajectories for supervised learning of policies. In the case of DDPG, imitation could be
employed by either initializing the networks by supervised training or by injecting target trajectories
into the replay memory. For example, recently Silver et al. [2] were tremendously successful in the
game of Go by first pre-training a policy network on human expert moves and subsequently improving
it via reinforcement learning.
With regard to robotics, another helpful approach to avoid dangerous policies would be to initialize the
Q-network with negative values for specific trajectories (e.g., for the violation of the joint limits).

6.4 Curriculum Learning

Curriculum learning [23] is a deep learning approach to learn complex functions by training on easier
and more fundamental examples first and only gradually introducing more complicated examples. This
could be also applied to reinforcment learning and especially robotics. For a robot the most fundamental
concepts to learn are its own body dynamics and the skill to move without hurting itself. For example
in table tennis, a robot could first learn to explore itself carefully (e.g., giving it rewards for exploration
or punishing violation of joint limits) and subsequently learn striking movements and to win a match.
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