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Abstract— Movement primitives (MPs) provide a powerful
framework for data driven movement generation that has been
successfully applied for learning from demonstrations and robot
reinforcement learning. In robotics we often want to solve a
multitude of different, but related tasks. As the parameters
of the primitives are typically high dimensional, a common
practice for the generalization of movement primitives to new
tasks is to adapt only a small set of control variables, also
called meta parameters, of the primitive. Yet, for most MP
representations, the encoding of these control variables is pre-
coded in the representation and can not be adapted to the
considered tasks. In this paper, we want to learn the encoding of
task-specific control variables also from data instead of relying
on fixed meta-parameter representations. We use hierarchical
Bayesian models (HBMs) to estimate a low dimensional latent
variable model for probabilistic movement primitives (ProMPs),
which is a recent movement primitive representation. We show
on two real robot datasets that ProMPs based on HBMs
outperform standard ProMPs in terms of generalization and
learning from a small amount of data and also allows for an
intuitive analysis of the movement. We also extend our HBM by
a mixture model, such that we can model different movement
types in the same dataset.

I. INTRODUCTION

Movement primitives (MPs) are a compact parametric
description of a movement [17], [8], [9], [4]. They provide
a powerful framework for data driven movement generation
as they can be learned from demonstrations as well as by
reinforcement learning. They can adapt to a new task by
adapting a given set of meta-parameters [25], [11], [13]. For
example, the final joint positions or the execution speed [8] of
the movement can be adapted. Yet, for most movement prim-
itive representations, the set of meta-parameters is pre-coded
into the movement primitive representation and can not be
adapted. However, for most tasks, a different encoding of
the meta-parameters might be more appropriate than the pre-
coded parameters of the primitive representation. We believe
that this shortcoming has also hindered the application of
movement primitives for more complex multi-task learning
applications. In this paper we want to learn the encoding of
the meta-parameters also from data. Our approach extracts
a low-dimensional manifold in the MP parameter space.
Each point on this manifold is described by a small set
of control variables. Hence, our underlying assumption is
that, while the parametrization of movements might be high-
dimensional, useful parameter vectors for a given set of
tasks typically share a lot of structure, i.e. they lie on a
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Fig. 1. The robot used in the experiments to learn trajectory distributions.

lower dimensional manifold. Each demonstration can now
be characterized by the corresponding control variables that
can be seen as a compact description of the task considered
in this demonstration. For example, in a table tennis scenario,
these control variables could specify the location of the
hitting point or the desired return direction for the ball.
Hence, our model can not only be applied for efficient gener-
alization in multi-task learning with movement primitives but
is also well suited for analyzing the movements of human
demonstrators. We represent the latent manifold model by
a hierarchical Bayesian model. The control variables for
each demonstrations are treated as latent variables that are
also inferred from the data. The model is extended by a
mixture model such that we can learn the control variables
of multiple types of movements. We will use Probabilistic
Movement Primitives (ProMPs) as underlying movement
primitive representation as they can be naturally integrated
in the Hierarchical Bayesian Model (HBM) representation.
When learning or analyzing movement data, we have to
deal with several challenges, such as high-dimensionality,
noise, missing data, partial observations, and the data can
contain multiple modes that represent different types of
movements. In order to deal with all these requirements, we
apply a fully Bayesian approach where we integrate out all
the estimated parameters of the model. In our experiments,
we will illustrate the improved generalization properties of
our approach compared to the standard ProMP approach in
the case of a small amount of training data and show how
demonstrations can be easily analyzed and characterized by
the extracted latent control variables.

A. Related Work

Movement primitives can be categorized into trajectory-
based [8], [23], [17] and state-based representations [9]. In
this paper we will focus on trajectory based approaches as
they are more commonly used and easier to scale up to
higher dimensions. A common trajectory-based approach are
the dynamical movement primitives (DMPs). DMPs [8] are



represented by a parametrized dynamical system that is given
by a linear point-attractor that is perturbed by a non-linear
time dependent forcing function. The forcing function can be
used to encode an arbitrary shape of the trajectory and the
weights of the forcing function can be easily obtained from
demonstrations by linear regression. One of the benefits of
the DMP approach is that it specifies a small set of meta-
parameters. These meta-parameters include the final position
of the movement, which is given by the point attractor, the
final velocities, the execution speed, or the amplitude of
the movement [10], [20], [8]. In multi-task learning with
DMPs [11], [7], [13], it is a common strategy to only
adapt the meta-parameters due to the high dimensionality
of the weights of the forcing function. While DMPs have
several more benefits such as stability, and the ability to
represent stroke based and rhythmic movements, DMPs also
have several limitations, such as that they can not represent
optimal behavior in stochastic systems and the adaptation
of the trajectory due to the meta-parameters is based on
heuristics. These issues have been addressed by the recently
proposed Probabilistic Movement Primitives approach [17],
[18]. ProMPs estimate a distribution of trajectories instead
of encoding single trajectories. The main benefit of the
probabilistic representation is that we can use probabilistic
operators such as conditioning for adaptation and a product
of distribution for co-activating primitives. A distribution
over trajectories also contains information on which time
points are relevant for the movement, e.g., time points with
small variance in the Cartesian end-effector space could
denote task relevant via-points or targets. However, in dif-
ference to DMPs, ProMPs are lacking meta-parameters that
can be used to adapt the trajectories with a small amount of
control variables. While it would be easy to pre-specify such
control variables by conditioning the trajectory distribution
for a fixed set of time points, such an approach would again
require a lot of manual tuning and is lacking flexibility.

Our approach automatically extracts a small amount of
control variables from a given set of demonstrations in the
ProMP framework. We use a hierarchical Bayesian approach
to model prior distributions, which is inspired by techniques
from multi-task learning (MTL) [27], [15], [12], [24]. In
MTL the underlying assumption is that multiple tasks (or
trajectories) share a common structure, and, hence, with an
increasing number of related tasks that have been already
learned, the number of needed training samples for gener-
alizing to a new task decreases [1]. This property is highly
desired in robotics, where the data is often high dimensional
and obtaining training samples is costly. Different approaches
exist to model the shared information across tasks. They
can be roughly separated into two different categories, i.e.
methods where parameters of the model are close to each
other in a geometric sense [6], [24] and approaches where
the parameters of the model share a common structure [27],
[26], [3], [15], [21], [19]. This structure can be a clustering
assumption [26], a (Gaussian) prior for the parameters of all
tasks [27], [15] or some advanced structure like the King-
man’s coalescent [3], which is a continuous time, partitioned

valued Markov process. Our approach is highly related to
the Bayesian MTL approach presented in [19], where a prior
distribution over parameters is learned. The prior distribution
is assumed to have a low-dimensional, latent structure that
is represented by a linear factor model. In order to represent
several modes (or non-linearities) in the data, the model is
extended to a mixture model of linear factor models. For
both, the number of mixture components and the number
of factors, a non-parametric Dirichlet prior has been used.
All parameters of the model are integrated out by the use
of a combination of sampling and variational inference. We
will use a simplification of this model, assuming a fixed
number of mixture components, without the Dirichlet priors,
allowing a much more efficient algorithm without the need
for expensive sampling methods. We extend the model of
Passos et al. by an additional hyper-prior and show that
this hyper-prior significantly increases the robustness of the
Bayesian model.

II. PROBABILISTIC MOVEMENT PRIMITIVES

In this section we will give a brief overview on Proba-
bilistic Movement Primitives (ProMPs) as they provide the
foundation for our hierarchical Bayesian model. ProMPs
represent a movement by a distribution p(τ ) over trajectories
τ = y1:T , where yt specifies the joint positions (or any other
quantities, such as a Cartesian coordinates of a ball) at time
step t. ProMPs use a linear basis function model with J basis
functions to represent a single trajectory, i.e.

p(yt|w) = N
(
yt

∣∣Ψtw, β
−1I

)
and p(τ ) =

T∏
t=1

p (yt|w) ,

where β denotes the precision of the data. The weight vector
w is a compact representation of the trajectory. The basis
functions Ψt only depend on the time or, alternatively, on
the phase of the movement. For a single Degree of Freedom
(DoF), Ψt is just given by a vector of normalized Gaussian
basis functions φt with

φt,i =
exp

(
−0.5(t− ci)2

)∑J
j=1 exp (−0.5(t− cj)2)

,

where ci denotes the center of the ith basis function (note that
to enhance readability we skipped the bandwidth parameters
in this notation).

For multi-dimensional systems with D DoFs, the basis
function matrix is represented by a block-diagonal matrix,
i.e,

Ψt =


φT

t 0T . . . 0T

0T φT
t . . . 0T

...
...

. . .
...

0T 0T 0T φT
t

 .
Due to this encoding of the basis function matrix, the
trajectories of all DoFs can still be represented as a single
weight vector wT = [wT

1 ,w
T
2 , . . . ,w

T
D] that is given by

a concatenation of all weight vectors for each degree of
freedom.



Still, a single weight vector w only represents a single tra-
jectory τ . In order to represent a distribution over trajectories
p(τ ), we can estimate a distribution p(w) over the weight
vectors and, subsequently, integrate out the weight vectors.
In the original ProMP approach, a multivariate Gaussian
distribution is used to model the prior distribution

p(w) = N (w|µw,Σw). (1)

As such, the distribution over trajectories is also Gaussian
and can be computed in closed form

p(τ ) =
∫
p(τ |w)p(w)dw,

=
∫
N
(
y1:T

∣∣Ψ1:T w, β
−1I

)
N (w|µw,Σw) dw,

= N
(
y1:T

∣∣∣Ψ1:T w,Ψ1:T ΣwΨT
1:T + β−1I

)
,

where Ψ1:T is a TD×DJ matrix containing the basis func-
tion matrices for all time steps and w is a DJ dimensional
column vector.

A. Learning from Demonstrations with ProMPs

A ProMP already defines a simple hierarchical Bayesian
model in a similar fashion as a Bayesian linear regression
model. The mean µw and the covariance matrix Σw can be
learned from data by maximum likelihood using the Expec-
tation Maximization (EM) algorithm [5]. A simpler solution
that works well in practice is to compute first the most likely
estimate of w[i] for each trajectory τ [i] independently, where
the index i denotes the i-th demonstration1. Subsequently,
mean and covariance of p(w) can be estimated by the sample
mean and sample covariance of the w[i] ’s. One advantage
of the EM based approach in comparison to the more direct
approach is that the EM algorithm can also be used for
learning from incomplete data where, e.g., some segments
of the trajectories might be missing due to occlusions in
vision based recordings.

However, the training of ProMPs also suffers from a severe
disadvantage. As the model has a lot of parameters due
to the high-dimensional covariance matrix, ProMPs suffer
from overfitting if we have little training data and noisy
trajectories. The more sophisticated hierarchical Bayesian
model for ProMPs introduced in this paper alleviates this
problem.

B. Predictions with ProMPs by Conditioning

ProMPs can also be used to predict the behavior of the
demonstrator once we have seen an initial part of a new
trajectory. Lets assume that we have observed a human
demonstrator at m = 1, 2, ...,M different time points2 t1
to tM at the positions yt1 to ytM

. Let us further denote Ψo

as the concatenation of the basis function matrices for these
time points and o as concatenation of the ytm

vectors. Given

1Given a trajectory τ i, the corresponding weight vectors w[i] can be
estimated by a straight forward least squares estimate.

2Note that these time points do not need to be sampled in uniform time
intervals.

these observations, we can obtain a conditioned distribution
p(w|o) over the weight vectors. This distribution is Gaussian
with mean and variance

µw|o = µw+

ΣwΨT
o

(
Σo + ΨoΣwΨT

o

)−1

(o−Ψoµw) , (2)

Σw|o = Σw −ΣwΨT
o

(
Σo + ΨoΣwΨT

o

)−1

ΨoΣw. (3)

The conditional distribution p(w|o) can be used to predict
the behavior of the demonstrator for future time points t >
tM , i.e. we can determine the mean and covariance of y
for future time points. Note that the same procedure can be
applied for partial observations, where only a subset of the
quantities in yt is observed. The covariance matrix Σo can
be used to control the importance of different dimensions.

III. EXTRACTING CONTROL VARIABLES WITH
HIERARCHICAL PRIORS

Our goal is to model non-linear prior distributions that can
be modulated by low-dimensional latent control variables.
We define a hierarchical prior on the weight vector w using
mixture models

p(w[i]) =
K∑

k=1

πkN
(
w[i]

∣∣∣bk +Mkh
[i]
k , α

−1I
)
. (4)

The vector bk denotes an offset term and the projection
matrix Mk defines the mapping from the low-dimensional
control variables h[i]

k to the weight vector w[i] of trajectory i.
The parameter α models the precision of the latent manifold
priors and πk denotes the mixing coefficients. The different
mixture components can model different movement types,
e.g., forehand and backhand strokes in a table tennis game.
Within a mixture component the latent control variable h[i]

k

models the adaptation of the movement to the current task.
All parameters of this prior distribution are unknown a

priori and are learned from demonstrations. We follow a fully
Bayesian approach, where we treat all parameters as random
variables and introduce conjugate priors for these random
variables. We derive variational update equations for all
relevant distributions. We also demonstrate how predictions
can be computed by conditioning with the hierarchical priors.

We will start our discussion for the most simple case, using
only a single mixture component.

A. Control Variables for a Single Movement Type

For a single mixture component the prior in Eq. (4)
simplifies to

p(w[i]) = N
(
w[i]

∣∣∣b+Mh[i], α−1I
)
.

We introduce conjugate priors for the random variables, i.e.
we use p(b) = N (b|0, I) for the offset vector, p(h[i]) =
N (h[i]|0, I) for the control variables h[i], α = Γ(α|a0, b0)
for the precision3 α, and p(M) =

∏
vN (m[v]|0, λ[v]−1

I)
for the projection matrix M . Here, m[v] denotes the v-th

3To make this prior non-informative we use a0 = 1e−5 and b0 = 1e−5.



column of the matrix M = [m[1],m[2], . . . ,m[V ]], with V
denoting the dimensionality of the latent variable h[i]. The
symbol Γ denotes the Gamma distribution.

To enhance the numerical stability of the variational up-
dates, we also add a gamma prior on the precision parameters
of the projection matrix, i.e. p(λ[v]) = Γ(λ[v]|c0, d0). The
influence of this additional prior is evaluated in the experi-
mental section.

As we use a variational inference approach [2], we assume
a complete factorization of the variational posterior given by

q(ξ) = q(b)q(M)q(λ1:V )q(α)
L∏

i=1

q(w[i])q(h[i]),

where ξ = {w[1:L],h[1:L], b,M , λ1:V , α} and L denotes the
total number of demonstrations. The variational distributions
for the weight vector w[i], the latent variable h[i], the offset
vector b, the v-th column of the projection matrix M , are
specified as q(w[i]) := N (w[i]|µw[i] ,Σw[i]), q(h[i]) :=
N (h[i]|µh[i] ,Σh[i]), q(b) := N (b|µb, σbI), and q(m[v]) :=
N (m[v]|µm[v] , σm[v]I). The remaining definitions are listed
in the appendix.

The most important variational update equations read

µw[i] = Σw[i]

(
βΨ[i]

1:T

T
y

[i]
1:T + ᾱ

(
µb + M̄µh[i]

))
,

Σw[i] =
(
βΨ[i]

1:T

T
Ψ[i]

1:T + ᾱI

)−1

,

µh[i] = ᾱΣh[i] M̄
T (µw[i] − µb) ,

µb = σbᾱI

(
L∑

i=1

(
µw[i] − M̄µh[i]

))
,

µm[v] = σm[v] ᾱI

(
L∑

i=1

µh[v,i] (µw[i] − µb)

)
,

where M̄ = [µm[1] , . . . ,µm[V ] ]. The inferred feature preci-
sion is denoted by ᾱ and the scalar µh[v,i] denotes the v-th
element in the vector µh[i] = [µh[1,i] , . . . , µh[V,i] ]T .

Compared to the prior used in ProMPs in Eq. (1), the
combination of the latent variable µh[i] and the projection
matrix M̄ implements a more accurate model of the prior
distribution. As we will demonstrate, this hierarchical prior
model is less sensitive to overfitting in the case of noisy
observations or incomplete data.

B. Predictions by Conditioning the Hierarchical Prior

In the hierarchical prior model, predictions are performed
by computing the conditioned distribution over the latent task
variable p(h|o). This conditioned distribution can be simply
determined by integrating out the weight vector w

p(h|o) ∝ p(o|h)p(h),

=
∫

w

p (o|Ψo,w) p (w|h) p(h)dw,

=N
(
o
∣∣∣Ψo

(
µb + M̄h

)
,Σo + ᾱ−1ΨoΨT

o

)
p(h),

where p(h) is the Gaussian prior distribution for the latent
variable. Now, we can condition on the control variable h on
the demonstrations to obtain a Gaussian over h with mean
and variance

µh|o = M̄
T ΨT

oA
−1 (o−Ψoµb) , (5)

Σh|o = I − M̄T ΨT
oA
−1ΨoM̄ , (6)

where A = Σo + Ψo

(
ᾱ−1I + M̄M̄

T
)

ΨT
o .

Given the distribution over the inferred latent task variable
the posterior over feature weights is given by

µw|o = µb + M̄µh|o, (7)

Σw|o = ᾱ−1I + M̄Σh|oM̄
T
. (8)

It is illustrative to investigate the differences of the stan-
dard conditioning of the ProMPs in Eq. (2) and Eq. (3) to
the conditioning with the hierarchical prior. The conditioning
in the ProMP case requires a full-rank covariance matrix,
which is hard to obtain given a small amount of training
data. In contrast, the latent prior model only requires the
projection matrix M̄ to perform the conditioning. Hence,
the predictions of the latent prior model are less prone to
overfitting and are, therefore, also applicable for a small
amount of training data.

C. Extension to Multiple Movement Types (K > 1)

The mixture distribution in Eq. (4) adds an additional
multinomial variable per demonstration to our probabilistic
model, i.e. z[i]

k ∈ {0, 1}. We represent this multinomial
variable as binary vector z[i] = {z[i]

1 , ..., z
[i]
K }.

To derive variational updates, we specify a multi-
nomial hyper-prior for the mixing indices p(Z) =∏L

i=1

∏K
k=1(πk)z

[i]
k .

The variational updates are the same as for the case
with only a single component, with the difference that
the trajectories are weighted by the responsibilities of the
individual mixture components µ

z
[i]
k

, i.e.

µw[i] =Σw[i]

(
βΨ[i]

1:T

T
y

[i]
1:T +

K∑
k=1

ᾱkµz
[i]
k

(
µbk

+ M̄kµh
[i]
k

))
,

Σw[i] =

(
βΨ[i]

1:T

T
Ψ[i]

1:T +
K∑

k=1

ᾱkµz
[i]
k

I

)−1

.

Computing predictions with the mixture model is also
straight forward. For each component we compute the condi-
tioned distribution on the latent control variables as in Eq. (5)
and in Eq. (6) and the posterior over the feature weights using
Eq. (7) and Eq. (8). Thereafter the posterior distributions are



Fig. 2. (A-B) Trajectory prediction task in a table tennis setting using
20 end-effector and ball trajectories. (C-E) Learned distributions over
trajectories for three dimensions (out of six) using ProMPs. The colors (red
and blue) are only used to visualize differences in the movement directions.

weighted by the responsibilities of each mixture model

z[k] =
πkN

(
o
∣∣∣µ[k]

w|o,Σ
[k]
w|o

)
∑K

j=1 πjN
(
o
∣∣∣µ[j]

w|o,Σ
[j]
w|o

) ,
Σw|o =

K∑
k=1

z[k]Σ[k]
w|o,

µw|o =
K∑

k=1

z[k]µ
[k]
w|o.

The remaining updates are listed in the appendix.

IV. RESULTS

We evaluate our method on two real robot tasks. In the first
task the robot played a table tennis game and we recorded the
Cartesian coordinates of a racket mounted at its end-effector
and the Cartesian coordinates of the ball. A Barrett WAM
anthropomorphic arm was used for this experiment [16]. The
robot provides regular updates about its joint positions at a
rate of 1KHz that are used by the forward kinematics to
compute the Cartesian position of the racket. The ball is
tracked by a high-speed, multi-camera vision system [14]
that provides updates at a rate of 200Hz. The extracted
dataset contains twenty ball and racket trajectories.

In the second task we placed an obstacle in front of
a KUKA lightweight arm and demonstrated by kinesthetic
teaching different ways to approach a desired target point
in Cartesian space. During the demonstrations we avoided

Fig. 3. (A) The data precision parameter β can be used to adapt the model
complexity while avoiding overfitting (shown in the 2nd and 3rd panel for
two planning horizons until the ball impact). (B) The gamma prior on the
precision parameters λ to increase the numerical stability has little effect
on the prediction performance (for c0 ≥ 1). (C) Investigation of the effect
of the latent variables, where the first dimension of h describes the slope
whereas the second dimension relates to the waviness (D).

hitting the obstacle and we bypassed it either by moving to
the left or to the right. The demonstrations are depicted in
Fig. 5. For this experiment we recored the Cartesian position
and orientation of the end-effector. The state vector yt for
this experiment is seven dimensional, three dimensions for
the position and four for the quaternion based orientation.

A. Summary of the investigated features

We compare the proposed model, denoted as Latent Man-
ifold ProMPs (LMProMPs) in the figures, to the standard
ProMP approach in the two robotic setups.

In the table tennis scenario we investigate the effect of
noise and missing data on predicting the final ball impact lo-
cation at the opponent’s side of the table and we demonstrate
how the learned latent variables can be used to semantically
analyze the data.

Additionally, we demonstrate the beneficial properties of
the mixture model in representing the bi-modal distribution
required to successfully execute the KUKA reaching task.
We use the learned mixture model to generate trajectories
to new target locations, not encountered during training, and
execute them on the real robot. We demonstrate that our
proposed approach successfully avoids the obstacle, while
the standard ProMPs average over the two modes and the
generalization fails.

In both experiments we used linear regression to compute
the feature weights w and we subsequently applied a prin-
cipal component analysis. We initialized our model with the



Fig. 4. The effect of noise (A) and missing data (B) on the prediction performance of ProMPs (blue lines) and LM-ProMPs (red lines). In (A), from left
to right the amount of applied noise is increased. In (B) four different frame rates of observations (∈ {50, 100, 200, and 300}ms) are investigated.

first ten principal components.

B. The effect of noise and missing data

We use the table tennis setup to predict the final impact
location of the ball at the opponent’s court. We evaluate
our prediction by computing the Euclidean distance in the
x,y-plane to the true impact location. The dataset used for
learning is shown in Fig. 2(A-B). It should be noted that
the colors (red and blue) in Fig. 2 are only used for the
visualization as no labels were used for modeling the data.

For a baseline comparison we trained the ProMPs on the
same data. The learned distributions over trajectories for
ProMPs are illustrated for three Cartesian coordinates in Fig.
2(C-E). We denote the mean of the trajectory distribution
with a solid black line and the standard deviation by the
shaded region.

In the collected dataset, the robot returns the ball within
550ms to 650ms in advance to the final ball impact. In
our comparison, we analyze the prediction performance with
respect to the time until the impact event, where we focus on
the movement phase right after the stroke, ≈ 625ms before
the end. We used leave-one-out cross-validation to compute
the test error.

A fast multi-camera vision setup, good lighting conditions,
and access to the opponents sensor readings are amenities we
can not always afford. Therefore, we simulate the effect of
noisy and incomplete observations, and we evaluate their im-
pact on the prediction performance. First, we add zero-mean
Gaussian observation noise to the Cartesian coordinates of
the racket and to the Cartesian coordinates of the ball. The
standard deviation of the noise used in our evaluation is
σh ∈ 10−2{0, 2, 4, 6} and σb ∈ 10−2{0, 5, 10, 15} for the
racket and the ball, respectively. The results are illustrated
in Fig. 4(A), where we show the advantage of the learned
prior distribution using latent variables.

Additionally, we evaluate the effect of sparse observa-
tions using different sampling intervals, {50, 100, 200, and
, 300}ms. The proposed model is more robust with respect

to sparse observations, whereas the standard ProMPs overfit
to the training data, especially in the early phase of the move-
ment. The performance comparison of the two approaches is
illustrated in Fig. 4(B).

C. Analyzing the model parameters

As opposed to most movement primitive approaches, our
model has only one free parameter to choose that is the
precision of the data denoted by β. For large β values the
number of contributing latent variables in the generative
model is increased, and, at some point, the model will overfit
to the training data. To analyze this effect, we approximate
the complexity of the learned model by computing the rank
of the linear feature weights denoted by Mh[i] in Eq. (4).

For values of β ∈ {1, 10, 50, 100, 200, 500, 1000, 5000}
we compute the training and test error. The prediction
performance is shown in Fig. 3(A). The lowest test error
was achieved for β = 10 (for a prediction horizon of 625ms).
Note that the test error will not converge to zero due to noise
introduced with σh = 0.02 and σb = 0.05, and the sparse
observations at 50ms intervals.

The numerical stability of the LMProMPs can be increased
with the addition of a gamma prior on the λ[v] parameters,
discussed in Subsection III-A. To investigate the influence
of this regularization on the test error, we evaluated gamma
priors with a constant mean (c0/d0 = 100) and increasing
precision in the interval c0 ∈ [0.05, 500]. For small values
of c0 the prior converges to a uniform distribution. For c0 ≥
1 the variational updates were numerically stable and the
gamma prior had only little influence on the test error, as
shown in Fig. 3(B).

Finally, we semantically analyze the table tennis dataset
to evaluate how the latent variable affect the learned prior
distribution. We trained the model with 10-dimensional latent
variables h[i] in Eq. (4). The effect of the first two latent
dimensions in the generative model is illustrated in Fig. 3(C-
D). The two latent dimensions of the model affect the slope



Fig. 5. (A) Experimental setting and two dimensions out of the 7-
dimensional dataset (three end-effector coordinates and the four dimensional
quaternions). The colors (red and blue) denote the movement direction to
avoid the obstacle. (B-C) Learned distributions using ProMPs. The mean is
denoted by the black line and the standard deviation by the shaded region.
ProMPs cannot represent the bi-modal distribution in the 2nd panel in (B)
and the conditioning on unseen targets might fail (D).

and the waviness of the x-coordinate of the racket trajectories
shown in Fig. 3(D).

D. Learning bi-modal trajectory distributions

To demonstrate that LMProMPs can model multi-modal
distributions, we study demonstrations of a bi-modal target-
reaching task. A KUKA lightweight arm was used to reach
for different target locations on a table while avoiding an
obstacle. We used kinesthetic teaching and we demonstrated
two different ways to approach the target. The setup and
demonstrations are shown in Fig. 5(A).

For a comparison, we trained ProMPs to learn from the
demonstrations, which were unable to represent the two
modes. As a result, generalization by conditioning to not
encountered target locations may result in trajectories that
pass through the obstacle. The learned distributions and
example trajectories are shown in Fig. 5(B-C).

In contrast, the LMProMPs model is able to capture the
two modes of the demonstrations, as shown in Fig. 6. We
initialized the experiment with K-means clustering method
using two components. The learned prior distribution and the
influence of the first two dimensions of the latent variable
are illustrated in Fig. 6(A-B). Each mixture component
specializes on one mode of the data. Using the learned
bi-modal prior distribution, our model is able to generate

Fig. 6. Learned bi-modal distribution (the colors red and blue denote the
modes) using the proposed mixture model with two mixture components
(A-B). The latent variable is used to specialize on subregions within the
distribution of the mixture component. This is illustrated for two dimensions
of h, where solid black lines denote the mean. (C) Conditioning result using
LMProMPs. (D) Real robot results.

trajectories to new target locations that avoid the obstacle as
shown in Fig. 6(C). The inferred trajectories are smooth and
can be executed on the real robot using inverse kinematics
to obtain a reference joint trajectory and inverse dynamics
control to execute it. The resulting trajectories of the end-
effector of the real robot are illustrated in Fig. 6(D).

V. CONCLUSION

A desired feature of motor control approaches is to have
a low number of control parameters that can be used to
adapt learned skills to new or changing situations. In existing
movement primitive approaches [17], [8], [9] these control
parameters are predefined and can not adapt to the complex-
ity of the tasks. In this paper we proposed a probabilistic
movement primitive representation with hierarchical priors
that learns these control parameters as well as distributions
over trajectories from demonstrations. We demonstrated on
two kinesthetic teaching datasets that the control variables
can be used to generate new trajectories or to analyze
the data. The model naturally extends to mixture models,
where multi-modal distributions can be represented. In future
work we will investigate non-parametric variants using, e.g.,
Dirichlet processes on more challenging simulated and real-
robot tasks with a larger number of modes.
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APPENDIX
REMAINING VARATIONAL UPDATES

The remaining variational distributions for the parameter
precision and the precision of the projection matrix read
q(ᾱ) = Γ(ᾱ|ā, b̄) and q(λ̄[1:V ]) =

∏V
v=1 Γ(λ̄[v]|c̄, d̄). In the

following we list the remaining update equations.
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