
Combined Pose-Wrench and State Machine Representation for
Modeling Robotic Assembly Skills

Arne Wahrburg, Stefan Zeiss, Björn Matthias, Jan Peters, and Hao Ding

Abstract— A new Robotic Assembly Skill (RAS) modeling
framework is proposed. An assembly skill is a primitive that
encapsulates the capabilities to coordinate, control and super-
vise an elementary robot task. To gain reusability of a primitive
in alike robot tasks, the primitives are represented as generic
templates that are parametrized for each situation with data
from an assembly specification. A skill is represented in two
ways, namely as a trajectory describing compliant motions in
pose-wrench space and as a finite state machine. This approach
comes with the potential to simplify robot programming and to
improve robustness in robotic assembly due to inherent quality
checking. The approach is implemented on an ABB YuMi robot
performing the assembly of a programmable logic controller
(PLC) I/O module.

I. INTRODUCTION AND RELATED WORK

Currently, manufacturing increasingly moves from mass
production towards mass customization [1]. This shift de-
mands a new kind of flexible industrial robots, which must
cope with uncertainties in order to operate in at least partly
unstructured environments [1]. It has to be possible for non-
experts to reprogram robots quickly on the shopfloor. These
two goals compete as uncertainty handling requires sensor-
based control strategies, which increases programming com-
plexity compared to standard position control.

A possible solution to this conflict is the approach of
Assembly Skills. The general idea is to store the ability
to perform elementary robot actions in reusable primitives.
A skill is such a primitive that allows the coordination,
control and supervision of a specific task. The primitives can
incorporate advanced task specifications, necessary control,
and sensing capabilities, which potentially allows a skill to
handle uncertainties during execution. As all of this infor-
mation is encapsulated, the approach implies an emphasis
shift from traditional position-based teaching to selecting
and parameterizing predefined skill primitives to complete
assemblies. Consequently, the skill primitives form a link
between high-level planning and low-level control of task
execution.

An early approach to use skill primitives as a represen-
tation of atomic robot motions in the context of assembly
is given in [2]. Another skill-like system was used in [3]
for robotic assembly using a rule-based logic combined
with hidden Markov models. Skill primitives have been
combined to discrete motion networks which represent tasks
in [4]. The task frame formalism is employed to define
manipulation primitives, which are used as building blocks

The authors are with the ABB Corporate Research Center, GERMANY
{firstname.lastname}@de.abb.com and the TU Darmstadt, GER-
MANY stefanzeiss.sz@gmail.com, mail@jan-peters.net.

for skill primitives. In [5], a constraint-based programming
approach [6] is employed to create a skill-controlled robot
motion system. Therein, the iTaSC framework [7] is used
to interpret motion commands defined by constraint-based
programming. A similar approach is presented in [8], where
skills are represented by state machines and each state
contains iTaSC-based motion commands. Additionally, a
knowledge integration framework for storing, sharing, and
reusing skills and other assembly knowledge was introduced
in [9]. Discrete motion networks are also used in [10],
where the networks represent force-over-position trajectories.
Another approach is to represent skills by a dynamic system.
In [11], spatially and temporally invariant dynamical systems
are used. A canonical system is transformed to adapt to new
environmental constraints. The approach is e.g. employed in
[12] to acquire new skills by learning techniques. A novel
approach of employing dynamic systems is presented in [13],
where robot motions are described as flows in a simulated
current of fluid. A recent implementation of a skill-based sys-
tem is given in [14]. Therein, a new programming language
based on UML/P statecharts is introduced to describe skills
and the task frame formalism is used for motion description.

The main contribution of this paper is a new programming
framework called Robotic Assembly Skill (RAS). Within
this framework, robotic skills are represented using two
components. First, a trajectory representation in pose-wrench
space provides a general description for mating one part
to another in a basic assembly action, comprising both
positions/orientations and forces/torques. And, second, a

Fig. 1. ABB YuMi (www.abb.com/yumi), a dual-arm 7DOF manipula-
tor, assembling a PLC I/O module employing the proposed RAS framework.
The full assembly of the I/O module has been realized using the proposed
approach. Two elementary operations, namely snap-fit assembly steps, are
detailed in the paper to explain the proposed approach.



motion net representation coordinates such robot motions
with environment interaction. The former principle has been
introduced in a less generic form in [10]. The latter represen-
tation is also used in [5], [8], [14]. Combining both represen-
tations in a generic framework as proposed in this paper has
two advantages. First, we can reuse generic representations
by parameterizing skill templates. Second, the system may
gain in robustness since the scheme is not purely position-
based but forces and torques are also taken into account to
supervise execution.

The paper is structured as follows. The RAS programming
approach is sketched in Section II. Section III presents
experimental results employing the RAS scheme to perform
snap-fits with an ABB YuMi robot in the assembly of a PLC
I/O module before a conclusion is given in Section IV.

II. THE ROBOTIC ASSEMBLY SKILL FRAMEWORK

To use robots in flexible production scenarios such as
small part assembly, two main problems have to be solved.
Firstly, robots need to be able to operate in partly un-
structured environments under the presence of uncertainty.
Secondly, robots need to be quickly adaptable to react to
frequently changing production scenarios. A manipulator that
can operate in the presence of uncertainty demands complex
sensor-based control strategies. To adapt a robot quickly,
it has to be possible to reprogram it without much effort,
preferably by non-experts on the shopfloor. As the former
requirement increases the programming complexity, the two
goals compete. An approach to handle the two competing
goals is the Robotic Assembly Skill framework depicted in
Fig. 2. The idea is to establish an interface between high-
level assembly planning and low-level robot controls, namely
skills. In the following, the key elements of the scheme
(application, task, skill, and motion) are briefly introduced
before assembly skills are discussed in detail.

An application is defined to specify a complete product by
a hierarchy of geometrical relations between sub-assemblies
and individual components stored in a binary assembly tree.
Furthermore, annotations of the tree nodes may contain
information on how the parts have to be assembled and which
resources are required. As an example application, consider
the full assembly of a PLC I/O module pictured in Fig. 1.

A task is defined as a traversal step in the assembly tree.
In this context, a task is limited to the scenario of two parts
being put together. Attaching the module cover to the housing
in the PLC I/O module assembly is an example of a task.
Each task is instantiated by one or many skills which form
a net of skills.

A skill is defined as an elemental manipulation constituting
a step towards achieving a task. As an example, consider
performing the actual snap-fit in the task of attaching the
module cover to the housing. A skill contains all the nec-
essary data to coordinate, control and supervise the actions
necessary to fulfill this step. In the proposed RAS approach,
a skill is represented by a generic template selected from a
skill library and a specific instantiation is created from this
template and data from the task. For different assemblies, the

High-level

Application

Task

Low-level

Motion
Skill

Fig. 2. Robotic Assembly Skills as an interface between high-level assem-
bly planning and low-level robot controls – An application is understood to
specify a complete product, with a task defined as putting together two
parts forming a sub-assembly. A motion is defined as a constrained or
unconstrained action, that can be position- or force-controlled. Skills can
be regarded as an interface unburdening the user from directly program-
ming low-level robot controls. Instead, reusable generic skill templates are
combined to fulfill a task, where the individual skills are parameterized for
the specific assembly at hand.

same generic template can be reused with tailored specific
parameterizations.

A motion is defined as a constrained or unconstrained
action that describes which degrees of freedom of a reference
frame are controlled in which way. The frame is associated
with the parts to be assembled referring to the task frame
formalism [4]. Specific frame and motion values are set using
the parameters from the instantiated skill. In the example
of performing the snap-fit as part of attaching the cover
to the housing, the movement in negative z-direction until
a specific force threshold is exceeded constitutes a motion.
Instead of a motion, the data on this level can also represent
an elementary tool action.

The robot program for the application should be easily
and intuitively composed by selecting, combining and pa-
rameterizing appropriate skills from a library, according to
the assembly tree specification. The effort for creating the
library of generic skills is, however, to be shouldered by the
robot supplier or system integrator. Their experts will have
prepared separately the assembly skill library as part of the
robot system software. The effort for creation of the low-
level robot program code inside the skills is, therefore, no
longer associated with the application user – a prospective
advantage to present-day approaches.

A. Overview on Assembly Skills Representation

A skill is described by two components. The motion net
representation describes the skill as a finite state machine,
which is used for the discrete coordination and control of
robot motions. Specifically, the motion net is used to switch
between different continuous control actions. The trajectory
representation represents the skill in pose-wrench space, and
is used to supervise the continuous robot actions and to
trigger transitions in the finite state machine.

A skill has input and output signals used for high-level
supervision purposes. Based on these signals, the successor
of the skill can be selected, for example. The signals are
implicitly defined in a skill by states and transitions in its
motion net representation, which are activated under certain
conditions. Once the precondition is met, the execution
of the related robot actions starts. A typical precondition
would be that all involved parts are at a certain position.



The completion signal indicates that the last robot action
relevant for the completion of a skill execution has been
executed. After completion is indicated, the quality of the
skill execution can be evaluated. The result of this evaluation
is indicated by the quality signal. Several degrees of success
can be represented, depending on how many different quality
conditions are defined in a skill. Most commonly, only
”success” and ”failure” are distinguished. The execution of
a skill is interrupted, if an interruption signal occurs. Based
on this signal, predefined error recovery actions can be
triggered.

In the following, both the trajectory representation and
motion net representation will be detailed.

1) Trajectory Representation: The relative motion of two
parts during assembly can be regarded as following a desired
trajectory embedded in a 12D space spanned by the compo-
nents of relative pose and wrench. The trajectory consists
of a sequence of 12D state vectors describing the relative
position, orientation, contact forces, and contact torques
between two frames, each attached to one of the parts to
be assembled. Pose and wrench usually refer to the motion
of the end effector frame of the manipulator with respect to
a reference frame in the workspace. Here, both frames are
usually attached to parts either held by the end effector or
located in a fixture in the workspace. One of the frames
is called the task frame. In this frame, the pose-wrench
configuration of the other part is expressed.

A trajectory expressed in 12D space does not explicitly
depend on time. This property is useful as it allows the
representation of a motion independent from time-related
properties such as motion speed. It has to be noted, that
not every motion needs all 12 dimensions to be specified for
its control and supervision. In many cases, it is sufficient to
consider a subset of these dimensions for supervision. As
an example, consider the force-over-position trajectory of a
snap-fit skill depicted in Fig. 3. In this case, the core char-
acteristic of the skill is described in a 2D subspace spanned
by position z and force Fz in the same direction. Intuitively,
the trajectory can be partitioned into four segments, namely

Position z

Fo
rc

e
F
z

0

0 L1 + L2L1

N1 N2 N3 N4

Fig. 3. Force-over-position profile of a snap-fit – The blue line shows the
Force Fz that has to be applied in order to move the latch in z-direction as
a function of position z, determined from equation (3) in the appendix. The
dashed red line shows a piecewise linear approximation valid for L1 ≪ l,
i.e. guidance length being small compared to latch length. This condition is
typically met for latches in small parts assembly. The trajectory is partitioned
into four characteristic segments (N1 latch unbent, N2 latch bending, N3

latch sliding fully deflected, N4 latch snapped in). The dimensions L1, L2,
and l refer to Fig. 7 in the appendix.

N1 (free motion, no contact between latch and deflector),
N2 (latch increasingly bent by deflector), N3 (latch sliding
along deflector fully deflected), and N4 (latch snapped in). A
sketch of a typical snap-fit geometry can be found in Fig. 7
in the appendix where also a mathematical derivation of the
trajectory is provided. It is to be noted that the if deflector
length L2 is very small, segments N3 and N4 can be merged,
which is frequently the case in small parts assembly (cf.
results presented in Section III).

We extend the approach to enable supervision of skill
execution. To this end, the sequence of 12D state vectors
describing the trajectory is augmented with another 12D
vector specifying tolerance in each dimension. Therewith, a
12D hypertube is spanned. During execution, the actual pose-
wrench value is compared to the hypertube. In case the actual
value of pose-wrench is outside the specified hypertube, a
transition in the motion net (cf. Section II-A.2) is triggered.

2) Motion Net Representation: The motion net contains
the execution logic of the robot actions contained in a skill
and is represented as a finite state machine. Tasks of the state
machine are the coordination and control of robot motions. In
the motion net, each state contains a robot action that is to be
performed. To switch between robot actions, transitions are
triggered. Accordingly, the motion net elements are referred
to as motion net states Mi and motion net transitions Tij . The
motion net states contain control values, namely a controller
setpoint ci defining reference values in all task frame coor-
dinates and a task frame. Furthermore, a trajectory segment
Nk is associated to a motion net state for supervision.

As an example, consider the motion net representation of
the snap-fit skill depicted in Fig. 4. From the initial state
M0 relating to segment N1 in the trajectory (cf. Fig. 3),
the transition T01 is triggered once the starting position
from which the skill is to be executed is reached. State M1

describes the robot motion in z-direction of the specified task
frame. This motion is executed until the specified threshold
in the force Fz is exceeded triggering transition T12. Hence,
M1 and T12 relate to segment N2 in the trajectory. Motion
state M2 continues movement in z-direction until the force

M0 M1
M2

M3

M4

MC

MS

MF

MG1

MG2

T01
T12 T2C

TCS

TCF

TS3

TF4

T3G1

T4G2

retry

Fig. 4. Motion net representation of the snap-fit skill – From the initial
state M0, the transition T01 is triggered to start the execution of the skill.
The states M1 and M2 resemble a movement in z-direction until a specified
force threshold is exceeded (T12) and fallen below of again (T2C ), taking
the motion net to completion state MC . Evaluation of contact forces after
completion of execution triggers either TCS in case of successful execution
or TCF to flag an error, respectively. In the latter case, a simple retry is
triggered. This scheme could be extended towards advanced error handling
routines. The states M3 and M4 resemble motions taking the manipulator
back to the pre-snap pose, and MG1/2 mark the final states.



Assembly tree

· · · · · ·· · · · · ·

Skill library (templates)

... Ssn

SinSpl

Spi Str

Task (net of instantiated skills)

S∗

pi S∗

tr
S∗

pl S∗

sn

• trajectory,
Section II-A.1

• motion net,
Section II-A.2

Snap-fit template

Fig. 5. Skill selection from skill library and parametrization based on assembly tree – In the example, the skill library contains Spi (pick up), Spl

(place), Str (transfer), Sin (insertion), and Ssn (snap-fit). The skill library can be extended to include further skills. Each skill has two core components,
a trajectory representation to supervise motions within a skill and a motion net representation to coordinate motions in the skill. The assembly tree shown
in the figure is a snapshot of the full PLC I/O module assembly. Assembling the housing and cover is a task, merging two sub-assemblies into the final
product. The task is a net of instantiated (i.e. parameterized) skills S∗

pi, S
∗

tr , S∗

pl, and S∗

sn. The skills are selected from the library and parameterized
either according to annotations in the assembly tree or by manual parameterization by the user.

Fz degrades below the specified threshold (transition T2C )
relating to segment N3. The state MC marks completion of
the skill execution. The remaining part of the motion net is
devoted to determining whether the skill has been executed
successfully. If the force remains below a specified threshold
in segment N4 of the trajectory, transition TCS is triggered
taking the motion net to the success state MS . Transition TS3

is always true, so the state M3 is activated. The purpose of
M3 is to move the robot back to the starting position of the
skill. Once the starting position has been reached, transition
T3G1 is triggered taking the motion net to the final state MG1

and the completion signal is sent. If the force in segment N4

is above a specified threshold, it can be inferred that the skill
has not been executed successfully. In this case, transition
TCF is triggered to activate the state MF . Similar as for a
successful execution, transition TF4 is always true activating
state M4 taking the robot back to the starting position. Upon
reaching this position, transition T4G2 is triggered activating
the final state MG2. Since this state marks a failed execution
of the snap-fit skill, a retry or other error handling strategies
can optionally be triggered.

B. Skill Selection and Parameterization

As described in Section II-A, parameterized skill primi-
tives are connected into nets to fulfill assembly tasks. Re-
usability is a key property of such a package, as the idea
is to have a limited set of skill primitives that are capable
of fulfilling a wide variety of complex tasks by connecting
them. To this end, skill primitives are stored in a skill
library as generic templates that can be reused in alike
situations (s. Fig. 5). Each template skill is contains the 12D
trajectory representation and the motion net representation as
elaborated in Section II-A. To represent the task, the skills
are selected from the skill library, connected to form a net

of skills, and adapted to the specifics of the task at hand by
setting a limited set of parameters. The specific values of
the parameters may depend on the geometry of the parts to
be assembled, their material, etc. Therefore, a specific skill
parametrization is created for each situation.

For the snap-fits in the PLC I/O module example, three
parameters are mandatory. First, a task frame has to be
specified which in the example coincides with the base
coordinate frame. Second, a pre-snap position has to be
specified, marking the TCP (tool-center-point) pose to start
the snap-fit execution from. Third, a force threshold has to be
set. Exceeding this threshold will trigger transition T12 and
T2C , respectively, in Fig. 4. Optionally, another threshold
can be specified to evaluate contact forces after completion
of the skill to assess the execution quality (i.e. ”success” or
”failure”). For the user, the workload shifts from low-level
robot programming to the task of selecting appropriate skills
from the library and parameterizing them.

C. Skill-based Assembly Execution

Once all tasks have been set up by creating nets of
instantiated skills, they are executed in the order defined
by the assembly tree. The finite state machines on task
and skill level are employed to coordinate the assembly.
From the states in the motion net representation of a skill,
low-level robot commands are generated. In the snap-fit
example, all these commands are force-supervised, position-
controlled movements, but the RAS framework also allows
for force-controlled actions. The execution of the movements
is supervised by comparing actual pose and wrench data to
the trajectory defined in the parameterized skill and trigger
corresponding transitions in the motion net. For supervision
of contact forces, either force/torque sensing or contact force
estimation [8], [15], [16], [17] can be employed. While



(a) First snap-fit example – The light guide cover is attached to the
module cover by performing two snap-fits, one at each of the positions
marked by the red arrows.

(b) Second snap-fit example – The cover is attached to the housing by
executing a snap-fit skill in z-direction with the padded robot wrist at
the position marked by the red arrow.

time in s

Fo
rc

e
F
z

in
N

−1
0
1
2
3

0 2.5 5 7.5 10

(c) Estimated contact force Fz for the light-guide-to-cover snap-fits
depicted in Fig. 6(a).

time in s
Fo

rc
e
F
z

in
N

0.5
0

−0.5

1
1.5

0 2.5 5 7.5

(d) Estimated contact force Fz for the cover-to-housing snap-fit depicted
in Fig. 6(b).

Fig. 6. Snap-fit scenarios in the PLC I/O module assembly and corresponding evaluation of estimated contact forces in z-direction over time – The green
line resembles the threshold that has to be exceeded to mark completion of the skill execution. The red line represents the threshold that is evaluated to
determine whether the execution has been completed successfully. In case the estimated contact force decreases below the red line after exceeding the
green threshold, completion is marked successful. Notice the different parameterizations of the skill reflecting the different geometries and materials of the
parts involved.

supervision enables a quality assessment of the execution,
it can also be regarded as the basis for systematic error
handling routines.

III. EXPERIMENTAL RESULTS

The proposed RAS framework has been applied to perform
a complete assembly of a PLC I/O module using an ABB
YuMi robot (formerly known as ABB Dual Arm Concept
Robot [18], [19]). The application involves pick, place,
transfer, insertion, and snap-fit skills. The two types of snap-
fit operations involved in the assembly are depicted in Fig. 6.
The snap-fits visualized in Fig. 6(a) are performed with an
edge of the gripper attached to the robot wrist. Their purpose
is to attach a light guide cover to the module cover. The snap-
fit visualized in Fig. 6(b) completes the assembly by mating
module housing and cover.

Using a traditional position-based approach, three posi-
tions would have to be taught for each snap-fit. A pre-snap
position from which to start the movement in z-direction, the
actual snap position resulting in the latch snapping in and a
post-snap position to retract to after the snap-fit. Especially
the actual snap position is tedious to teach since it requires
high precision in a purely position-based approach. If the
target position is too high in z-direction, the snap-fit will not
be executed successfully while a too low z-position might
cause parts to break. With the proposed RAS approach, only

one position has to be taught, namely the pre-snap position.
Afterwards, the force thresholds have to be set. Furthermore,
by evaluating contact forces, the RAS approach allows to
detect whether the operation has been successfully completed
which is not possible in purely position-based schemes.

Due to different geometries and material characteristics of
the parts involved, the trajectories of the snap-fits shown in
Fig. 6(a) and Fig. 6(b) are expected to differ. However, the
general shape is preserved and the same skill template can be
reused by creating different instantiations for the respective
scenarios. This thought is verified by Fig. 6(c) and Fig. 6(d),
respectively, showing estimated contact forces during exe-
cution of the snap-fits. The contact forces were estimated
using the scheme proposed in [17] and we emphasize that
only joint angle and motor torque information is needed. No
additional sensing (e.g. joint torque or external force/torque
sensors) has been used. While the variations in the range of
±0.5N are due to measurement and process noise, the two
spikes exceeding the force threshold of 2.5N in Fig. 6(c)
mark the completion of the two snap-fit operations in the
first example. For the second example, the threshold to detect
completion of the snap-fit is set to 1N as shown in Fig. 6(d).
Since the contact force falls below the specified threshold of
1N for the first example (0.5N for the second example),
successful completion of execution can be concluded.



IV. CONCLUSION

A skill-based framework for robot programming has been
proposed. The approach relieves the user of low-level robot
programming by providing reusable templates for robotic
skills. For different applications and tasks, these templates
have to be properly parametrized. The main benefits of the
approach are potentially reduced teaching time, simplified
robot programming and gain in robustness in robotic assem-
bly. The framework has been successfully implemented to
perform a full PLC I/O module assembly using an ABB
YuMi robot. Future work will be devoted to the acquisition
of new robotic skills and to assisting the user by providing a
natural and intuitive interface for skill parameterization in an
industrial environment. Systematic error handling strategies
are also to be investigated.

APPENDIX – MODELING SNAP-FIT FORCES

Mathematics of snap-fits are studied in detail in [20],
[21]. To derive a trajectory representation of a snap-fit, it
is assumed that the task frame of the motion is set in such
a way that the predominant direction of the motion is z and
the latch is bent in perpendicular x-direction (cf. geometry
sketched in Fig. 7). Assuming a diagonal inertia tensor, the
deflection x can be found as a function of the deflecting
force Fx as x = l3Fx/(3EI), where l is the length of the
latch, E is its modulus of elasticity, and I the area moment
of inertia. Assuming a friction model with friction force FR

related to normal force FN by FR = µFN , the friction force
is employed to relate forces Fz and Fx as

Fz(z) = Fx

µ+ tan (αeff(z))

1− µ tan (αeff(z))
︸ ︷︷ ︸

µeff(z)

, 0 ≤ z ≤ L1. (1)

It has to be noted that the effective latch guidance angle
increases due to bending of the beam according to

αeff(z) = α+ arctan

(
z tan(α)

l + L1 − z

)

, 0 ≤ z ≤ L1. (2)

With the effective latch guidance angle, the force-over-
position profile of a snap-fit is given by

Fz(z)=







3µeff(z)EI tan (α) z

(l+L1−z)3
, 0 < z ≤ L1,

3µEI tan (α) L1

l3
, L1<z≤L1+L2,

0, otherwise.
(3)

Fz

l L1

L2

x

zα

Fig. 7. Geometry of a snap-fit – Latch with total length l+L1, guidance
length L1, deflector length L2, and guidance angle α is moved in z-direction
and deflected in x-direction by driving force Fz .

REFERENCES

[1] S. Bøgh, O. Nielsen, M. Pedersen, V. Krüger, and O. Madsen, “Does
your robot have skills?,” in Proc. of International Symposium on
Robotics, 2012.

[2] T. Hasegawa, T. Suehiro, and K. Takase, “A model-based manipulation
system with skill-based execution,” IEEE Transactions on Robotics
and Automation, vol. 8, no. 5, pp. 535–544, 1992.

[3] B. J. McCarragher, G. Hovland, P. Sikka, P. Aigner, and D. Austin,
“Hybrid dynamic modeling and control of constrained manipulation
systems,” IEEE Robotics & Automation Magazine, vol. 4, no. 2,
pp. 27–44, 1997.

[4] T. Kröger, B. Finkemeyer, U. Thomas, and F. M. Wahl, “Compliant
motion programming: The task frame formalism revisited,” in Proc.
of Mechatronics and Robotics, 2004.

[5] R. Smits, Robot Skills: Design of a Constraint-Based Methodology
and Software Support. PhD thesis, KU Leuven, 2010.

[6] J. De Schutter, T. De Laet, J. Rutgeerts, W. Decre, R. Smits, E. Aertbe-
lien, K. Clase, and H. Bruyninckx, “Constraint-based task specification
and estimation for sensor-based robot systems in the presence of
geometric uncertainty,” International Journal of Robotics Research,
vol. 26, pp. 433–455, 2007.

[7] R. Smits, T. D. Laet, K. Claes, H. Bruyninckx, and J. D. Schutter,
“iTASC: A tool for multi-sensor integration in robot manipulation,” in
Proc. of Multisensor Fusion and Integration for Intelligent Systems,
2009.

[8] M. Linderoth, On Robotic Work-Space Sensing and Control. PhD
thesis, Lund University, 2013.

[9] M. Stenmark and A. Stolt, “A system for high-level task specification
using complex sensor-based skills,” in Proc. of Robotics: Science and
Systems, 2013.

[10] T. Nagai and S. Aramaki, “The representation method of robotic
assembly task with click action,” in Proc. of Int. Symposium on Power
Electronics, Electrical Drives, Automation and Motion, 2008.

[11] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor land-
scapes for learning motor primitives,” in Proc. of Neural Information
Processing Systems, 2002.

[12] J. Peters, K. Mülling, J. Kober, D. Nguyen-Tuong, and O. Krömer,
“Robot skill learning,” in Proc. of European Conference on Artificial
Intelligence, 2012.

[13] H. G. Mayer, I. Nagy, A. Knoll, E. U. Braun, R. Lange, and R. Bauern-
schmitt, “Adaptive control for human-robot skill transfer: Trajectory
planning based on fluid dynamics,” in Proc. of IEEE International
Conference on Robotics and Automation, 2007.

[14] U. Thomas, G. Hirzinger, B. Rumpe, and C. Schulze, “A new skill
based robot programming language using UML/P statecharts,” in Proc.
of IEEE International Conference on Robotics and Automation, 2013.

[15] D. P. Le, J. Choi, and S. Kang, “External force estimation using
joint torque sensors and its application to impedance control of a
robot manipulator,” in Proc. of International Conference on Control,
Automation and Systems, 2013.

[16] A. Stolt, M. Linderoth, A. Robertsson, and R. Johansson, “Force
controlled robotic assembly without a force sensor,” in Proc. of IEEE
International Conference on Robotics and Automation, 2012.

[17] A. Wahrburg, S. Zeiss, B. Matthias, and H. Ding, “Contact force
estimation for robotic assembly using motor torques,” in Proc. of IEEE
International Conference on Automation Science and Engineering,
2014.

[18] H. Ding and B. Matthias, “Safe human-robot collaboration combines
expertise and precision in manufacturing – a paradigm for industrial
assembly in mixed environments,” atp-edition, vol. 10, pp. 22–25,
2013.

[19] S. Kock, T. Vittor, B. Matthias, H. Jerregard, M. Kallman, I. Lundberg,
R. Mellander, and M. Hedelind, “Robot concept for scalable, flexible
assembly automation: A technology study on a harmless dual-armed
robot,” in Proc. of IEEE International Symposium on Assembly and
Manufacturing, 2011.

[20] P. R. Bonenberger, The First Snap-Fit Handbook. Hanser, 2005.
[21] R. W. Messler Jr., Integral Mechanical Attachment. Elsevier, 2006.


