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Zusammenfassung

In Zuge der Energiewende gewinnen Intelligente Energiemanagementsysteme (EMS) zunehmend an Be-
deutung. Diese koordinieren bereits heute den Einsatz von flexiblen einsetzbaren lokalen elektrischen
Erzeugern und Verbrauchern wie Blockheitzkraftwerken, Brennstoffzellen und Wärmepumpen mit der
volatilen Wind- und PV- Erzeugung. In derartigen Systemen spielen prognosegestützte vorausschauende
Algorithmen eine große Rolle, weswegen die möglichst genaue Vorhersage der nicht steuerbaren En-
ergieerzeugung bzw. des -verbrauchs eine große Herausforderung darstellt.

Während die Vorhersage der Photovoltaik- und der Windkrafterzeugung bereits mit verschiedensten
Methoden aus der Statistik und dem Feld des "Machine Learning" erforscht wurden, ist die Vorhersage
von elektrischen Lastprofilen noch nicht ausgereift.

Heute wird die Lastprognose oft in Form von Persistenzmodellen realisiert, in welchen die gleichen
Daten eines vergangenes Tages für die Vorhersage eines neuen Tages benutzt wird. Ein Problem dieser
"Similar Day"-Methode ist, dass auf von der alten Aufzeichnung abweichende Dynamiken nicht reagiert
werden kann. Aus diesem Grund wurden einige andere Anstätze wie neuronale Netzwerke, Support
Vector Maschines oder autoregressive Modelle erprobt.

In dieser Arbeit wird eine neue Methode mit dem Namen "Probabilistic Movement Primitives" für die
Vorhersage von "short-term" Lastprofilen (STLF) vorgeschlagen, was gemeinhin einen Zeitraum zwis-
chen ein paar Stunden bis zu einem Tag umfassen kann. Dieser neue Ansatz stammt ursprünglich aus
der Robotik und wird dort unter anderem zur Berechnung von Regelparametern benutzt. Diese neue
Methode beruht auf gewichteten Basisfunktionen, aus welchen hierarchische Wahrscheinlichkeitsmod-
elle erstellt werden. Auf Basis dieser Modelle kann in Anbetracht des bisherigen Tagesverlaufs die
wahrscheinlichste Prognose berechnet werden.

Ein wichtiger Aspekt dieser neuen Methode ist die Möglichkeit mit ihr, eine Aussage über die Varianz
der Prognose zu treffen. Dies gibt dem Benutzer ein Maß für die Genauigkeit der Vorhersage. Zudem
kann die Prognose mit geringem Rechenaufwand mit aktuelleren Daten zu einem beliebigen Zeitpunkt
aktualisiert werden. Dies führt zu einer graduellen Verbesserung der der Vorhersagegenauigkeit.

Abstract

In the transformation process of the carbon hydrate based energy system to a more sustainable state
relying predominantly on renewable energies, intelligent energy management systems (EMS) become
increasingly more important. These systems already coordinate flexible generators, consumers and the
volatile production of wind and solar power. Forecast-based anticipatory optimization algorithms play
an important part in modern EMS. These often rely on an accurate forecast of the non-controllable con-
sumers and generators.

While the forecast for solar and wind production has been explored with different approaches from
statistical to machine learning methods, the forecast of electric load profiles is still in the fledging stages.

To date, in most cases the load forecasting relies on persistence models. One key problem of this
approach is that it cannot cope with dynamics deviating from the historical records. For this reason
different approaches have been explored (e.g., neuronal networks, support vector machines, and auto
regressive models).

4



This thesis will apply a new method called "Probabilistic Movement Primitives" (ProMP) to the forecast
of "short-term" load profiles (STLF). The ProMP approach has been developed in robotics and is used for
the derivation of control parameters. It employs weighted Gaussian basis functions for representing the
historic data and creates a hierarchic distribution model on top of them. With input data from the very
recent past, a forecast for the remainder of the current day can be calculated.

One important aspect of this new method is the possibility to calculate the variance of the forecast,
which provides a measure of accuracy. Furthermore new forecast based on updated records can be
calculated with very little computational overhead, this leads to a gradual improvement of the accuracy
of the forecast.

1 Introduction

The International Energy Agency estimates that renewable energy generators are going to surpass coal as
the top source of energy by 2035 [1]. However, introducing volatile generators like solar plants or wind
turbines to the grid increases the need for intelligent energy management systems (EMS) to coordinate
consumer and producer load. Coordination is necessary because energy from wind or solar farms can
not be dispatched in the classical sense [2] and has to be synchronized with classical energy producers
like coal plants to avoid energy surplus. Additionally, if the producers are not able to produce enough
power in time, high fees have to be paid [3]. Consequentially, new technologies have been investigated
to tackle the problems. Examples for intelligent EMS are cyber-physical energy systems [4] and model
predictive control [5]. Both of these technologies need accurate forecasts of electric load profiles to
ensure optimal usage and safety of the energy grid.

In the last decade, a lot of research has addressed the problem of forecasting solar and wind energy
generation. The cause of this development is the increased attractiveness of these energy generation
methods [6]. Various different approaches have been proposed which can be categorized into the
following categories: physical, statistical, machine learning, and hybrid approaches [7]. Physical ap-
proaches try to describe the forecast by applying a physical model. An example is the forecast of solar
energy output by measuring cloud movements [8]. Another example is the forecast of solar energy by
calculating a radiance model [9]. Statistical approaches base their forecast solely on past data. Zhang
et al. created a "similar day"-model by using data from three different locations around the world [10].
Approaches based on machine learning algorithms have been rising in popularity lately. Examples for
these algorithms are artificial neural networks [11, 12], support vector machines [13] or Gaussian pro-
cesses [14, 15]. Furthermore, a lot of research has been dedicated to hybrid methods [16, 17] which
combine the formerly mentioned approaches to increase accuracy by increasing complexity. However,
these methods are prone to overfitting and may not yield optimal results [18, 19, 20].

The research of forecasting consumer loads can be dated back to 1966 [21, 22]. Before the liber-
alization of the energy market, the most prominent use case for energy load forecasting has been the
determination of the optimal and secure schedule for energy production [22]. After 1982, the first en-
ergy market liberalization took place in Chile, hence, a new use case emerged: in a non-monopolistic
market situation the estimation of the electricity prize had become interesting [23].

Another use case for electric load forecasting, lies in demand-sight management systems where the
forecast is used for short-term decision making [24] by system operators for the optimal utilization of
the power generators and power stations [25]. This especially important in developing countries which
try to use their limited electricity more efficiently [26]. Demand sight management systems often use
short-term load forecasts (STLF) which have a time range from several hours to a day, other categories
for forecasting electric consumer loads are very-short-term, mid-term and long-term [27]. While very-
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short-term forecasting is relatively new, it only takes a look at a minute to minute time frame [28].
For years mid-term forecast has been used for scheduling maintenance and system improvements of the
grid [29] and has a time frame of up to a month. If the time interval exceeds months, the forecast is
called long-term, these forecasts are valuable for system operators to estimate the need for expansion
[30, 31], especially in fast developing countries like China [32]. Mid-term and long-term forecasts suffer
from the accumulation of forecast errors over time [33], hence they normally only forecast peak loads.
Other methods in most publications forecast load curves or electric load profiles. Electric load profiles are
time series which means that they are sequences of random numbers based on consecutive measurements
taken at equal time intervals [23]. An overview of all methods and their time range can be seen in table 2.

very-short-term short-term mid-term long-term

time horizont 5min - 1h 1h - 24h 24h - weeks months - years
forecasted fomat load profiles load profiles peak loads peak loads

Table 2: An overview of the different types of electric load forecasting, their time range and forecast
format

In this work a new approach for short-term forecasting of electric load profiles will be proposed. It is
based on Probabilistic Movement Primitives by Paraschos et al.[34]. This approach uses probability density
functions to represent the data. Electric load profiles are described as a set of weighted Gaussian basis
functions and then turned into a Gaussian probability function. By inducing a Gaussian prior distribution
to the probability function, a small hierarchical Bayesian network is constructed which can be used to
calculate forecasts for electric load profiles. Since this new approach is based on Gaussian probability
functions, methods of probability theory can be used. Therefore, it is possible to increase the accuracy of
the forecast over the course of a day by conditioning on data, which only recently and partly has become
available. Another advantage is that a covariance of the forecast can be calculated which can be used as
a measurement for the forecast accuracy.

This thesis is structured as follows: in section 2 an overview over the recent research and the related
methods will be given. The novel approach for forecasting electric load profiles will be discussed in
section 3. In section 4, the evaluation of the novel approach will be presented, followed by an outlook
in section 5.

2 Related Work

In general, the forecast of electric load profiles can be classified as a regression problem. Regression
problems are common problems in computer science where a system is supplied with input data and
returns output data. The task is to look for the relationship between input and output data. This process
is called regression analysis. In case of electric load profiles there is an additional difficulty because the
data is highly nonlinear [35] and they incorporate a seasonal component which influences the load over
the day. This seasonal component can be partly contributed to heating required on colder days or need
for ventilation on warmer days. That is why it can be separated into summertime, wintertime and two
transition periods in between [23].

Many different approaches have been applied to electric load forecasting of uncontrollable consumer
loads. The simplest approach is, to use a static normalized load profile to estimate the consume of
households, which is still common practice in Germany [36], although it is prone to uncertainties from
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geographical differences [37]. Similar to electric load forecast for producer loads, the forecast for con-
sumer loads can also be divided into the categories: statistical approach, machine learning, and hybrid
approaches. The simplest statistical approach is the usage of a similar-day model [23] which is used
in this thesis as a baseline method. Further information can be found in section 2.1. Another type of
statistical approach used for load forecasting are autoregressive models where the current load is a linear
aggregate of previous values [38]. Electric load profiles are nonlinear, therefore, a lot of research went
into the use of artificial neural networks for forecasting [39, 40] because their capabilities in modeling
nonlinear data is great. However, the configuration and the choice of input variables are difficult [41]
and they come with a high computational cost for the training phase [42]. This forces the user to limit
the input data which results in the forecast becoming less accurate [43].

In contrast to the neural network approach of minimizing the training error, support vector machines
try to minimize the upper bound of the generalization error [44]. If the input data can be represented by
scalar products, the kernel trick, proposed by Vapnik et al. [45] can be used. The kernel trick replaces the
scalar products with a kernel function k(x , x ′) [46], which can represent in different forms and allows
support vector machines to be used with nonlinear data [47]. As a result, many people tried to use them
for the forecast of electric load profiles [33, 48, 49]. One of the problems of support vector machines is
that the determination of their hyper parameters is difficult [50].

More recently, relevance vector machines (RVM), also known as sparse Bayesian learning [51], have
been used for forecasting electric load profiles [52, 53]. These models have a number of benefits com-
pared to support vector machines: their forecasts are probabilistic and they use fewer kernel functions
which leads to a fewer number of hyper parameters [54] and faster performance [47]. Probabilistic
outputs are preferred because this way they inherit measurement for certainty [42]. However, unlike
support vector machines, which have to solve a convex optimization problem, the inherent optimization
problem of RVMs is not convex and, as a result, harder to solve [47].

Other, less popular methods are, for example, weighted regression models [55], fuzzy methods which
are more like a classification approach [26], kernel regression [56] which are similar to fuzzy methods
[57]. There are also hybrid methods involving fuzzy predictor for Hidden Markov models [58, 59] or
neural networks as predictor in conjunction with Hidden Markov Models. The reason why a predictor is
often used is that the forecast with Hidden Markov models is not straight forward because the forecast
would be done by interpolating neighboring states [60]. However, the error-correction of Markov models
is superior to other methods [61] which is why they have been used for the automatic generation of gen-
eral load profiles [62] and the long-term forecast of electric load profiles [63]. Furthermore, there have
been alternative attempts including multi-region load forecasts using an ensemble of different methods
[64] and approaches which split the day into hours, to forecast the individual hours independently of
each other [65]. A similar approach to the later [66], has shown superiority in a competition at Puget
Sound Power and Light Company in a controlled environment [67].

For the remainder of this chapter, the most relevant methods are explained in more detail. In section 3,
the novel approach with Probabilistic Movement Primitives will be introduced.
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2.1 Persistence Models

A persistence model is the simplest statistical model possible [23]. The data which has been recorded in
the past is used again for the forecast. The idea behind such models is that there is a correlation between
time slots and, as a result, the difference between time slots should be small.

The major benefits of this approach are that the implementation is fairly simple and that these meth-
ods only depend on the chosen time intervals between recorded data and the expected recurrence for
the forecast. If the data has a circular correlation between time intervals, these methods can become
quite accurate and can be used as a benchmark for more sophisticated approaches [23].

After analyzing the industrial data set used in this thesis (further described in section 4.1), it has
become obvious that the same weekdays in a season have similar profiles. Furthermore, profiles of
weekdays are similar to each other but the profiles of weekdays are significantly different to days of the
weekend. For example, load profiles of week days have a low load at the start of the day, increasing over
the day and decreasing at the end of the day. The peak loads vary but generally are between 07:00 am
and 12:00 am, this is shown in fig. 3. Contrary to that are weekends and national holidays where the
load stays mainly the same over the day. This observation can be explained by the universal working
hours as most people work during the week at the middle of the day until evening [68]. This behavior
can also be seen in fig. 2 which shows the synthetic standard load profiles for average industrial load
profiles G0 for Germany by the VDEW (BDEW since 2007) [69, 70].

Figure 1: Mean load profile for all weekdays of
all seasons of the industrial data sets

Figure 2: Mean industrial load profile G0 for all
weekdays of all seasons

Contrary to industrial electric load profiles have electric load profiles of household their peak at the
end of the day, which is typical the time after work [68]. This can also be seen in the standard load
profile for average household load profiles H0 for Germany by VDEW [70] in fig. 4. The household
data highly depends on the behavior and number of the inhabitants, which will be further highlighted in
section 4.1.2.

Figure 3: Mean load profile for all weekdays of
all seasons of the household data set
with two kids and two two workers

Figure 4: Mean household load profile H0 for
all weekdays of all seasons
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2.1.1 Advanced Persistence Model

The forecast of the persistence model can be improved by using the mean for multiple past week days.
This is explained by the notion that the mean of the data will significantly reduce the influence of outliers
and focus on the core pattern behind the data [71]. Mathematically, this model can be described as

y∗d =
1
M

M∑
i=1

ydi (1)

where y∗d represents the forecast, ydi are the past days with d being the day of the week and M being
the number of past weeks.

2.2 Artificial Neural Networks

The human brain consists of millions and millions of interconnected neurons with the ability to com-
municate over these connections and create new connections [72], they are able to learn and excel at
difficult tasks like pattern recognition. In computational science, neural networks are imitated by arti-
ficial neural networks (ANN). ANNs use layered simplified neurons called perceptrons to recreate the
superior abilities in pattern recognition and other tasks.

Like their biological counterpart, ANNs consist of one or more layers of a multitude of perceptrons
[42]. Each perceptrons consists of a nonlinear activation function f {.} and a nonlinear basis function ϕ,
with the output of the activation function connected to the next layer of perceptrons. Consequentially,
each basis function is in "itself a nonlinear function of a linear combination of the inputs, where the coeffi-
cients in the linear combination are adaptive parameters" [47, page 227]. The coefficients are the weights
w for each connection which influcence how much the output of a perceptron depends on each incoming
connection, resulting in

y(x , w ) = f

¨
M∑
i

wiϕi(x )

«
. (2)

Here, ϕi(x) is the nonlinear basis function for input i and M is the number of inputs for this layer. For
each perceptron, the input can be constructed as follows for D input variables:

a j =
D∑

i=1

w ji x i +w j0. (3)

Activations a which are transformed by the activation function to the output z j = f (a j) of the next
layer [47]. The most common activation functions are the sigmoid or the hyperbolic tangent function
[47]:

s(x) =
1

1+ e−x
tanh(x) =

ex − e−x

ex + e−x
. (4)

For the optimization of the weights, the ANN is trained on a set of N input vectors xn with n ∈ [1, N]
and their corresponding targets tn by minimizing the error function J(w)[47],
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J(w ) =
1
2

N∑
n=1

∥y(xn, w )− tn∥2 . (5)

The training phase for each ANN consists of two phases. The first part is the evaluation of the deriva-
tive of the error function with respect to the weights and the second part is the adjustment of the weights.
The original algorithm from Rumelhart et al. is called Error Backpropagation [73] and uses gradient de-
scent for the second stage. However, many other approaches are possible too[47].

The great advantage of neural networks lies in the diversity of functions which can be used as activa-
tion and basis function for each perceptron and their hidden layers. The hidden layers are the layers of
perceptrons in between the first (input) layer and the last (output) layer. ANNs with hidden layers and
no direct acyclic connections are called feedforward neural networks or multilayer perceptrons (MLP).
An example for a small ANN with one hidden layer is sketched in fig. 5. It can be shown that an MLP
can approximate any function with any desired level of accuracy [42].

Figure 5: Example for a small ANN with one
hidden layer which has three percep-
trons. The input and output layer
only consist of two perceptrons each.

In this thesis the Neuronal Network Toolbox for MATLAB from MathWorks has been used [74].

2.2.1 Error Backpropagation

In the following section the error backpropagation algorithm is described, taken from Murphy [42]. First
the weights are Initialized randomly. After that all the activations an and the corresponding results of
activation function z = f (an) have to be calculated for all layers. The calculation is done in respect to
the error function, aNother way to express the error function from eq. (5) is as follows:

J(θ ) = −
N∑
n

K∑
k

�
y∗nk − ynk

�2
, (6)

where N is the number of training data inputs, K the number of outputs and θ the weight matrices for
the different layers[42]. Going backward through the network, the error δn = y∗n − yn is calculated first
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for the output layer and consequential for the hidden layers. The error has to be passed "down" from
one layer to the next, hence the name of the algorithm. Afterwards the gradient can be calculate with,

▽θ J(θ ) =
∑

n

�
δv

n xn,δw
n zn

�
(7)

where δv
n is the error from the first layer, δw

n is the error of the last layer and zn is the hidden layer. There
are other ways to calculate the derivative and different possible error functions [47].

The simplest way to update the weights for each layer is by using gradient descent [47] with,

w (τ+1) = wτ −η▽θ J(θ ) (8)

with the learning rate η > 0 and τ being the number of the current layer.

2.2.2 Data Representation

The data representation in the ANN model for the training data and test data is similar to representation
used for the Gaussian Process, which can be seen in section 2.3.2. This way of representing the data is
different to the typical way of taking time as input and the load as output. Instead of using the time
as an input vector, the loads have been chosen as the input and the output are the loads shifted by a
certain distance d. The result is that the inputs load for a certain time yt have a unknown relationship
to the loads from time yt+d . Additionally a history for each load is added so that each load for time yt
has a relation to the prior loads yt−i where i ∈ [1, H] and H defines the size of the history. The resulting
correlation of a dataset with size T + d can be described as:

X ∼ y
yt−H yt−H+1 · · · yt

yt−H+1 yt−H+2 · · · yt+1
...

...
. . .

...
yT−H yT−H+1 · · · yT

∼


yt+d
yt+d+1

...
yT+d

 . (9)

The reason why this representation was chosen is that the electric energy used to a later date directly
depends on the load which is currently used, sketched in fig. 6. The forecast can be done by using a X
with the T = d − 1 where y is an unknown electric load profile.

2.3 Gaussian Processes

Gaussian Process (GP) is a state of the art model for regression. First introduced by Matheron [75, 76] as
kriging based on the thesis by Danie G. Krige [77], it has later been summarized and reinvented by Carl
Edward Rasmussen and Chris Williams for machine learning [46]. In this thesis, the toolbox "GPStuff",
provided by Jarno Vanhatalo and Jaakko Riihimäki [78], has been used.

The foundation of a GP is the inference over functions p( f |X , y), where f is an unknown function
with the relationship yi = f (x i). Most algorithms try to simplify it by inferring over a set of parameters
p(θ |X , y). The way Gaussian Processes work can be seen as a more Bayesian alternative to kernel
methods [42]. The forecast y∗ for new inputs x∗ are computed by:
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Figure 6: The data representation sketched with a forecast window of three and a history size
of five.

p(y∗|x∗, X , y) =

∫
p(y∗| f , x∗)p( f |X , y)d f . (10)

The unknown function is represented by a GP which has been defined as "a collection of random
variables, of any finite number of which have a joint Gaussian distribution" [46, page 13]. As such they
are completely defined by a mean function m(x ) and a covariance function K(x , x ′):

f (x )∼ GP
�
m(x ), K(x , x ′)

�
(11)

m(x ) = E [ f (x )] (12)

K(x , x ′) = E
�
( f (x )−m(x ))( f (x ′)−m(x ′))T

�
. (13)

The mean function is set to m(x ) = 0, since GPs are flexible enough to model the mean arbitrarily
[42]. For the covariance function the squared exponential function, also known as Gaussian kernel or
RBF kernel [42], will be used:

K(x i, x j) = σ
2
sexp exp

�
−1

2

d∑
k=1

�
x i,k − x j,k

�
l2
k

�
. (14)

where lk is the length scale and defines the correlation between the points in the k dimension, σ2 is
the magnitude and defines the variability of the GPs Covariance function [79]. To forecast the output
f∗ the joint distribution over the training data D = {(x i, yi) , i ∈ [1, N]} and the test data X∗ have to be
calculated, as follows:

�
f
f∗

�
∼N

�
0,
�

K K∗
K T∗ K∗∗

��
(15)

where K = K(x , x ) has the size N xN , K∗ = K(x , x∗) has the size N xN∗, and K∗∗ = K(x∗, x∗) has the
size N∗xN∗. The posterior can be calculated by conditioning,
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p( f∗|x∗, x , f ) =N ( f∗|0,Σ∗) (16)

µ∗ = K T∗ K−1y (17)

Σ∗ = K∗∗ − K T∗ K−1K∗. (18)

2.3.1 Sparse Gaussian Processes

Since the calculation of K−1 is computational expensive and numerically unstable [42], it is advised to
use Cholesky decomposition [46]. However, this would still have a computational time need of O(N3).
It is obvious that time could be saved using fewer training examples which is why the sparse model Fully
independent conditional (FIC) [80] has been developed. Sparse models for Gaussian Processes work
by introducing inducing variables ui with i ∈ [1, m] and m < N . The corresponding input locations are
indicated by Xu. The prior over the functions from eq. (10) changes to the following inducing conditional:

p( f |X , y)≈ q( f |X , Xu, y) =

∫
q( f |X , Xu, u, y)p(u|Xu, y)du (19)

where the latent variables are assumed to be conditionally independent, given u. This leads to

q( f |X , Xu, u, y) =
m∏
i

qi( fi|X , Xu, u, y)

=N ( f |K f ,uK−1
u,uu, diag(K f , f − K f ,uK−1

u,uKu, f ))

=N ( f |K f ,uK−1
u,uu,Λ)). (20)

By inducing a zero-mean Gaussian prior over u with p(u|Xu, y)∼N (0, Ku,u), the approximation from
eq. (19) simplifies to:

q( f |X , Xu, y) =N ( f |0, K f ,uK−1
u,uKu, f +Λ) (21)

This can be calculated by using Sherman-Morrison-Woodbury formula [42]. The matrix multiplication
will take most of the time which results in a computational time of O(m2N) [79].

2.3.2 Electric Load Forecast with Gaussian Processes

The data representation for the Gaussian Process is the same one which has been used for the artificial
neural network, from section 2.2.2. With each load yt having a presumed relationship to the future load
yt+d , where d describes the forecast horizon and each load having a relationship to the historic data
yt−i|i ∈ [1, H], which is sketched in eq. (9). The Gaussian Process will learn the correlation between
loads of different times from the training data. The forecast can be done by inputing a vector,

x ∗t−d =
�

yt+H−d yt+H−d+1 · · · yt−d

�
(22)

into eq. (10) with the learned prior distribution by eq. (21) and a likelihood function. There are plenty
possible likelihood functions, each describes the ration of the noise on the input data [46]. If a Gaussian
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likelihood function p
�
y | f ,σ2

likI
�

is used with a Gaussian prior distribution the marginalization can be
done in closed form [46] otherwise the marginalization has to be approximated. The approximation
can be done with Laplace approximation or Markov Chain Monte Carlo [79]. The output of the GP for a
single x ∗t−d vector is the forecast of the load y∗d , if the input vector is expanded up to the first unknown
point y∗d ,

x ∗ =


x ∗t−d

x ∗t−d+1
...

x ∗d−1

 (23)

a forecast for the vector y∗ becomes possible.

2.4 Hidden Markov Models

Markov models or Markov Chains are Bayesian networks in which each probability complies with the
Markovian property or Markov assumption [42]. The Markovian property is defined as follows: "Future
probabilistic behavior is independent of its history at the present state "[81, page 433] which means that
in a Markov Chain, each state only dependents on the direct neighboring state and the system can be
characterized by the initial distribution over states p(x1 = i) and the transition matrix p(x t = j|x t−1 = i)
[42]. Hidden Markov models (HMM) are an extension of Markov Chains, where the Markov Chain is
defined as the hidden states zt ∈ 1, . . . , K . In addition an observation model x t ∈ 1, . . . , T is introduced
[42]. The probability for an observation x t can be defined as p(x t |zt). It is important to note that,
the Markovian property only holds for the hidden layer, but not for the observation layer [42]. For all
observed x t and latent variables zt , the joint probability can be expressed by

p (z1:T , x1:T ) = p(z1:T )p(x1:T |z1:T ) =

�
p(z1)

T∏
t=2

p(zt |p(zt−1)

��
T∏
t

p(x t |zt)

�
(24)

HMMs have been first introduced in the 1960s [82] and are, for example, used for speech recognition
[83], DNA sequencing [60], or for different financial problems [84]. Most of the time, their hidden layer
is estimate which is assumed to represent a predetermined model [42]. The estimation is performed by
inferring over the observations p(zt |x1:t) for online and p(zt |x1:T ) for offline learning [42]. However,
HMM can also be used for the forecast of time series by forecasting p(zt+h|x1:t) for h > 0 [85]. Another
way to use HMMs for forecasting is by computing the class-conditional densities and feeding them into
various classifiers [58] or by using the class-conditional in conjunction with Bayesian weight regression
[86].

In many cases, the HMM is trained by using the Baum-Welch algorithm. Jianhua et al. for example,
used it to forecast mid-term electricity prices with historic prices and electric loads as input [87]. The
Baum-Welch algorithm is similar to the Expectation Maximization algorithm [42] which will be described
in section 3.1.3.

If the hidden states are continuous, an HMM becomes a state space model (SSM) and if all proba-
bilities are Gaussian, the SSM becomes a linear-Gaussian state space model (LG-SSM), also known as
linear dynamical system (LDS)[42]. The Inference over such an LDS is done by using the Kalman filter
algorithm which calculates the marginal posterior distribution p(zt |y1:t ,0 : t ) = N (zt |µt ,Σt) in closed
form [42]. This algorithm can be applied to forecast time series [42]. As a result, has been used for
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"short-term" forecasting electric load profiles [88] and "very-short-term" load forecasting [89]. Other hy-
brid approaches are Kalman filters in conjunction with a Fuzzy predictor to forecast electric load profiles
[90]. Another way to use the Kalman filter algorithm is, for training an ANN to forecast electric load
profiles [91]. The great advantages of HMMs are that they are built upon a strong statistical foundation
and are computationally efficient [60].

3 Probabilistic Movement Primitives for Electric Load Forecasting

In this section, a new approach to electric load forecasting will be described. Probabilistic Movement
Primitives (ProMP) is a newly suggested method for Robot Control and a similar approach to Dynamic
Movement Primitives (DMP) [92]. Here the idea is to show the robot how to do a certain task, and
the robot derives its control laws from the observation. However, contrary to DMP, which uses second-
order dynamical systems, ProMP uses a probabilistic approach [93]. In the following chapter, the new
algorithm will be explained and it will be explained how apply it to electric load forecasting.

3.1 Probabilistic Trajectory Representation

ProMP uses a hierarchical Bayesian network or multi-level model to describe the data [42]. In the first
step, the training data has to be transformed into feature space where each profile is represented in terms
of fit parameters. This means applying a fixed nonlinear mapping on the training data, which maps the
high dimensional data on the lower dimensional feature space [47]. The mapping will be realized in
terms of using Gaussian basis functions

ϕi(z j) = exp

 
−
�
z j − ci

�2

2h

!
, Φi j =

ϕi(z j)∑N
i ϕi(z j)

, (25)

where z ∈ [0,1] represents the time steps of the day, ci corresponds to the centers of the Gaussian func-
tion and h is defined as the step size or width of the basis function [34]. On the right hand side, the basis
matrix, holding the normalized Gaussian basis functions, is defined. An example for the Gaussian basis
functions and the resulting basis matrix is displayed in fig. 7 and fig. 8.

Figure 7: Gaussian basis functions Figure 8: Normalized Gaussian basis functions

Introducing a weight vector w allows to compactly represent a load profile y of a single day as

y = ΦT w + ε, (26)
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where ε ∼ N (0,Σy) represents the Gaussian noise which is independent and identically distributed.
The accuracy of the compact representation depends on the number of basis functions as shown in fig. 9.

Figure 9: From left to right, a sample electric load profile and its compact representation respectively in
terms of 20, 50, and 100 basis functions

Since the compact representation from eq. (26) is a linear function, it is possible to derive a general
linear model [42] of the form:

p(y |w ) =N (y |ΦT w ,Σy)

=
1

|2πΣy | 12
exp

�
−1

2

�
y −ΦT w

�T
Σ−1

y

�
y −ΦT w

��
. (27)

Maximizing the above expression yields the most likely representation in feature space for the observed
profile. In order to forecast a new profile, the weights have to be calculated for all observations. This
results in N weight vectors, representing N single days. To formalize a distribution over the weights, the
sample mean and the sample covariance for all time steps have to be calculated, as follows:

µ j =
1
N

�
N∑

i=1

x i j

�
, Σi j =

1
N − 1

N∑
i=1

�
wi j −µ j

� �
wi j −µk

�
. (28)

In the following sections we use θ to denote the tuple of the expectation vector µw and the covariance
matrix Σw. With these parameters it is possible to formalize a distribution over the weights:

p(w |θ ) =N (w |µw,Σw). (29)

This distribution makes it possible to calculate a forecast of an electric load profile y∗ by marginalizing
over the distribution of the weights,

p(y∗|θ ) =
∫

p(y∗|w )p(w |θ )dw

=

∫
N (y∗|ΦT w ,Σy∗)N (w |µw,Σw)dw

=N (y∗|ΦTµw,ΦTΣwΦ+Σy∗)

=
1

|2πΦTΣwΦ+Σy∗ |1/2 exp
§
−1

2
(y −ΦTµw)

T (ΦTΣwΦ+Σy∗)−1(y −ΦTµw)
ª

. (30)

The weights w can be learned by Ridge Regression, see section 3.1.2. Given multiple demonstrations,
the parameters θ are derived from the learned weights. It is now possible to create a general forecast
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which only depends on the parameters learned from the old data by maximizing the probability for the
forecast which leads to

y∗ = Φµw. (31)

The standard deviation of the forecast σ∗ can be calculated with

σ∗ =
Ç

diag
�
ΦTΣwΦ+Σy∗

�
. (32)

3.1.1 Conditioned Forecast

Over the course of a day, the forecast may be updated. In that case, the incorporation of the accumulated
data until the forecast is needed would be preferred. Formulating this mathematically means that at
time t ∈ [0,1) the new, only partly available, observation y∗p has been recorded. In fact, it is possible to
formulate a distribution over the partly observed data

p(y∗p |w ) =N (y∗p |ΦT
p w ,Σy∗p), (33)

which will be fed into the hierarchical Bayesian network to reduce the uncertainty introduced by the
distribution over the weights from eq. (29). The corresponding covariance to the partly observed data
yp is detonated by Σp. By using Bayes Theorem, it is possible to reformulate the distribution over the
weights, from eq. (29), to take the new data into account

p(w |yp)∝N (yp|ΦT
0:t w ,Σp)p(w ) (34)

and calculate a forecast y∗ which is conditioned on the new data for the current day by marginalizing
over the weights

p(y∗|θ ) =
∫
N �

y∗|ΦT
t w ,Σy∗

�
p(w |yp)dw. (35)

Since the conditioning is done on a Gaussian distributions, the resulting distribution is also Gaussian.
Therefore, the new parameters θ ∗ = {µ∗w,Σ∗w} of the weight distribution can be calculated in closed form
as

µ∗w = µw +ΣwΦt(Σp +Φ
T
t ΣwΦt)

−1(yp −ΦT
t µw), (36)

Σ∗w =Σw −ΣwΦt(Σp +Φ
T
t ΣwΦt)

−1ΦT
t Σw, (37)

where Σp is the desired precision on the data, especially the fit on the observed data points yp of the
current day. As a result a new forecast, conditioned on the new data, can be calculated:

p(y∗|θ ) =N (y∗|ΦT
t µ
∗
w,ΦT

t Σ
∗
wΦt +Σ

∗
y). (38)

By maximizing eq. (38), a forecast based on the partial data yp can be calculated

y∗ = Φµ∗w (39)

σ∗ =
Ç

diag
�
ΦTΣ∗wΦ+Σy∗

�
. (40)

The recalculation does not require much computational effort because all computations are in closed
form. The result of conditioning is that, as day goes by, the forecast y∗ increases its accuracy by reducing
the uncertainty from eq. (33).
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3.1.2 Ridge Regression

Ridge regression [94], or sometimes called Tikhonov regularization [95, 96], is a more Bayesian ap-
proach to regression compared to linear regression. The difference to linear regression lies in the added
prior distribution over the weights, which reduces the overfitting tendency of linear regression [47].

In linear regression, the maximum likelihood estimation (MLE) or least squares estimation is done
over the probability

p(y|x ,θ ) =N �
y|w T x ,σ2

�
, (41)

which defines a linear model. A non-linear relationship of input to output data can be achieved by using
basis function expansion with ϕ(x ) = [1, x , x2, . . . , x d] [42] .

p(y|x ,θ ) =N �
y|wϕ(x ),σ2

�
, (42)

MLE maximizes the logarithmic likelihood of the distribution and results in the following solution:

w = (X T X)−1X T y (43)

Ridge regression adds a distribution over the weights p(w |α) =N �
w |0,α2I

�
to the eq. (41), expand-

ing linear regression as follows:

p(w |X , y)∝ p(y |X , w )p(w )

p(w |X , y)∝N (y |X , w )N (w |0,α2I) (44)

By maximizing the posterior distribution, a new estimation of w is possible [42]:

arg max
w

N∑
i=1

N �
yi|w0 + w T x i,σ

2
�
+

D∑
j=1

lnN �
w j|0,α2

�
(45)

Solving eq. (45) in prospect to the weights w results in:

w =
�
ΦΦT +λI

�−1
Φy (46)

where λ corresponds to σ2

α2 and λ is a term to penalize complexity [42]. The result is a more robust form
of regression, since (ΦΦT +λI) is better invertible than linear regression counterpart XX T from eq. (43)
[42].
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3.1.3 Expectation Maximization

In real world applications, the completeness of the electric load profiles cannot always be guaranteed.
The reason for that is that there are some common problems with the logging system. Maintenance,
for example, can disrupt the chronology of the observation. With regard to the possibility of incomplete
data, the need to look for another way to create the weights and the distribution over the weights, in-
stead of Ridge Regression from section 3.1.2, to compensate for the loss becomes apparent. Expectation
Maximization is a way to cope with missing data and will be used here to calculate the parameters µw
and Σw. The basics for the implementation of the algorithm have been provided by M. Ewerton’s thesis
[97].

The objective of the Expectation Maximization algorithm is to calculate the mean and covariance of
p(w ), where w is a hidden vector-valued variable:

∏
i

p(yi|θ ) =
∏

i

∑
w

p(yi|w ,Σy)p(w ), (47)

where p(yi|w ,Σy) is a Gaussian distribution over a training example and θ is, again, defined as the
tuple of parameters θ = {µw,Σw}. The initial estimation of θ can be done by using Ridge Regression,
from section 3.1.2, resulting in

θ0 = {µw0,Σw0} . (48)

The Expectation Maximization algorithm gets its name from the two steps necessary to calculate
eq. (47), which are sub sequential iterated until convergence is achieved. In the Expectation Step
(E-Step) "’the missing data are estimated given the observed data and current estimate of the model pa-
rameters"’[98, page 5]. This is done by computing the so-called expected complete data log likelihood
Q(θ ,θ0). In the Maximization Step (M-Step), the new parameters θ are estimated by maximizing the
Q(θ ,θ0) function.

Expectation Step
In ProMP the expected complete data log likelihood has the form:

Q(θ ,θ0) =
∑

i

Eθ0
(ln(pθ (yi|w )|y = yi))

=
∑

i

ln

�√√ 1
|2πσ2I |

�
− 1

2

∑
i

�
y T

i (σ
2I)−1yi − 2y T

i (σ
2I)−1Φµwi +µ

T
wiΦ

T (σ2I)−1Φµwi + Tr
�
ΦT (σ2I)−1ΦΣwi

�	
+
∑

i

ln

�√√ 1
|2πΣw|

�
− 1

2

∑
i

�
(µwi −µw)

TΣ−1
w (µwi −µw) + Tr

�
Σ−1

w Σwi

�	
. (49)

For the complete derivation of the equations, the reader should referred to [97].
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Maximization Step
New estimations for the parameters are calculated by maximizing eq. (49), the new parameters are

µ∗w =
∑

i µwi

M
, Σ∗w =

ET E +
∑

iΣwi

M
. (50)

where M is the number of training examples and the remaining variable are defined as follows:

Σwi =
�
ΦT (σ2I)−1Φ+Σ−1

w0

�−1
(51)

µwi =Σwi

�
ΦT (σ2I)−1Φ+Σ−1

w0µw0

�
(52)

ei = µwi −µw, E =


eT

1
eT

2
...

eT
M

 (53)

The parameters calculated this way can be used as in section 3.1 to calculate the unconditioned fore-
cast of electric load profiles, with eq. (30) or the conditioned forecast of electric load profiles, from
section 3.1.1 with eq. (38).

3.2 Clustering for ProMP

So far it has been implied that the data for each day is looking similar, with a peak at noon. However,
this may not always be the case, because consumer loads vary greatly from weekdays to weekends or
national holidays. This can be seen in section 3.2, which shows the Monday in week 22 from 2013 and
section 3.2 shows the Thursday of the same week. After taking a look at section 3.2, which shows the
electric load profile of the Saturday from the same week, their similarity becomes obvious. That is the
case, because the Thursday has been a national holiday. These Figures are provided by a light industrial
facility, further explained in section 4.1.

Figure 10: From left to right, the electric load profiles for: Monday the 27 in May 2013, Thursday the 30
in May 2013 and Saturday the 1 in June 2013

A workaround for the problem of the difference between weekdays and days of the weekend is to
imply a clustering of the data. A naive approach would be that the system only learns the weights from
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the same weekdays as the day of the forecast.

Nevertheless, seasonal components are still an issue. A shorter learning period ensures that seasonal
influences are minimal. However, this means that the training data is drastically limited, which can re-
sult in a bad forecast. Another problem, is the identification of national holidays without predetermining
them before hand.

These problems can be approached by using the combination of K-Means algorithm and Expectation
Maximization algorithm. The result of K-Means is a predetermined number of clusters with mixed Gaus-
sian probabilities [47]. By using Expectation Maximization, the Gaussian probability of each cluster can
be calculated and the most probable cluster can be determined. By conditioning on the most probable
cluster, a forecast based solely on the data entries of the most probable cluster is possible. This approach
aims at identifying the difference between holidays, weekends and weekdays in runtime and in weight
space.

3.2.1 K-Means Clustering

K-Means clustering goes back to the idea of Steinhaus in 1955 [99] and has first been formalized by Lyod
in 1982 [100]. The bottom line of the algorithm is the partition of the training dataset with M entries
into k smaller sections, with k ≪ M . In each subsection (cluster) all entries have the same distance to
the center of the cluster µi, named the cluster mean. The distance to the cluster mean is calculated by
the following equation, which is sometimes called the distortion measure [47]:

J =
k∑

i=1

∑
x j∈Si

∥ x j −µi ∥2, (54)

where x j describes each observation with j ∈ [0, M] and Si, with i ∈ [0, k], is one of the calculated
clusters. The algorithm by Lloyd [100] proceeds as follows :

Initialization
• Choose random values for µ0 to µk from the data.

Assignment
• For each x j calculate the distance to µi and assign each x j to the corresponding Si where the

distance is minimal.

Update
• For each Si calculate µi =

1
|Si |

∑
x j∈Si

x j and recalculate J with eq. (54).

Assignment step and update step are repeated until the difference of J from one iteration to the next
falls below a predetermined threshold [47].

3.2.2 Expectation Maximization for Clustering

The result of clustering is a mixed Gaussian distribution [47]. To calculate the probabilities for each clus-
ter and to redefine the distribution over the weights, the Expectation Maximization Algorithm is used.
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The algorithm is defined similarly to the Expectation Maximization from section 3.1.3.

The probabilities of each cluster p(k) are defined as αk =
nk
n , where n is the number observations

and nk is the number of observations assigned to cluster k. The clusters are a priori calculated by using
K-Means from section 3.2.1, as well as the covariance matrix Σk and mean vector µk for each cluster.
With these initial parameters, the Expectation Maximization Algorithm can be used in the following way.

Expectation Step
In the Expectation Step the probabilities of each cluster k, given the weight vector wi, are calculated,

as follows:

p(k|wi) = rik =
N (wi|µk,Σk)αk∑K
j α jN (wi|µ j,Σ j)

, (55)

where K is the number of clusters and rik are called the responsibilities [47].

Maximization Step
The Maximization Step is used to update the parameters:

nk =
n∑

i=1

rik, ak =
nk

n
(56)

µk =

∑n
i rikwi

nk
, Σk =

1
nk

�
n∑
i

(wi −µk)(wi −µk)
T

�
. (57)

Afterwards, the probability p(w ) can be calculated,

p(w ) =
∏

i

∑
k

p(k)p(w |k)
=
∏

i

∑
k

αkN (wi|µk,Σk). (58)

Inference
With the prior distribution over the weights calculated by Expectation Maximization, it is possible to

calculate the most probable cluster k∗, given the partial observation yp from section 3.1.1, using Bayes
Theorem [47] as follows:

p(k|yp)∝ p(yp|k)p(k),
p(k|yp)∝ p(yp|k)αk (59)

where p(yp|k) can be calculated with p(w |k) =N (w |µk,Σk) from eq. (58) and p(yp|w ) from eq. (33)
by

p(yp|k) =
∫

p(yp|w )p(w |k)dw

=

∫
N (y∗t |ΦT

t w,Σ∗y)N (w |µk,Σk)dw . (60)
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With the most probable cluster calculated by k∗ = argmax
�
p(k|yp)

�
, it is possible to condition over

the cluster k∗ for the partial observation yp and to calculate the most probable forecast y∗k∗:

p(w |k∗, yp)∝N (yp|ΦT
t w,Σ∗y)N (w |µk∗Σk∗) (61)

p(y∗k∗θ , k∗) =
∫

p(y∗k∗ |w )p(w |k∗, yp)dw

=N �
y∗k∗ |ΦTµk∗ ,ΦTΣk∗Φ+Σ∗y

�
. (62)

These equation can be calculated in closed form like it has been shown before in eq. (36) and eq. (37).
The result is the probability for the forecast as it has been defined in eq. (38) and can be used to calculate
a more accurate forecast. The calculation is the same as in eq. (31):

y∗k∗ = Φµk∗ (63)

σ∗k∗ =
Ç

diag
�
ΦTΣk∗Φ+Σy∗

�
. (64)

4 Evaluations

In this section, the origin of the data sets will be described, followed by a section describing how the
different approaches are optimized. Next is the definition of the evaluation criteria and the definition of
the validation methods. This chapter is closed by the comparison of the different methods for electric
load forecasting.

4.1 Data Sets

For the validation of the different forecasting methods, each method has been used on all time series
of the different data sets. These data sets can be categorized into two groups, group one is aggre-
gated load for a light industrial facility. The second group consists of load profiles for different types of
households. For the sake of comparison the data has been normalized to equidistant time steps. The
distance between between each data point is fifteen minutes. If the data has been available in a more
finely graduated form, the mean for multiple time steps has been calculated and taken as new data point.

Despite indications of a positive correlation between electric consumption and air temperature [101],
only the load will be used as a input variable for each approach. This is in contrast to a survey from
2001 done by Hippert et al. [102], which discovered that most load forecasting methods use additionally
weather forecasts or an ensemble of them [103] as input variables. The reason why weather forecasts
have not been used as additional input is that, they introduce further uncertainty, which can influence
the forecast negatively [104] and are highly dependent on the location [64]. As a result each tested
method is independent of the location and only depends of the historic data of the data set.

4.1.1 Industrial Data Set

This data set contains the consumed load data for the years of 2013 and 2014 recorded by the operator
of the light industrial park in Kitzingen in Germany and has been provided as part of the research project
Intellan with the Fraunhofer Institute for solar energy systems [105]. This light industrial park, shown
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in fig. 11, consists of a multitude of buildings with different purposes and is inhabited by different types
of companies, additionally many buildings have solar panels installed on the roof.

For each time step the true load value Lt rue is calculated by the sum of the loads for Li of the different
facilities M , as follows

Figure 11: The light industrial park in Kitzingen in Germany from which the industrial data set
has been provided

Lt rue =
M∑
i

Li −
M∑
i

PVi + Lbought (65)

where PV is the photo-voltaic load produced by the different solar plants on top of the roofs and Lbought
is the load obtained from the grid. The industrial data for both years is highly similar, besides having
different peaks, which can be seen in the overall mean in fig. 12 and in the mean of all the weekdays
fig. 13. Although, the weekends look different, the data for 2014 looks similar to the data for a weekday,
which suggests that work is done on the weekends, as seen in fig. 14. An overview of the industrial data
set can be found in table 3.

Figure 12: Average electric load profile, on the left for 2013 and on the right for 2014

Year Minimal Load Mean Load Maximal Load

2013 −320.4800 147.2188 576.0000
2014 −558.0000 170.8113 461.0000

Table 3: An overview of industrial data set

24



Figure 13: Average electric load profile for weekdays, on the left for 2013 and on the right for 2014

Figure 14: Average electric load profile for weekends, on the left for 2013 and on the right for 2014

4.1.2 Household Data Set

This data set contains the load data of different sized households for the year 2011. The data set includes:
a very economical household of two workers and two kids with an annual sum of 2219 kWh (normal
usage per capita is 2972 kWh [106]), a synthetic electric load profile of a four person household with an
annual sum of 4647 kWh, a household with two kids and one worker with an annual sum of 5600 kWh
and a household with two kids and two workers with an annual sum of 6500 kWh. By comparing the
annual sums of the different households, it becomes obvious that the load is highly dependent on the
number of inhabitants and the their behavior. As a result, the load profiles across the household look
highly different, which is shown in figs. 15 to 17, and table 4.

Annual Sum Minimal Load Mean Load Maximal Load

2219 kWh 0.0286 0.2533 4.8190
4647 kWh 0.0600 0.5308 7.0867
5600 kWh −0.2600 0.6490 8.4280
6500 kWh 0.1827 0.7407 8.4827

Table 4: An overview of household data set
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Figure 15: Mean of all electric load profiles for all households and all days. From left to right: house-
hold with 2219 kWh, household with 4647 kWh, household with 5600 kWh, household with
6500 kWh

Figure 16: Mean of all electric load profiles for all households and all weekdays. From left to right: house-
hold with 2219 kWh, household with 4647 kWh, household with 5600 kWh, household with
6500 kWh
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Figure 17: Mean of all electric load profiles for all households and all weekends. From left to right: house-
hold with 2219 kWh, household with 4647 kWh, household with 5600 kWh, household with
6500 kWh
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4.1.3 Handling Outliers

Outliers are points in the data which are faulty. The reason for corrupted data points are plentiful: from
maintenance on the logging system to software faults everything could be possible.

Most outliers can be easily detected because the data for these does not make sense. In the electric
load profiles from the industrial data set, shown in fig. 18, are loads which are smaller than zero. This is
not possible because the solar production load has been removed, as explained in section 4.1.1. Profiles
with such outliers have been removed from the data set. Additionally, load profiles with only few values
have been removed too. There are other outliers which can not be so easily detected and would need an
expert to look at the data, these have not been removed [23]. An overview of the data without outliers
can be seen in table 6.

Figure 18: Outlier from Industrial Data Set

Data set Minimal Load Mean Load Maximal Load

Industrial 2013 0.000 147.8001 386.0000
Industrial 2014 0.000 172.2946 461.0000
Household 2219 kWh 0.0286 0.2571 4.8190
Household 4647 kWh 0.0600 0.5373 7.0867
Household 5600 kWh −0.2600 0.6586 8.4280
Household 6500 kWh 0.1827 0.7476 8.4827

Table 6: An overview of household data set
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4.2 Parameter Optimization

In this section, the different parameters for each approach are highlighted and the optimization of these
parameters will be explained.

4.2.1 Parameter Optimization for Probabilistic Movement Primitives

For the optimization of the hyperparameters for ProMP, the library from "’Laboratoire de Recherche en
Informatique"’ for Covariance Matrix Adaptation Evolution Strategy (CMAES) has been used. The library
is based and developed by Nikolaus Hansen [107]. CMAES is a blackbox optimizer provided in differ-
ent programming languages for example Java, C++ or MATLAB. The optimizer is based on evolution
algorithmic [107] and is used to find the optimal hyperparameters in respect to the RMSE explained in
section 4.3. The hyperparameters are:

h
which is the width of each basis function, see eq. (25).

N
which is the total number of used basis functions and influences the dimensional reduction, which
is explained in section 3.1.

λ
which is the complexity penalty parameter for Ridge regression from section 3.1.2 and helps with
the inversion when calculating the weights.

Σp
which is the desired precision on the current data, see eq. (38), it was chosen as σp I .

k
if clustering has been used, will k define the number of clusters used, see section 3.2.1.

The optimization process has been started with 24 basis functions, each representing an hour of the
day and the other parameters have been set to one. The number of cluster centers has not been found
by optimization, instead it was set to 14 to automatically differentiate summer and winter days. The
resulting values of the optimization for the hyperparameters can be seen in table 7.

Parameter Name Parameter value

h 8.522× 10−5

N 48
λ 0.041
σp 0.952
k 14

Table 7: The optimal parameter found by the CMAES library

4.2.2 Parameter Optimization for Persistence Model

The normal persistence model has no parameters, the advanced similar day-model has only one param-
eter M . The parameter M represents the number of weeks included in the calculation of the mean over
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the historic data, see section 2.1.1. This parameter has been optimized by hand and has been set to the
value of M = 3. This means that up to three weeks are taken into account for the calculation of the
forecast of the Persistence model.

4.2.3 Parameter Optimization for Artificial Neuronal Network

The parameters for the artificial neuronal network can be automatically be optimized by MATLAB. To
optimize the parameters, the trainings data set is randomly split by MATLAB into three parts: 70%
training, 15% validation, 15% testing. The ANN is trained by a more robust variation of gradient descent,
which is called Scaled Conjugate Gradient, and is a algorithm made for batch optimization [47]. The
performance of the ANN is automatically tested on the test part by calculating the Mean Squared Error
=
∑

i
1
n

�
y∗i − yi

�2
. If the ANN can be validated six times, the training phase is finished.

Epochs
the number of maximal training rounds done.

Neurons
the number of maximal neurons are used for the hidden layer.

History Size
the amount of loads are in relation to the actual load value, see section 2.2.2.

Forecast window
the length between the actual load value and the future load value, see section 2.2.2.

The resulting values are can be seen in table 8 and the resulting artificial neuronal network created by
MATLAB can be seen in fig. 19.

Epochs max neurons history size forecast window

1000 10 90 4

Table 8: The optimal parameters found by hand

Figure 19: Sketch of the resulting neuronal network generated by MATLAB
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4.2.4 Parameter Optimization for Gaussian Process

The GPStuff library, used in this thesis, comes with an optimization function. This function can optimize
the GP with respect to the likelihood, the covariance, the inducing parameters or a combination of these.
For the evaluation of the GP, it has been optimized with respect to the covariance and the likelihood. The
optimization is done by maximum a posterior in cooperation with gradient descent. The most probable
parameters θ from the underlying function f are deduced by the following calculation:

< θmax,ϕmax >= argmax
θ ,ϕ

p ({X , y} |ϕ,θ )

= argmax
θ ,ϕ

∫
p (y | f ,ϕ) p ( f |X ,θ )d f , (66)

where the prior distribution p ( f |X ,θ ) is the distribution from eq. (19) and the likelihood distribution is
a Gaussian likelihood of the form p

�
y | f ,σ2

likI
�
. The likelihood distribution describes how the training

data deviates from the predicted underlying function [46]. As a result the parameters θ are

σlik
which describes the noise variance of the training inputs [79].

σsexp
which defines the variability of the GP [46].

lk
which describes the correlation of the input variables between each other [79].

4.3 Evaluation Criteria

The performance of the different approaches to forecasting electric load profiles will be assessed by
means of three criteria. The root mean squared error (RMSE) is the most common evaluation criterion
for regression [46] and is calculated by:

RMSEi =

√√√∑n
t=1(y

∗
i − yi)2

n
(67)

where y∗i is the forecast, yi is the actual value for that day and n is length of that day. Additionally, for
the forecast done to a later time of the day the RMSEi will be calculated for the remaining time of the
day, without the time steps already available to the forecast algorithm. To compare the results of the
cross validation, the sum of RMSEi for each forecast and the mean over all RMSEi for each forecast is
calculated.

One of the problems with RMSE is that it is prone to outliers [108] and not ratio-scaled, which means
that the calculated RMSE is only comparable to data drawn from the same data set [18]. To compare the
approaches across different data sets the mean absolute percentage error (MAPE) is calculated. MAPEi
for day i is defined as:

MAPEi =
1
n

n∑
t=1

��100
�
yi − y∗i

���
yi

, (68)
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where the variables are defined as before in eq. (67). The last evaluation criterion is, the calculation of
the Symmetric Mean Absolute Percentage Error (SMAPE), which overcomes the tendency of MAPE to
put a heavier penalty on positive error [108]. SMAPEi for day i is defined as follows:

SMAPEi =
1
n

n∑
t=1

200
��yi − y∗i

��
yi + y∗i

(69)

In order to assess the performance of the different approaches with respect to the adjusting dynamics
of the current day profile, new forecasts are generated at every hour from midnight to noon. This
results in eleven forecasts for each day and eleven values for each evaluation criteria for each day. To
compare the performance of each approach over all test days, the average for each time step is calculated.
Additionally, the overall performance is evaluated by calculating the average over all time steps. Thus, a
single value for each evaluation criteria for each data set is derived.

4.4 Cross Validation

To evaluate the performance of the different approaches, each approach will be validated by using the
popular method of k-fold cross validation [42]. In k-fold cross validation, the data is randomly split into
K folds, and each approach uses K − 1 fold as training samples and the last fold as test sample. For each
entry in the test sample, the evaluation criteria from section 4.3 are calculated. This procedure has to be
done for each fold. For this thesis, two different ways to fold the data will be used, which are: 2

3 cross
validation, where three folds are used and leave-one out cross validation. Leave-one out cross (LOOC)
validation is the fully exhaustive case of k-fold cross validation, where the data set with N entries is split
into N folds and N − 1 folds are used for training and only one data entry is used for testing, iterated
over each entry. However, leave-one out cross validation is computationally very taxing, as a result, only
the persistence model and the ProMP approach will be validated this way.

4.5 Comparison

In this section a comparison is made using the validation methods from section 4.4 and the evaluation
criteria from section 4.3. Afterwards an general overview of the performance of each approach with
respect to each evaluation criterion will be given. Followed by a conclusion at the end this section. For
a complete list of the performance with respect to the different evaluation criteria, the reader is referred
to section 5.

4.5.1 K-Means Evaluation

Some days have been chosen to highlight the performance of the K-Mean extension. These days are taken
from the 2013 industrial data set. The ninth day of the industrial data set has been a Wednesday and
can be seen in fig. 20. In table 17, it can be seen that overall error for the 2

3 cross validation of the ProMP
approach with Clustering has the second best value with MAPE and the best result with SMAPE, see
table 16. In fig. 21, the performance forecast can be seen over the course of the day and the clustering
in relation to the error can be seen in table 9. It becomes obvious that the cluster with the maximal
likelihood is cluster one, other days in this cluster are for example: Tuesday the 01/08/13, Wednesday
the 01/16/13 or Thursday the 01/31/13, shown in table 47. These days are all weekdays and days
which are not national holidays. The first two assignments to cluster five are bad because cluster five
includes mostly Sundays and Saturdays. However, these assignments are not important because most
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days start similar, which can be concluded from the low error for these assignments and has also been
discussed in section 4.1.1. The Assignment to the same cluster at 7:00 o’clock is wrong and results in a
penalty in performance.

Figure 20: Load forecasting with all approaches for the ninth day in 2013 of the industrial data set

Time RMSE MAPE SMAPE Cluster

0:00 25.154 8.973 8.447 5
1:00 30.846 11.628 10.880 5
2:00 24.232 8.573 8.147 1
3:00 24.552 9.442 9.148 1
4:00 14.964 5.362 5.308 10
5:00 14.373 4.928 4.867 1
6:00 15.192 5.268 5.159 1
7:00 61.717 31.244 25.429 5
8:00 16.804 5.845 5.880 1
9:00 22.459 8.390 7.968 1
10:00 21.649 7.641 7.287 1
11:00 31.852 11.854 10.946 1

Table 9: The performance of the ProMP approach with K-Means extension with respect to the evaluation
criteria

4.5.2 RMSE Comparison

The study of the RMSE shows that ProMPs beat the other approaches over the course of a day because
it becomes gradually more accurate, while the difference in the industrial data set is quite obvious, see
tables 27 and 28. The difference in the household data is small, see tables 23 to 26. This can be con-
tributed to the different scale of the two data sets. The different scale of the data set makes it more
difficult to compare the performance if only the RMSE is taken into account. However, a closer look

33



Figure 21: Load forecasting with ProMP and K-Means for the ninth day of the industrial data set. The
black bar indicates the time the forecast is calculated. The times are: at 0:00 o’clock, at 4:00
o’clock, at 8:00 o’clock and at 12:00 o’clock

at the comparison of the household data shows that, while the other approaches struggle to keep the
RMSE low, the ProMPs hold or decrease their RMSE, for example table 23. The rise of the RMSE for
most of the methods is cause by the division by a decreasing number of points. The reason for a constant
error in persistence approaches lie in their design, as it has been discussed in section 2.1, their basis is
that, there is a similarity between electric load profiles but they will not be the same. In this context,
the data of the household with an annual sum of 5600 kWh has to be mentioned in table 24, since
there the mean RMSE for both persistence Models stay at their initial value. Around 27 for advanced
persistence and 40 for the normal persistence model in LOOC and around 30 and 40 in 2

3 cross validation.

The difference in scale becomes more apparent after taking a look at the sum over all RMSE, where
the superiority of ProMPs becomes smaller. Especially in the second data set for 2014, ProMPs are
beaten by the advanced persistence Model(sum of RMSE 13700 to 12878 in LOOC) . This can be con-
tributed to the fact that RMSE is prone to outliers [18] and the mean over the RMSEs significantly
reduces their influence [71]. As it has been discussed in section 4.1.3, the data sets are flawed especially
the industrial data set. The ProMP Model with K-Means extension is performing especially bad, which
can be seen in table 28 and table 27, both showing the means of the RMSE for the two years. This
bad behavior can also be seen in tables 27 and 34, which display the sum for the RMSE. A reason for
this behavior could be the determination of the right clusters, a solution could be the increase in clusters.
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The household data is presumed to be less flawed, which results in better forecasts of ProMP and for
the artificial neuronal network. As a result the ANN becomes competitive in this data sets, see tables 25
and 26. This could mean that the ANN has been overfitted by the optimization process while using the
industrial data set. It is worth mentioning that results of the ANN and of the ProMP Model with the
K-Means extension stay the same over the course of the day, while the pure ProMP approach and the
ProMP Model with the Expectation Maximization extension, start inaccurate but gradually increase their
accuracy.

In the overall performance comparison, see table 18, it becomes apparent that the average error
for 2

3 cross validation has the lowest value with ProMP for the household datasets. The extension of
the ProMP approach with K-means further decreases the error. For the industrial data, the normal
ProMP approach delivers lower errors then the Persistence approach and the ANN but does not beat
the advanced Persistence model. Similar results can be seen in LOOC validation, where ProMP has in
average lower errors than the normal Persistence approach but does not beat the advanced Persistence
approach for the industrial datasets. For every Household data set ProMP delivers lower errors.

4.5.3 MAPE Comparison

The MAPE is not a perfect way to compare forecast and actual value with one another since the compu-
tation will become unstable if the actual value is near zero. As it can be seen in section 5, some values
becomes infinity because the actual value to forecast has been zero or near zero.

However, the algorithm becomes more accurate over the course of a day, for example, in table 17
which shows the results of the LOOC validation and the results for the 2

3 cross validation. The data has
been produced by the ninth day of the first industrial data set (01/09/13), which is a Wednesday and
has been further discussed in section 4.5.1.

The addition of Expectation Maximization to the ProMP Method leads to a error of 1905 % if no data
of the current day has been seen. The overall performance can be enhanced if data of the current day is
available and the forecast without data is discarded, see table 16. This behavior stays the same for most
of the industrial dataset, which highlights another problem with MAPE: there is a lower bound but no
upper bound. For the household data set, the Expectation Maximization extension behaves normal, with
now catastrophic result for the forecast at midnight. However, it becomes obvious that all algorithms
have trouble with the forecast of household data. Especially the persistence Model without the Mean
extension. For the household with the highest annual sum, the ProMP with the K-Means extension
behaves really well, while the normal ProMP does not work so well, which can be seen in table 35.
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4.5.4 SMAPE Comparison

In the calculation of the SMAPE, the value is not divided by zero if the actual load value is zero. As a
result the values for the SMAPE never become infinity and the is more robust near zeros [108]. However,
as with the MAPE there is no upper bound, resulting in huge error values for the ProMP Method with
the Expectation Maximization extension, which can be seen in table 46 and table 45. However, they
are significantly smaller compared to the values of the MAPE. Still, this means that the ProMP Model
with Expectation Maximization, in order to work well, needs data from the actual day to function. The
superiority of the advanced persistence model is not significant in the industrial data if the SMAPE is
taken into account.

Considering the household data, it becomes apparent that each approach is struggling with the data of
the household with the smallest annual sum of 2219 kWh. This is similar to the comparison of the MAPE.
However, the SMAPE makes it it possible to compare the Household with annual sum of 4647 kWh and
the household with 5600 kWh because the values do not become infinite. For both households, the one
with 4647 kWh and the one with 5600 kWh are the values of each forecast method similar. Only the
ProMP approach with K-Means extension has a short lead,as can be seen in tables 42 and 43.

In the overall comparison in table 22 it is shown that ProMP with the K-Means extension is the best
choice for the Households with 5600 kWh and 6500 kWh in the other cases the ProMP approaches suffers
from the bad initial forecast. Overall only the advanced persistence model beats ProMP in the other data
sets.

4.5.5 Comparison of the Computational Resourcefulness

In this section, the computational time, that is needed to train the model and to forecast a new electric
load profile, is discussed. The calculation for the computational comparison has been carried out in
MATLAB on a Linux computer, running a Ubuntu distribution, with 8GB of ram, an i7 with four cores
and with a clock speed of 3.4 GHz.

Persistence Model
The simplicity of the similar day approach shines in this category, because the computational time

needed for a forecast is minimal. If the used data structure to store the electric load profiles is a list,
the time for the computations are static. The most time consuming step in the advanced version of the
persistence model is the calculation of the mean.

Artificial Neural Network
The most time is consumed in the training phase of the artificial neural network which depends on

the chosen number of neurons and the desired error on the training data. Traversing the artificial neural
network for a new forecast is fairly quick, which is one of the advantages of neuronal networks, as can
be seen in table 11.

Gaussian Process
The Gaussian process has a long training time, which highly depends on the chosen fit on the training

data. Although a sparse model has been chosen, the computation can easily take 20 or more minutes
for the training alone. The forecast phase begins after the training, where depending on the size of the
forecast window, the forecast has to be repeated until the end of the day. For the chosen resolution of 15
minute time steps and the chosen forecast window, see section 4.2.4, the forecast has to be repeated 24
times for the complete day and correspondingly less if partial data has been available. The result for the
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total time

training 4.268 s ∼ 9.874 s
forecast 0.023 s ∼ 0.087 s

Table 11: Overview of the computational time need by the artificial neuronal network to optimize and
predict one electric load profile

test day can be seen in table 13. The huge computational costs are the reason why the forecast over the
course of a day could not be finished with the GP approach. The forecast of a complete day already takes
up to 90 minutes and from comparing sample days it has been deduced that there is no benefit with this
approach. As a result has forecast for each day for each data set, each containing a year, been declared
not feasible.

total time

optimization 1805.382 s
forecast 226.592 s

Table 13: Overview of the computational time need by the Gaussian Process to optimize and predict one
electric load profile

Probabilistic Movement Primitives
The computational time for the basic ProMPs is low. The inversion for ridge regression taking the

highest toll. The Expectation Maximization algorithm depends highly on the random initial variables
that have been chosen. The K-Means algorithm highly depends on the number of cluster centers chosen,
the data has been produced with 14 clusters in mind. With 28 centers, the time for k-means rises to
0.102s

total time

ridge regression 0.142 s ∼ 0.214 s
unconditioned forecast 0 s
conditioned forecast 0.008 s
Expectation Maximization 11.52 s ∼ 82.835 s
K-means 0.093 s ∼ 0.037 s
EM for clustering 1.533 s ∼ 1.685 s

Table 15: Overview of the computational time need by ProMPs to optimize and predict one electric load
profile including the time needed for additional Algorithms
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4.6 Conlusion

ProMPs are able to forecast time series and can therefore be used to forecast electric load profiles. This
new approach outperforms the other competing approaches in many cases and has similar results if the
competition is not beaten. The different validation approaches showed the diversity and flexibility of the
approach. The 2

3 validation, for example, applied a faulty training data basis upon the contesters. Since
the folds are drawn randomly, the flawless continuous of the training examples can not be guaranteed.
Therefore, the days in the training sample are not equidistant. Consequently, the persistence model has
been worse in these tests. While ProMPs, especially with the Expectation Maximization expansion, did
not suffer as much. However, it became apparent that the quality of the forecast highly depends on
the historic data. It hast also been shown that household data is more difficult to forecast, since the
differences in the evaluation criteria are far wider than the difference in scale.

The extensions of the Probabilistic Movement Primitives have shown their advantages, the Expectation
Maximization algorithm achieved better results in the 2

3 cross validation. The reason for that is, that the
algorithm suspects the data to be incomplete and tries to estimate the incomplete data. The other major
extension of Probabilistic Movement Primitives has been the addition of K-Means algorithm to calculate
the clusters of data beforehand. In smaller test on the industrial data the algorithm clusters similar
days together, for example weekends and national holidays. Due to this property, K-Means has been
applied to the training data in order to filter out seasonal influences. In some tests, (see section 4.5.3)
the Probabilistic Movement Primitives, with the extension of K-Means, even achieved the highest scores.
Difficulties with K-Means have been to determine the right amount of cluster centers. Too many would
lead to overfitting and too few to worse results as without K-Means.

As it has been shown, the advantages are a probabilistic approach to electric load forecasting, which
is still fast to compute and beats both complex methods, namely the artificial neural network and the
Gaussian process, which has been explained in section 4.5. Even with added complexity like K-Means
or Expectation Maximization, the computational time that is needed can still be considered low. It
has to be mentioned that, while Gaussian processes are producing good results, the computational de-
mand is too high for real world applications. Even with sparse methods, the time need is not competitive.

ANNs are still popular in the science community. They produce good results, while being straight
forward to implement and usable. However, it became obvious that automatic optimization does not
work so well in every circumstance. As a result, their portability from one use case to the next is limited.
Shown by their not consistent performance across the different data sets.

The persistence model has been shown to be a competitive idea for electric load forecasting, since the
electric load profiles are highly repetitive. The proneness to outliers from this model can be compensated
by using the mean over historic data.
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5 Future Work

From the Comparison in section 4.5, it becomes obvious that the forecast with Probabilistic Movement
Primitives works and beats most of the competing methods, the artificial neuronal network, the persis-
tence model and the advanced persistence model. The comparison with the GP has not been applicable
in the fullest, since the computation time has been too high and the calculated outcomes have not been
promising. However, there is still room to improve the forecast. Possible improvements could be achieved
with Seasonal Decomposition to remove the seasonal completely [23]. Another possible way to improve
the forecast would the use of exponential smoothing to smooth out the data before applying Probabilistic
Movement Primitives [23].

There are different possibilities to proceed with the research of using ProMPs for electric load forecast-
ing. The current approach can be enhanced to forecast broader time frames which results in the forecast
of mid-term and long-term electric load profiles. Additionally, the current procedure can be changed to
forecast peak loads. Another possibility would be to increase the time resolution, which would enable
very-short-term electric load forecasting and maybe smooth out some of the spikes in the industrial pro-
files. However, that would increase the chance of outliers by faulty recordings [23]. By adding weather
forecast, temperature or humidity forecast to the input data, the forecast could be enhanced. However, it
would also introduce further uncertainties and remove the independence of the model from the location
it is designed for, as weather forecasts have a high correlation with the place they are drawn from [23].
Another possibility is to take a look at forecasting of solar and wind power plants but the high influence
of the weather could make this approach more difficult. However, the profiles for solar and wind plants
should be more linear as influential weather phenomenons do not happen suddenly.

In general, electric load forecasts are used for decision making, by intelligent energy management sys-
tems, see section 1 and section 2, these base their decisions on the forecast. A more application-oriented
approach would be to use the historic electric load and forecast the control laws for the energy manage-
ment system directly. This would result in a reinforcement learning approach, which has been shown
to be superior in comparison to the currently used model predictive control if used with stochastic and
noisy data [109].

Since the liberation of energy markets around the world, the prediction of electric prices became in-
teresting for consumers and producers alike [23]. The direct forecast of electrical energy prices [110], in
respect to the historic load, can be another possibility for further research on ProMPs. Since probabilistic
outputs deliver a natural form of risk management, the approaches may be transferred to different fields
of application, such as the financial market. Research on ProMPs on the financial market may lead to
new insights concerning their use. Other applications to apply ProMPs to are other types of time series
forecast problems, such as forecasting stock exchanges [111].
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RMSE

Approach Mean Over All Mean Without First Element

ProMP for LOOC 46.901 43.649
Persistance for LOOC 23.963 24.114

Persistance Advanced for LOOC 33.486 33.823
ProMP for 2/3 53.289 50.000

ProMP with EM for 2/3 91.173 80.279
ProMP with Clustering for 2/3 25.316 25.331

Persistance for 2/3 23.963 24.114
Persistance Advanced for 2/3 32.169 23.963

ANN for 2/3 37.840 37.555
GP for 2/3 106.199 108.568

MAPE

Approach Mean Over All Mean Without First Element

ProMP for LOOC 16.066 13.578
Persistance for LOOC 9.539 9.629

Persistance Advanced for LOOC 13.776 13.970
ProMP for 2/3 26.175 22.969

ProMP with EM for 2/3 206.054 51.559
ProMP with Clustering for 2/3 9.929 10.016

Persistance for 2/3 9.539 9.629
Persistance Advanced for 2/3 12.812 9.539

ANN for 2/3 17.166 16.808
GP for 2/3 73.694 76.509

SMAPE

Approach Mean Over All Mean Without First Element

ProMP for LOOC 18.507 16.440
Persistance for LOOC 9.242 9.322

Persistance Advanced for LOOC 12.638 12.801
ProMP for 2/3 22.004 19.828

ProMP with EM for 2/3 48.118 36.091
ProMP with Clustering for 2/3 9.122 9.184

Persistance for 2/3 9.242 9.322
Persistance Advanced for 2/3 11.826 9.242

ANN for 2/3 15.445 15.164
GP for 2/3 49.687 51.320

Table 16: The average results for the ninth day of the first industrial data set
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 43.435 8.550 11.648
1:00 18.106 8.716 12.040
2:00 12.693 8.895 12.330
3:00 13.834 9.088 12.780
4:00 12.716 9.348 13.180
5:00 10.097 9.684 13.270
6:00 16.660 9.958 13.522
7:00 20.709 10.169 13.946
8:00 10.418 9.993 14.587
9:00 10.858 9.812 15.190

10:00 12.277 9.874 16.011
11:00 10.993 10.384 16.810

2
3 cross validation

Time ProMP Clustering ProMP EM ProMP

0:00 8.973 1905.505 61.435
1:00 11.628 63.045 18.959
2:00 8.573 67.992 16.232
3:00 9.442 72.495 16.788
4:00 5.362 77.815 27.313
5:00 4.928 80.936 26.829
6:00 5.268 78.694 26.990
7:00 31.244 56.523 28.117
8:00 5.845 24.840 15.834
9:00 8.390 15.961 29.342

10:00 7.641 14.563 18.492
11:00 11.854 14.282 27.768

2
3 cross validation

Time GP ANN Persistence Advanced Persistence

0:00 42.737 21.101 11.356 8.550
1:00 63.346 20.402 11.542 8.716
2:00 66.013 20.388 11.807 8.895
3:00 68.874 20.018 12.062 9.088
4:00 72.007 19.390 12.307 9.348
5:00 75.090 18.288 12.651 9.684
6:00 78.570 17.507 12.833 9.958
7:00 81.924 16.677 13.283 10.169
8:00 83.462 14.980 13.714 9.993
9:00 84.168 13.289 13.740 9.812
10:00 84.635 12.406 14.084 9.874
11:00 83.507 11.548 14.370 10.384

Table 17: The detailed MAPE results for the ninth day of the first industrial data set
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2
3 Cross Validation

Approach ANN Persistence Persistence Advanced

Industrial Dataset 2013 41.919 38.719 31.260
Industrial Dataset 2014 59.327 49.718 40.009
Household 2219 kWh 0.384 0.523 0.435
Household 4647 kWh 0.452 0.580 0.495
Household 5600 kWh 0.648 0.899 0.758
Household 6500 kWh 0.530 0.651 0.550

2
3 Cross Validation

Approach ProMP ProMP Clustering ProMP EM

Industrial Dataset 2013 35.785 47.730 53.931
Industrial Dataset 2014 50.462 62.755 78.614
Household 2219 kWh 0.389 0.384 0.389
Household 4647 kWh 0.454 0.448 0.456
Household 5600 kWh 0.657 0.657 0.648
Household 6500 kWh 0.519 0.506 0.514

LOOC Validation

Approach Persistence Persistence Advanced ProMP

Industrial Dataset 2013 38.729 27.724 35.360
Industrial Dataset 2014 52.278 37.168 49.672
Household 2219 kWh 0.519 0.436 0.389
Household 4647 kWh 0.575 0.479 0.454
Household 5600 kWh 0.886 0.741 0.658
Household 6500 kWh 0.643 0.544 0.520

Table 18: Overall performance comparison for RMSE for all data sets
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2
3 Cross Validation

Approach ANN Persistence Persistence Advanced

Industrial Dataset 2013 ∞ 24.025 17.865
Industrial Dataset 2014 ∞ ∞ 17.905
Household 2219 kWh 88.616 149.521 105.056
Household 4647 kWh 61.090 70.508 57.530
Household 5600 kWh 65.774 −∞ 71.279
Household 6500 kWh 46.572 46.307 41.923

2
3 Cross Validation

Approach ProMP ProMP Clustering ProMP EM

Industrial Dataset 2013 22.366 27.862 142.975
Industrial Dataset 2014 27.689 25.964 220.022
Household 2219 kWh 80.920 80.673 83.208
Household 4647 kWh 53.306 56.313 52.874
Household 5600 kWh 63.325 68.398 67.330
Household 6500 kWh 40.009 40.610 39.622

LOOC Validation

Approach Persistence Persistence Advanced ProMP

, Industrial Dataset 2013 ∞ 15.500 22.086
Industrial Dataset 2014 ∞ 16.362 23.991
Household 2219 kWh 146.316 105.957 81.040
Household 4647 kWh 71.992 55.250 53.273
Household 5600 kWh −∞ 70.333 62.686
Household 6500 kWh 46.284 40.850 40.448

Table 21: Overall performance comparison for MAPE for all data sets
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2
3 Cross Validation

Approach ANN Persistence Persistence Advanced

Industrial Dataset 2013 24.690 21.856 17.855
Industrial Dataset 2014 26.843 21.700 17.734
Household 2219 kWh 70.935 66.796 65.992
Household 4647 kWh 51.579 49.743 48.256
Household 5600 kWh 53.526 55.451 54.979
Household 6500 kWh 38.601 35.723 34.643

2
3 Cross Validation

Approach ProMP ProMP Clustering ProMP EM

Industrial Dataset 2013 19.684 29.469 38.831
Industrial Dataset 2014 22.996 27.582 43.658
Household 2219 kWh 73.658 71.028 71.424
Household 4647 kWh 50.246 48.317 49.753
Household 5600 kWh 56.516 48.174 50.467
Household 6500 kWh 35.939 32.854 34.834

LOOC Validation

Approach Persistence Persistence Advanced ProMP

Industrial Dataset 2013 21.720 15.875 20.944
Industrial Dataset 2014 22.765 16.331 22.781
Household 2219 kWh 65.887 65.779 73.031
Household 4647 kWh 49.808 46.604 49.842
Household 5600 kWh 54.978 53.473 55.703
Household 6500 kWh 35.860 34.469 36.186

Table 22: Overall performance comparison for SMAPE for all data sets
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 0.466 0.575 0.486
1:00 0.474 0.584 0.494
2:00 0.484 0.596 0.504
3:00 0.495 0.609 0.516
4:00 0.507 0.624 0.528
5:00 0.520 0.639 0.541
6:00 0.532 0.654 0.553
7:00 0.541 0.668 0.565
8:00 0.546 0.676 0.572
9:00 0.553 0.686 0.581

10:00 0.559 0.695 0.589
11:00 0.568 0.703 0.596

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 0.465 0.460 0.454
1:00 0.473 0.468 0.463
2:00 0.483 0.478 0.470
3:00 0.494 0.489 0.481
4:00 0.506 0.501 0.493
5:00 0.518 0.513 0.505
6:00 0.530 0.526 0.517
7:00 0.539 0.534 0.523
8:00 0.543 0.537 0.526
9:00 0.551 0.546 0.535

10:00 0.558 0.553 0.546
11:00 0.567 0.561 0.559

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 0.497 0.582 0.491
1:00 0.484 0.592 0.499
2:00 0.493 0.604 0.509
3:00 0.503 0.618 0.521
4:00 0.514 0.632 0.534
5:00 0.526 0.648 0.547
6:00 0.537 0.664 0.559
7:00 0.547 0.677 0.571
8:00 0.553 0.685 0.578
9:00 0.562 0.696 0.588

10:00 0.569 0.705 0.596
11:00 0.575 0.713 0.603

Table 23: The mean RMSE results for the household with 6500 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 0.615 0.827 0.692
1:00 0.620 0.837 0.699
2:00 0.632 0.852 0.712
3:00 0.646 0.870 0.727
4:00 0.661 0.889 0.743
5:00 0.676 0.909 0.760
6:00 0.688 0.927 0.775
7:00 0.695 0.938 0.784
8:00 0.694 0.933 0.779
9:00 0.678 0.914 0.764

10:00 0.656 0.887 0.743
11:00 0.630 0.845 0.711

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 0.615 0.606 0.605
1:00 0.620 0.612 0.608
2:00 0.632 0.623 0.623
3:00 0.646 0.637 0.637
4:00 0.660 0.651 0.654
5:00 0.676 0.666 0.669
6:00 0.688 0.678 0.682
7:00 0.694 0.685 0.695
8:00 0.693 0.687 0.696
9:00 0.677 0.671 0.682

10:00 0.656 0.647 0.676
11:00 0.628 0.615 0.650

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 0.618 0.836 0.707
1:00 0.618 0.847 0.715
2:00 0.626 0.862 0.727
3:00 0.637 0.881 0.743
4:00 0.649 0.900 0.759
5:00 0.662 0.920 0.776
6:00 0.674 0.938 0.791
7:00 0.681 0.951 0.802
8:00 0.677 0.948 0.800
9:00 0.664 0.931 0.786

10:00 0.647 0.905 0.764
11:00 0.618 0.867 0.732

Table 24: The mean RMSE results for the household with 5600 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 0.417 0.527 0.438
1:00 0.423 0.536 0.446
2:00 0.432 0.548 0.456
3:00 0.442 0.560 0.466
4:00 0.451 0.572 0.476
5:00 0.459 0.583 0.484
6:00 0.466 0.591 0.492
7:00 0.471 0.597 0.497
8:00 0.473 0.601 0.500
9:00 0.471 0.598 0.498

10:00 0.470 0.598 0.498
11:00 0.467 0.596 0.495

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 0.417 0.417 0.412
1:00 0.423 0.424 0.419
2:00 0.432 0.434 0.428
3:00 0.442 0.444 0.438
4:00 0.451 0.453 0.447
5:00 0.459 0.461 0.454
6:00 0.466 0.468 0.461
7:00 0.471 0.474 0.465
8:00 0.474 0.477 0.467
9:00 0.472 0.474 0.465

10:00 0.472 0.474 0.464
11:00 0.469 0.472 0.460

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 0.424 0.531 0.452
1:00 0.426 0.540 0.460
2:00 0.433 0.551 0.470
3:00 0.441 0.564 0.481
4:00 0.448 0.576 0.490
5:00 0.455 0.587 0.499
6:00 0.462 0.597 0.507
7:00 0.466 0.605 0.513
8:00 0.468 0.607 0.517
9:00 0.467 0.604 0.515

10:00 0.467 0.604 0.516
11:00 0.463 0.599 0.513

Table 25: The mean RMSE results for the household with 4647 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 0.359 0.478 0.401
1:00 0.364 0.485 0.407
2:00 0.372 0.496 0.416
3:00 0.381 0.507 0.425
4:00 0.390 0.519 0.436
5:00 0.399 0.532 0.446
6:00 0.404 0.539 0.453
7:00 0.402 0.538 0.453
8:00 0.403 0.541 0.455
9:00 0.400 0.537 0.450

10:00 0.401 0.537 0.450
11:00 0.391 0.525 0.438

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 0.359 0.358 0.354
1:00 0.364 0.364 0.360
2:00 0.372 0.372 0.368
3:00 0.381 0.380 0.376
4:00 0.390 0.390 0.386
5:00 0.400 0.399 0.395
6:00 0.404 0.404 0.399
7:00 0.402 0.402 0.398
8:00 0.403 0.403 0.399
9:00 0.400 0.400 0.395

10:00 0.401 0.400 0.397
11:00 0.392 0.391 0.387

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 0.358 0.482 0.401
1:00 0.363 0.490 0.407
2:00 0.370 0.500 0.416
3:00 0.377 0.512 0.426
4:00 0.385 0.524 0.436
5:00 0.393 0.537 0.447
6:00 0.397 0.544 0.453
7:00 0.396 0.543 0.451
8:00 0.396 0.545 0.452
9:00 0.393 0.540 0.447

10:00 0.393 0.539 0.447
11:00 0.383 0.527 0.437

Table 26: The mean RMSE results for the household with 2219 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 65.480 48.226 34.537
1:00 48.774 49.088 35.092
2:00 51.203 49.986 35.675
3:00 51.939 50.867 36.233
4:00 57.382 51.880 36.872
5:00 59.196 52.944 37.559
6:00 52.767 54.102 38.289
7:00 55.981 55.222 38.996
8:00 41.409 55.798 39.396
9:00 37.295 55.133 39.011

10:00 35.930 53.407 37.978
11:00 38.703 50.686 36.381

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 64.812 171.537 74.141
1:00 50.435 68.963 55.062
2:00 52.405 72.126 59.832
3:00 52.990 74.985 59.977
4:00 56.729 76.902 60.705
5:00 61.053 78.056 61.984
6:00 52.800 78.198 63.736
7:00 58.064 78.027 63.092
8:00 41.531 73.962 58.931
9:00 38.834 66.261 59.663

10:00 36.703 56.400 65.714
11:00 39.181 47.955 70.223

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 56.187 117.531 45.922 37.187
1:00 56.241 112.917 46.707 37.780
2:00 57.339 113.104 47.535 38.387
3:00 58.454 113.170 48.334 38.999
4:00 59.663 112.341 49.241 39.683
5:00 60.943 109.225 50.206 40.418
6:00 62.144 103.181 51.240 41.180
7:00 63.384 94.935 52.269 41.924
8:00 63.505 89.595 52.856 42.362
9:00 61.401 84.862 52.426 41.998
10:00 58.089 93.321 51.005 40.917
11:00 54.569 83.159 48.878 39.275

Table 27: The mean RMSE results for the Industrial data set of 2014
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 57.861 36.496 26.639
1:00 34.666 36.987 26.886
2:00 35.264 37.539 27.176
3:00 36.468 38.032 27.422
4:00 38.454 38.676 27.732
5:00 37.426 39.305 28.048
6:00 40.026 39.917 28.330
7:00 38.059 40.472 28.550
8:00 29.516 40.658 28.576
9:00 26.232 40.007 28.306

10:00 24.837 38.975 27.815
11:00 25.513 37.688 27.209

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 57.593 140.461 64.952
1:00 34.699 55.446 39.517
2:00 35.169 57.979 44.390
3:00 37.209 59.729 48.260
4:00 39.326 61.237 49.807
5:00 37.925 60.711 48.757
6:00 39.919 58.084 49.596
7:00 39.592 50.760 46.013
8:00 29.170 32.559 45.013
9:00 26.810 24.657 45.592

10:00 25.607 22.853 43.995
11:00 26.402 22.700 46.872

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 41.568 44.858 36.523 29.997
1:00 39.636 43.344 37.001 30.294
2:00 40.403 44.255 37.538 30.635
3:00 41.153 45.217 38.045 30.937
4:00 41.981 46.233 38.641 31.302
5:00 42.755 48.350 39.255 31.668
6:00 43.465 49.329 39.845 31.994
7:00 44.114 50.221 40.378 32.277
8:00 44.164 49.608 40.585 32.341
9:00 43.016 48.318 39.992 31.946
10:00 41.318 46.983 39.015 31.254
11:00 39.456 45.342 37.805 30.470

Table 28: The mean RMSE results for the Industrial data set of 2013
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 170.607 210.528 177.990
1:00 173.591 213.857 180.854
2:00 177.200 218.095 184.489
3:00 181.228 223.035 188.688
4:00 185.624 228.389 193.233
5:00 190.302 233.931 197.940
6:00 194.830 239.419 202.544
7:00 198.109 244.419 206.705
8:00 199.676 247.513 209.336
9:00 202.267 251.189 212.691

10:00 204.579 254.466 215.557
11:00 207.977 257.138 218.299

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 170.136 168.270 166.132
1:00 173.119 171.276 169.346
2:00 176.707 174.871 172.106
3:00 180.696 178.886 175.986
4:00 185.069 183.235 180.262
5:00 189.736 187.848 184.790
6:00 194.143 192.483 189.133
7:00 197.273 195.305 191.520
8:00 198.780 196.560 192.655
9:00 201.614 199.679 195.900

10:00 204.099 202.287 199.709
11:00 207.430 205.465 204.761

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 181.729 212.833 179.751
1:00 177.149 216.524 182.708
2:00 180.463 220.994 186.424
3:00 184.152 226.017 190.671
4:00 188.110 231.440 195.271
5:00 192.373 237.139 200.044
6:00 196.611 242.867 204.726
7:00 200.141 247.760 208.870
8:00 202.484 250.665 211.450
9:00 205.654 254.772 215.067

10:00 208.148 257.897 218.069
11:00 210.358 260.896 220.875

Table 29: The
∑

RMSE results for the household with 6500 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 225.091 302.543 253.095
1:00 227.044 306.250 256.006
2:00 231.429 311.924 260.546
3:00 236.402 318.536 266.096
4:00 241.744 325.513 271.981
5:00 247.406 332.833 278.205
6:00 251.873 339.212 283.532
7:00 254.498 343.458 286.891
8:00 253.893 341.595 285.254
9:00 248.238 334.417 279.672

10:00 240.247 324.708 271.765
11:00 230.471 309.303 260.061

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 225.179 221.834 221.352
1:00 227.010 224.039 222.634
2:00 231.400 228.095 228.020
3:00 236.359 232.960 233.246
4:00 241.720 238.186 239.441
5:00 247.398 243.694 245.030
6:00 251.884 248.163 249.656
7:00 254.081 250.705 254.428
8:00 253.500 251.520 254.685
9:00 247.899 245.606 249.693

10:00 239.925 236.628 247.460
11:00 229.746 225.000 238.009

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 226.272 305.870 258.855
1:00 226.284 309.901 261.664
2:00 229.295 315.512 266.156
3:00 233.115 322.287 271.799
4:00 237.441 329.337 277.830
5:00 242.230 336.652 284.148
6:00 246.620 343.189 289.631
7:00 249.412 347.888 293.469
8:00 247.785 347.112 292.625
9:00 242.958 340.794 287.650

10:00 236.718 331.288 279.614
11:00 226.196 317.464 267.810

Table 30: The
∑

RMSE results for the household with 5600 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 152.663 192.811 160.416
1:00 154.868 196.189 163.235
2:00 158.213 200.427 166.764
3:00 161.884 205.018 170.590
4:00 165.161 209.316 174.112
5:00 167.962 213.225 177.271
6:00 170.520 216.486 179.964
7:00 172.318 218.382 181.746
8:00 173.273 219.828 183.071
9:00 172.493 218.721 182.149

10:00 172.159 218.867 182.179
11:00 170.956 218.180 180.994

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 152.715 152.718 150.712
1:00 154.898 155.241 153.194
2:00 158.239 158.672 156.555
3:00 161.908 162.403 160.221
4:00 165.186 165.716 163.441
5:00 168.023 168.667 166.165
6:00 170.648 171.304 168.634
7:00 172.568 173.332 170.288
8:00 173.614 174.455 170.947
9:00 172.883 173.371 170.064

10:00 172.602 173.658 169.673
11:00 171.619 172.853 168.182

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 155.050 194.258 165.462
1:00 156.007 197.591 168.313
2:00 158.574 201.792 171.940
3:00 161.390 206.393 175.884
4:00 164.026 210.711 179.480
5:00 166.547 214.726 182.766
6:00 169.035 218.448 185.729
7:00 170.617 221.275 187.926
8:00 171.428 222.246 189.242
9:00 170.990 221.168 188.549

10:00 171.052 220.928 188.892
11:00 169.421 219.096 187.779

Table 31: The
∑

RMSE results for the household with 4647 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 131.244 174.794 146.697
1:00 133.231 177.555 148.992
2:00 136.159 181.374 152.213
3:00 139.349 185.528 155.716
4:00 142.820 190.038 159.515
5:00 146.196 194.606 163.341
6:00 147.782 197.115 165.685
7:00 147.058 197.010 165.629
8:00 147.444 198.018 166.355
9:00 146.304 196.383 164.720

10:00 146.749 196.509 164.604
11:00 143.238 192.212 160.289

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 131.309 131.060 129.710
1:00 133.278 133.062 131.664
2:00 136.203 136.001 134.577
3:00 139.387 139.213 137.749
4:00 142.851 142.706 141.200
5:00 146.224 146.105 144.537
6:00 147.805 147.796 146.043
7:00 147.062 147.274 145.619
8:00 147.400 147.581 146.037
9:00 146.252 146.447 144.725

10:00 146.748 146.378 145.139
11:00 143.448 143.054 141.675

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 131.127 176.387 146.828
1:00 132.749 179.270 149.122
2:00 135.276 183.071 152.353
3:00 138.005 187.226 155.855
4:00 140.922 191.783 159.660
5:00 143.895 196.395 163.461
6:00 145.439 199.123 165.764
7:00 144.855 198.711 165.227
8:00 145.069 199.300 165.569
9:00 143.762 197.802 163.730

10:00 143.712 197.300 163.749
11:00 140.079 192.788 159.865

Table 32: The
∑

RMSE results for the household with 2219 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:0023179.99917072.079 12226.085
1:0017265.91617377.141 12422.536
2:0018125.78217694.868 12628.787
3:0018386.51118006.945 12826.621
4:0020313.32218365.485 13052.649
5:0020955.55218742.173 13295.995
6:0018679.49119152.201 13554.243
7:0019817.44619548.657 13804.610
8:0014658.65619752.654 13946.190
9:0013202.47019516.997 13809.918

10:0012719.26718905.937 13444.280
11:0013700.72517942.712 12878.740

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 22943.436 60 723.989 26 245.885
1:00 17853.958 24 413.068 19 491.955
2:00 18551.270 25 532.607 21 180.505
3:00 18758.456 26 544.813 21 231.909
4:00 20082.132 27 223.275 21 489.730
5:00 21612.678 27 631.971 21 942.237
6:00 18691.339 27 681.943 22 562.543
7:00 20554.594 27 621.455 22 334.505
8:00 14702.107 26 182.724 20 861.444
9:00 13747.401 23 456.567 21 120.712

10:00 12993.000 19 965.602 23 262.593
11:00 13870.214 16 975.991 24 858.975

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 19890.181 16256.482 13164.186
1:00 19909.149 16534.351 13374.169
2:00 20298.183 16827.234 13589.125
3:00 20692.568 17110.282 13805.584
4:00 21120.743 17431.200 14047.850
5:00 21573.782 17773.028 14307.964
6:00 21999.112 18139.121 14577.765
7:00 22437.818 18503.056 14841.185
8:00 22480.889 18711.189 14996.232
9:00 21736.130 18558.893 14867.195

10:00 20563.631 18055.670 14484.524
11:00 19317.539 17302.822 13903.186

Table 33: The
∑

RMSE results for the industrial dataset of 2014
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LOOC

Time ProMP Persistence Advanced Persistence

0:0019961.91612591.083 9190.337
1:0011959.76912760.354 9275.716
2:0012165.96612950.928 9375.793
3:0012581.37213120.883 9460.424
4:0013266.63013343.083 9567.527
5:0012912.05913560.170 9676.446
6:0013809.05613771.492 9773.932
7:0013130.24013962.833 9849.778
8:0010183.11414027.173 9858.658
9:00 9050.16413802.367 9765.525

10:00 8568.89613446.327 9596.190
11:00 8802.08513002.393 9387.265

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 19869.665 48 459.030 22 408.360
1:00 11971.061 19 128.831 13 633.480
2:00 12133.419 20 002.892 15 314.597
3:00 12836.984 20 606.507 16 649.871
4:00 13567.611 21 126.715 17 183.433
5:00 13084.062 20 945.196 16 821.194
6:00 13771.938 20 038.859 17 110.626
7:00 13659.200 17 512.125 15 874.348
8:00 10063.492 11 232.775 15 529.538
9:00 9249.561 8506.837 15729.209

10:00 8834.345 7884.312 15178.233
11:00 9108.658 7831.395 16170.969

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 14341.007 12600.283 10349.016
1:00 13674.270 12765.178 10451.352
2:00 13939.072 12950.725 10568.951
3:00 14197.928 13125.557 10673.388
4:00 14483.376 13331.216 10799.341
5:00 14750.438 13542.809 10925.580
6:00 14995.560 13746.660 11037.885
7:00 15219.256 13930.504 11135.400
8:00 15236.604 14001.903 11157.536
9:00 14840.685 13797.237 11021.462

10:00 14254.599 13460.091 10782.667
11:00 13612.414 13042.766 10512.158

Table 34: The
∑

RMSE results for the industrial dataset of 2013
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 35.075 39.371 35.059
1:00 35.887 40.247 35.791
2:00 36.973 41.405 36.792
3:00 38.190 42.822 38.031
4:00 39.595 44.376 39.410
5:00 41.091 45.971 40.825
6:00 42.338 47.561 42.173
7:00 43.100 48.994 43.308
8:00 43.281 49.997 43.957
9:00 43.169 50.774 44.470

10:00 43.011 51.592 44.956
11:00 43.659 52.303 45.431

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 59.361 34.196 35.224
1:00 58.846 35.023 36.119
2:00 60.050 36.089 36.901
3:00 61.375 37.324 38.110
4:00 62.961 38.718 39.501
5:00 64.840 40.183 41.008
6:00 65.977 41.430 42.287
7:00 66.157 42.262 42.965
8:00 66.556 42.441 43.176
9:00 65.702 42.532 43.571

10:00 64.533 42.425 43.825
11:00 63.541 42.839 44.635

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 44.226 39.513 35.905
1:00 41.000 40.369 36.673
2:00 41.766 41.506 37.721
3:00 42.705 42.894 39.000
4:00 44.920 44.429 40.427
5:00 46.084 46.025 41.891
6:00 47.310 47.581 43.265
7:00 48.958 48.991 44.445
8:00 49.465 49.939 45.101
9:00 50.233 50.753 45.745

10:00 50.817 51.500 46.230
11:00 51.378 52.184 46.669

Table 35: The mean MAPE results for the household with 6500 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 58.643 -∞ 65.219
1:00 58.244 -∞ 65.664
2:00 59.446 -∞ 66.757
3:00 60.775 -∞ 68.221
4:00 62.338 -∞ 69.801
5:00 64.157 -∞ 71.675
6:00 65.248 -∞ 73.070
7:00 65.606 -∞ 73.875
8:00 65.969 -∞ 73.678
9:00 65.062 -∞ 72.905

10:00 63.817 -∞ 72.133
11:00 62.930 -∞ 70.991

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 59.361 61.964 64.131
1:00 58.846 61.935 63.477
2:00 60.050 63.128 64.849
3:00 61.375 64.713 66.356
4:00 62.961 66.518 68.182
5:00 64.840 68.644 70.371
6:00 65.977 70.033 71.755
7:00 66.157 71.138 72.181
8:00 66.556 75.308 64.688
9:00 65.702 71.849 72.838

10:00 64.533 69.207 71.673
11:00 63.541 63.522 70.275

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 62.466 -∞ 65.916
1:00 61.953 -∞ 66.405
2:00 62.900 -∞ 67.517
3:00 63.657 -∞ 69.005
4:00 65.135 -∞ 70.703
5:00 66.691 -∞ 72.652
6:00 68.032 -∞ 74.046
7:00 68.794 -∞ 74.822
8:00 68.671 -∞ 74.806
9:00 68.038 -∞ 74.213

10:00 67.187 -∞ 73.225
11:00 65.764 -∞ 72.043

Table 36: The mean MAPE results for the household with 5600 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 49.384 64.243 50.145
1:00 49.630 65.409 50.912
2:00 50.967 67.198 52.212
3:00 52.548 69.280 53.742
4:00 53.899 71.230 55.104
5:00 54.565 72.770 56.120
6:00 54.998 74.025 56.855
7:00 55.435 75.184 57.505
8:00 55.388 75.955 57.872
9:00 54.690 75.953 57.655

10:00 54.195 76.147 57.508
11:00 53.580 76.511 57.371

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 49.307 48.737 51.480
1:00 49.594 49.274 52.045
2:00 50.933 50.663 53.504
3:00 52.534 52.300 55.244
4:00 53.865 53.649 56.733
5:00 54.486 54.273 57.500
6:00 54.965 54.727 58.128
7:00 55.433 55.123 58.737
8:00 55.476 55.088 58.856
9:00 54.862 54.321 58.303

10:00 54.356 53.592 57.811
11:00 53.860 52.742 57.409

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 57.832 63.204 52.228
1:00 57.866 64.272 52.994
2:00 58.630 65.933 54.323
3:00 59.495 67.930 55.923
4:00 60.345 69.827 57.330
5:00 61.101 71.227 58.383
6:00 61.971 72.441 59.157
7:00 62.787 73.637 59.867
8:00 63.239 74.455 60.301
9:00 63.292 74.275 60.050

10:00 63.446 74.305 59.927
11:00 63.074 74.594 59.872

Table 37: The mean MAPE results for the household with 4647 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 75.165 130.756 95.322
1:00 76.224 133.567 97.249
2:00 78.044 137.381 99.972
3:00 80.063 141.492 102.934
4:00 82.390 146.178 106.304
5:00 83.933 150.350 109.328
6:00 84.058 152.840 111.060
7:00 83.502 153.444 111.395
8:00 83.081 153.775 111.665
9:00 82.433 152.507 110.047

10:00 82.284 152.682 109.136
11:00 81.305 150.824 107.067

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 74.872 76.367 74.471
1:00 75.982 77.728 75.719
2:00 77.824 79.794 77.644
3:00 79.833 82.020 79.730
4:00 82.165 84.598 82.129
5:00 83.712 86.301 83.727
6:00 83.939 86.638 83.993
7:00 83.367 86.070 83.532
8:00 83.063 85.709 81.517
9:00 82.440 84.907 82.273

10:00 82.419 84.713 82.174
11:00 81.424 83.648 81.169

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 83.242 133.143 94.476
1:00 84.314 136.037 96.385
2:00 85.871 140.068 99.097
3:00 87.608 144.231 101.991
4:00 89.666 149.107 105.352
5:00 91.229 153.419 108.249
6:00 91.524 156.067 110.133
7:00 90.706 157.092 110.440
8:00 90.538 158.153 110.522
9:00 89.970 156.745 108.802

10:00 90.009 156.370 108.417
11:00 88.712 153.823 106.811

Table 38: The mean MAPE results for the household with 2219 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 33.625 ∞ 15.126
1:00 20.553 ∞ 15.367
2:00 21.569 ∞ 15.614
3:00 22.193 24.543 15.847
4:00 26.465 25.183 16.115
5:00 31.238 25.878 16.420
6:00 14.818 26.694 16.783
7:00 42.961 27.425 17.100
8:00 19.318 27.692 17.270
9:00 17.133 27.404 17.203

10:00 17.610 26.653 16.955
11:00 20.411 25.494 16.544

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 32.822 2151.051 32.529
1:00 21.219 42.828 26.100
2:00 21.865 46.976 28.520
3:00 22.460 50.927 25.522
4:00 24.495 53.328 24.116
5:00 33.566 54.155 25.545
6:00 18.204 53.231 26.087
7:00 78.119 52.222 27.483
8:00 19.306 45.697 25.167
9:00 17.956 37.151 18.790

10:00 17.643 29.021 16.551
11:00 24.618 23.673 35.154

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 ∞ ∞ ∞ 16.551
1:00 27.064 43.496 ∞ 16.809
2:00 27.743 43.669 ∞ 17.071
3:00 28.364 43.748 23.109 17.330
4:00 29.066 43.777 23.652 17.631
5:00 29.804 43.556 24.248 17.976
6:00 30.360 43.089 24.943 18.356
7:00 30.963 42.496 25.596 18.705
8:00 30.720 42.319 25.893 18.907
9:00 29.406 42.200 25.735 18.842
10:00 27.799 47.280 25.151 18.567
11:00 26.190 46.460 24.273 18.100

Table 39: The mean MAPE results for the Industrial data set of 2014
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 37.010 ∞ 14.904
1:00 19.276 ∞ 15.014
2:00 19.555 ∞ 15.145
3:00 19.557 23.338 15.262
4:00 22.665 23.894 15.405
5:00 21.941 24.434 15.579
6:00 25.914 24.960 15.739
7:00 29.838 25.420 15.838
8:00 18.625 25.616 15.859
9:00 18.083 25.370 15.829

10:00 16.071 24.975 15.764
11:00 16.502 24.392 15.663

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 36.180 1316.042 44.484
1:00 19.057 43.853 22.263
2:00 19.449 47.945 27.444
3:00 32.264 50.862 28.748
4:00 23.316 53.402 28.452
5:00 23.787 52.334 25.214
6:00 21.801 48.518 31.143
7:00 25.984 39.816 20.742
8:00 17.404 21.468 27.047
9:00 16.381 14.913 26.129

10:00 15.596 13.340 26.097
11:00 17.176 13.206 26.577

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 ∞ ∞ 22.002 17.048
1:00 23.338 18.272 22.389 17.209
2:00 24.006 18.887 22.818 17.394
3:00 24.676 19.507 23.275 17.578
4:00 25.386 20.189 23.787 17.786
5:00 26.025 21.349 24.311 18.011
6:00 26.610 21.965 24.828 18.214
7:00 27.112 22.527 25.270 18.357
8:00 27.078 22.121 25.447 18.409
9:00 26.256 21.458 25.190 18.308
10:00 25.214 20.863 24.761 18.134
11:00 24.137 20.167 24.225 17.932

Table 40: The mean MAPE results for the Industrial data set of 2013

63



LOOC

Time ProMP Persistence Advanced Persistence

0:00 31.246 31.077 29.870
1:00 32.036 31.696 30.460
2:00 33.001 32.518 31.261
3:00 34.055 33.529 32.251
4:00 35.264 34.627 33.347
5:00 36.566 35.738 34.470
6:00 37.658 36.822 35.513
7:00 38.343 37.757 36.368
8:00 38.616 38.379 36.864
9:00 38.784 38.838 37.272

10:00 38.967 39.403 37.732
11:00 39.695 39.942 38.218

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 31.092 30.095 28.569
1:00 31.880 30.882 29.372
2:00 32.840 31.809 30.052
3:00 33.880 32.843 30.954
4:00 35.073 34.013 32.002
5:00 36.362 35.264 33.144
6:00 37.430 36.336 34.064
7:00 38.050 36.842 34.393
8:00 38.232 36.889 34.364
9:00 38.435 37.245 34.877

10:00 38.637 37.514 35.697
11:00 39.362 38.276 36.760

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 37.223 31.064 30.008
1:00 35.682 31.675 30.624
2:00 36.246 32.479 31.453
3:00 36.914 33.458 32.452
4:00 37.609 34.526 33.560
5:00 38.490 35.636 34.692
6:00 39.349 36.688 35.716
7:00 39.911 37.563 36.556
8:00 40.240 38.094 36.958
9:00 40.497 38.612 37.428

10:00 40.516 39.142 37.883
11:00 40.534 39.744 38.388

Table 41: The mean SMAPE results for the household with 6500 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 51.989 52.192 50.284
1:00 52.055 52.508 50.655
2:00 53.002 53.099 51.332
3:00 54.247 53.884 52.220
4:00 55.278 54.413 53.120
5:00 56.818 55.396 54.279
6:00 57.934 56.242 55.171
7:00 58.447 56.901 55.709
8:00 58.583 57.035 55.619
9:00 57.767 56.723 55.135

10:00 56.667 56.146 54.518
11:00 55.644 55.196 53.630

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 52.846 47.755 44.737
1:00 52.837 47.809 44.847
2:00 53.769 48.249 45.433
3:00 54.969 48.981 46.524
4:00 56.109 49.727 47.838
5:00 57.688 50.955 48.973
6:00 58.800 51.695 49.252
7:00 59.265 51.844 49.743
8:00 59.512 52.321 49.986
9:00 58.559 52.324 49.699

10:00 57.431 52.293 50.698
11:00 56.405 51.654 50.364

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 54.466 52.746 51.657
1:00 53.112 53.058 52.032
2:00 52.758 53.585 52.667
3:00 52.416 54.367 53.576
4:00 52.536 54.885 54.568
5:00 53.089 55.891 55.797
6:00 53.719 56.716 56.730
7:00 54.018 57.291 57.239
8:00 54.183 57.385 57.213
9:00 54.148 57.174 56.770

10:00 54.039 56.572 56.176
11:00 53.830 55.741 55.324

Table 42: The mean SMAPE results for the household with 5600 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 45.558 45.470 42.592
1:00 46.053 46.080 43.168
2:00 47.305 47.069 44.161
3:00 48.755 48.258 45.338
4:00 50.121 49.422 46.427
5:00 50.863 50.290 47.179
6:00 51.369 50.925 47.737
7:00 51.889 51.550 48.264
8:00 52.061 51.994 48.617
9:00 51.725 52.090 48.584

10:00 51.445 52.214 48.596
11:00 50.966 52.332 48.584

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 45.807 45.427 44.040
1:00 46.306 46.128 44.746
2:00 47.561 47.394 45.974
3:00 49.038 48.866 47.407
4:00 50.421 50.232 48.708
5:00 51.179 50.784 49.355
6:00 51.715 51.143 49.790
7:00 52.313 51.693 50.241
8:00 52.587 51.758 50.338
9:00 52.287 51.199 50.038

10:00 52.036 51.271 49.780
11:00 51.698 51.142 49.387

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 52.006 45.684 44.074
1:00 51.202 46.195 44.639
2:00 51.128 47.083 45.642
3:00 51.074 48.223 46.863
4:00 51.056 49.335 47.949
5:00 51.105 50.158 48.732
6:00 51.406 50.843 49.357
7:00 51.859 51.544 49.942
8:00 52.039 51.973 50.372
9:00 52.059 52.005 50.462

10:00 52.065 51.921 50.522
11:00 51.944 51.955 50.522

Table 43: The mean SMAPE results for the household with 4647 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 67.664 62.013 61.065
1:00 68.771 62.749 61.961
2:00 70.331 63.766 63.191
3:00 71.971 64.794 64.490
4:00 73.875 66.051 66.006
5:00 75.283 67.066 67.185
6:00 75.468 67.639 67.902
7:00 75.217 67.646 67.954
8:00 75.099 67.656 67.990
9:00 74.589 67.390 67.616

10:00 74.591 67.219 67.375
11:00 73.514 66.652 66.616

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 68.141 66.047 65.644
1:00 69.310 67.073 66.842
2:00 70.916 68.622 68.422
3:00 72.570 70.249 70.037
4:00 74.497 72.136 71.910
5:00 75.914 73.509 73.204
6:00 76.169 73.823 73.291
7:00 75.825 73.760 73.170
8:00 75.707 73.572 73.172
9:00 75.241 73.295 72.815

10:00 75.327 72.913 71.998
11:00 74.282 72.093 71.827

2
3 cross validation

Time ANN Persistence Advanced Persistence

0:00 71.224 62.755 61.345
1:00 71.007 63.530 62.248
2:00 71.104 64.576 63.466
3:00 71.202 65.607 64.742
4:00 71.072 66.916 66.274
5:00 71.205 67.954 67.414
6:00 71.313 68.609 68.143
7:00 71.295 68.666 68.219
8:00 71.130 68.724 68.227
9:00 70.747 68.544 67.702

10:00 70.289 68.184 67.428
11:00 69.637 67.493 66.700

Table 44: The mean SMAPE results for the household with 2219 kWh
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 33.379 20.589 15.122
1:00 21.255 21.041 15.365
2:00 22.063 21.518 15.611
3:00 22.687 21.930 15.834
4:00 25.386 22.448 16.101
5:00 26.876 23.008 16.405
6:00 24.509 23.671 16.763
7:00 27.079 24.241 17.076
8:00 18.628 24.399 17.231
9:00 16.785 24.107 17.136

10:00 16.484 23.537 16.873
11:00 18.239 22.692 16.448

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 32.758 180.237 34.968
1:00 21.869 29.682 24.100
2:00 22.650 31.660 25.965
3:00 23.133 33.784 25.430
4:00 24.676 35.217 25.681
5:00 28.064 35.890 26.562
6:00 24.171 35.646 26.792
7:00 27.672 35.322 27.024
8:00 18.358 32.218 26.088
9:00 17.439 28.214 26.371

10:00 16.775 24.330 30.467
11:00 18.383 21.698 31.537

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 25.196 81.570 19.752 16.431
1:00 25.064 46.715 20.140 16.686
2:00 25.654 46.564 20.555 16.942
3:00 26.189 46.245 20.915 17.181
4:00 26.810 45.795 21.358 17.477
5:00 27.473 44.873 21.842 17.815
6:00 28.020 43.450 22.411 18.184
7:00 28.584 41.726 22.929 18.521
8:00 28.556 40.616 23.128 18.702
9:00 27.833 39.493 22.966 18.616
10:00 26.884 46.103 22.523 18.352
11:00 25.856 43.366 21.884 17.906

Table 45: The mean SMAPE results for the Industrial data set of 2014
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LOOC

Time ProMP Persistence Advanced Persistence

0:00 36.218 20.101 15.256
1:00 19.865 20.420 15.378
2:00 20.189 20.783 15.521
3:00 21.566 21.122 15.638
4:00 22.497 21.567 15.790
5:00 21.641 22.005 15.971
6:00 23.554 22.424 16.140
7:00 22.756 22.755 16.246
8:00 17.097 22.841 16.260
9:00 15.268 22.593 16.207

10:00 14.631 22.249 16.114
11:00 16.043 21.786 15.981

2
3 cross validation

Time ProMP ProMP EM ProMP Clustering

0:00 36.075 169.572 40.734
1:00 19.680 31.076 21.642
2:00 20.031 33.209 24.487
3:00 21.672 34.954 26.949
4:00 22.989 36.532 27.682
5:00 21.980 36.378 27.490
6:00 23.148 34.647 28.375
7:00 23.466 30.060 25.942
8:00 16.789 18.869 25.202
9:00 15.548 14.250 30.321

10:00 15.016 13.217 27.403
11:00 −0.187 13.210 47.401

2
3 cross validation

Time ANN GP Persistence Advanced Persistence

0:00 24.023 25.334 20.271 17.086
1:00 22.580 17.562 20.583 17.246
2:00 23.204 18.143 20.930 17.428
3:00 23.815 18.729 21.277 17.593
4:00 24.483 19.379 21.681 17.793
5:00 25.102 20.487 22.108 18.010
6:00 25.685 21.091 22.521 18.201
7:00 26.157 21.644 22.843 18.327
8:00 26.231 21.400 22.942 18.362
9:00 25.713 20.921 22.726 18.253
10:00 25.026 20.477 22.400 18.080
11:00 24.263 19.965 21.985 17.875

Table 46: The mean SMAPE results for the Industrial data set of 2013
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Date Day of the Week Cluster Day of the Year

20130107 Monday 2 7
20130108 Tuesday 1 8
20130110 Thursday 6 10
20130111 Friday 11 11
20130112 Saturday 5 12
20130113 Sunday 5 13
20130115 Tuesday 1 15
20130116 Wednesday 1 16
20130117 Thursday 1 17
20130118 Friday 11 18
20130119 Saturday 5 19
20130120 Sunday 5 20
20130125 Friday 11 25
20130127 Sunday 5 27
20130128 Monday 1 28
20130129 Tuesday 2 29
20130130 Wednesday 2 30
20130131 Thursday 1 31

Date Day of the Week Cluster Day of the Year

20130201 Friday 11 32
20130203 Sunday 5 34
20130205 Tuesday 1 36
20130207 Thursday 11 38
20130211 Monday 1 42
20130212 Tuesday 1 43
20130214 Thursday 1 45
20130217 Sunday 5 48
20130219 Tuesday 2 50
20130220 Wednesday 2 51
20130221 Thursday 1 52
20130222 Friday 11 53
20130223 Saturday 5 54
20130225 Monday 1 56
20130227 Wednesday 11 58

Table 47: K-Means Result for January and February 2013 for the Industrial Dataset
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Average results of MAPE for 0:00

Dataset Available GP

Industrial Dataset 2013 ∞
Industrial Dataset 2014 ∞
Household 2219 kWh -
Household 4647 kWh -
Household 5600 kWh 61.031
Household 6500 kWh 41.834

Average results of RMSE for 0:00

Dataset Available GP

Industrial Dataset 2013 44.858
Industrial Dataset 2014 117.531
Household 2219 kWh -
Household 4647 kWh -
Household 5600 kWh 0.631
Household 6500 kWh 0.483

Average results of SMAPE for 0:00

Dataset Available GP

Industrial Dataset 2013 25.334
Industrial Dataset 2014 81.570
Household 2219 kWh -
Household 4647 kWh -
Household 5600 kWh 53.692
Household 6500 kWh 38.012

Average results of
∑

RMSE for 0:00

Dataset Available GP

Industrial Dataset 2013 15475.965
Industrial Dataset 2014 40901.856
Household 2219 kWh -
Household 4647 kWh -
Household 5600 kWh 224.326
Household 6500 kWh 176.890

Table 52: Available average Gaussian Process results for the 0:00 forecast
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