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Abstract— Human-robot collaboration in unstructured envi-
ronments often involves different types of interactions. These
interactions usually occur frequently during normal operation
and may provide valuable information about the task to the
robot. It is therefore sensible to utilize this data for lifelong
robot learning. Learning from human interactions is an active
field of research, e.g., Inverse Reinforcement Learning, which
aims at learning from demonstrations, or Preference Learning,
which aims at learning from human preferences. However,
learning from a combination of different types of feedback
is still little explored. In this paper, we propose a method
for inferring a reward function from a combination of expert
demonstrations, pairwise preferences, star ratings as well as
oracle-based evaluations of the true reward function. Our
method extends Maximum Entropy Inverse Reinforcement
Learning in order to account for the additional types of
human feedback by framing them as constraints to the original
optimization problem. We demonstrate on a gridworld, that
the resulting optimization problem can be solved based on the
Alternating Direction Method of Multipliers (ADMM), even
when confronted with a large amount of training data.

I. INTRODUCTION

Robots that operate in unstructured environments usually
have to rely on human assistance, e.g. by providing demon-
strations via kinesthetic teaching or tele-operation, or by
rating the actions of the robot based on an absolute scale or
relative to each other. Such feedback may either be provided
intentionally by the human or it may be inferred based
on the human-robot interactions. For example, when tele-
operating a semi-autonomous robot for sorting nuclear waste,
the control signals provided by the operator can be treated
as expert demonstrations. Furthermore, the semi-autonomous
system might suggest several options to the operator, e.g.
different items to be grasped next, and elicit preferences
based on the selection of the operator. By using the human
feedback for adapting the behavior of the robot, the necessary
amount of human assistance can be decreased, reducing
the workload on the operator. However, while a number of
methods have been developed for learning from a given type
of human feedback, it remains unclear how several, different
types of human feedback can be combined for learning a
consistent representation of the task.

Reward functions are concise task representations that
are commonly applied in robotics for specifying optimal
behavior. However, manually specifying a reward function
for a given task is cumbersome since the induced behavior
is often hard to predict, especially when the robot operates
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in an unstructured environment. The difficulty of specifying
reward functions directly, led to the development of methods
for inferring reward functions from more intuitive–but less
concise–ways of teaching a task to robot. Inverse rein-
forcement learning (IRL) [1] infers a reward function from
expert demonstrations, whereas preference learning (PL) [2]
is based on human preferences.

In this paper we propose a method for learning a reward
function that is consistent with several, different types of
human feedback, namely expert demonstrations, pairwise
preferences, star ratings and oracle-based evaluations. Our
method is based on Maximum Entropy Inverse Reinforce-
ment Learning (MaxEnt-IRL) [3], extending it to enforce
consistency with the other types of human feedback.

A. Related Work

Inverse Reinforcement Learning [1] aims at finding a
reward function for a Markov Decision Problem (MDP)
that is consistent with observed expert demonstrations. As
pointed out by [1], the inverse RL problem is ill-defined
and many reward functions exists that satisfy this criterion.
Ziebart et al. [4], [3] introduced a max-entropy formulation
for inverse reinforcement learning which follows the maxi-
mum entropy principle for estimating distribution [5]. As our
method is based on [3] we will present it in more detail in
the preliminaries.

Preference Learning [2] has been applied for learning
controllers directly [6] or reward functions [7], [8], [9], [10]
based on preferences. To the best of our knowledge, [10],
[11] are most closely related to our work. [11] propose
a method for combining preferences with a known reward
function. They compute two stochastic policies, where one
is based on the reward function and the other one is based
on the preferences, and combine them by multiplying their
likelihoods. [10] learn a reward function from a combination
of pairwise preferences and oracle-based evaluations. They
assign likelihoods for both types of human feedback and ap-
ply Bayesian inference to compute the posterior distribution
based on a Gaussian process prior.

II. PRELIMINARIES

We assume finite-horizon Markov Decision
Processes (MDPs), that can be defined by a 5-Tuple(
s,a, pt(s

′|s,a), rt(s,a), T
)

where s denotes a vector of
states, a denotes a vector of actions and T denotes the time
horizon. The reward function at time step t is denoted by
rt(s,a) and the system dynamics by pt(s′|s,a).

Our approach is based on features of state-action pairs
that are computed based on a given vector function φ(s,a)



and have dimensionality Nφ. The likelihood of choosing an
action a in a given state s is given by the policy πt(a|s). Our
method extends MaxEnt-IRL, which aims at maximizing the
conditional, differential entropy of the policy, given by

H(πt(a|s)) = −
∫
s

pt(s)

∫
a

πt(a|s) log πt(a|s)dads,

where pt(s) denotes the state distribution at time step t.

A. Maximum Entropy IRL
Maximum Entropy IRL [3] aims at maximizing the en-

tropy of the policy while matching its expected feature count
φ̃t with the empirical feature counts of the expert

φ̂t =
1

ND

ND∑
i=1

φt(si,t,ai,t), (1)

where φt(si,t,ai,t) denote the features for the state and
action given at demonstration i and time step t, and ND
denotes the number of demonstrations. The corresponding
optimization problem is given by

maximize
πt(a|s)

T−1∑
t=1

H(πt(a|s)) (2)

subject to ∀t>1 :

∫
s,a

pπt (s,a)φt(s,a)dsda = φ̂t,

where additional constraints specify pπt (s,a) as the state-
action distribution at time step t that is consistent with the
policy π(a|s), the system dynamics p(s,a) and the initial
state distribution p1(s).

Solving the optimization problem (2) with the method of
Lagrangian multipliers, the max-ent policy is found to be

πt(a|s) = exp
(
Qsoft
t (s,a)− V soft

t (s)
)
, (3)

where V soft
t (s) and Qsoft

t (s,a) are softened state and state-
action value functions. We refer to [12] for further details.

The reward function rt(s,a) is linear in the features, i.e.

rt(s,a) = θ
>
t φt(s, a),

where θt are the Lagrangian multipliers for the feature
matching constraints and found by minimizing the dual

G(θ) = Ep1(s)
[
V soft
1 (s)

]
−
∑
t

θ>t φ̂t (4)

based on the gradient
∂G(θ)
∂θt

= φ̃t − φ̂t.

The dual function (4), which corresponds to the negative like-
lihood of the expert demonstrations based on the policy (3),
serves as the starting point of our approach.

B. Types of Human Feedback
Our method assumes that the reward function is linear in

features φ(s,a) and we model the different types of human
feedback with respect to their respective feature counts.
Feature counts can correspond to the features of a single
state-action pair, or to the sum over features of several state
action pairs. Hence, we can express relations between partial
trajectories of arbitrary–and potentially different–lengths.

1) Expert Demonstrations: Expert demonstrations are as-
sumed to be nearly optimal with respect to an unknown
reward function. They are modeled as empirical feature
counts φ̂t that are provided to the algorithm directly or
computed based on state-action pairs according to (1).

2) Pairwise Preferences: Pairwise preferences are given
as a set of pairs of feature counts

DP = {(φP,1,φP,2)1, . . . , (φP,1,φP,2)NP
},

where for each preference i, the first feature count φ(i)
P,1 is

assumed to produce at least as much reward as the second
feature count φ(i)

P,2.
3) Star Ratings: For star ratings, we assume several

feature counts to be rated on a finite, discrete scale from
1 to NS such that feature counts with higher rating produce
at least as much reward as feature counts with lower rating.
The set of star ratings is given by

DS = {Φ(1)
S , . . . ,Φ

(NS)
S },

where Φ(i)
S is a matrix of size N (i)

S × Nφ that contains one
row for each feature count with rating i.

4) Oracle-Based Evaluations: For oracle-based evalua-
tions, we assume that the true reward is known for a given
set of feature counts. This can be useful, for example when
the reward is assumed to be given by a physical quantity that
is hard to measure is practice, like force-based grasp quality
metrics. The oracle-based evaluations are given by the set

DR = {(φR, r)1, . . . , (φR, r)NR
},

where for each oracle-based evaluation i, r(i) indicates the
reward associated with feature count φ(i)

R .

III. LEARNING FROM DIFFERENT TYPES OF HUMAN
FEEDBACK

Our method aims at maximizing the likelihood (4) of
the expert demonstrations under policy (3) subject to the
constraint of being consistent with the additional types of
human feedback. We thereby assume existence of at least
one expert demonstration; the other types of human feedback,
however, are optional.

A. Constraint Formulations

The different types of human feedback can be treated as
linear constraints on the reward function.

1) Pairwise Preferences: For each pairwise preference,
the first feature count should result in higher reward than
the second feature count, and hence

∀i∈[1,NP ] : θ>φ(i)
P,1 ≥ θ

>φ(i)
P,2,

or slightly more concise ΦPθ ≥ 0, where ΦP is a NP ×Nφ
matrix, such that each row i is given by the transpose of its
respective feature count difference φ(i)

P,1 − φ
(i)
P,2.



2) Star Ratings: Expressing star ratings with pair-wise
preferences results in an exponentially growing number of
constraints; expressing them based on the maximum and
minimum reward within each rating involves subgradient-
based optimization which can become slow in practice.

Instead, we framed the optimization problem by demand-
ing that for each pair of consecutive ratings i and i + 1,
there exists a reward level η(i), that is lesser or equal than
the reward of each feature count with rating i+1 and larger
or equal than the reward of each feature count with rating i,
i.e.

∀i<Ng ,∀j∈[1,N (i)
S ] : η(i) ≥ Φ(i)

S,jθ

∀i>1,∀j∈[1,N (i+1)
S ] : −η(i) ≥ −Φ(i+1)

S,j θ,

where the subscript j refers to the jth row of the respective
matrix. Using this formulation, the number of constraints
grows only linearly with the number of feature counts
for each rating and no subgradient-based optimization is
required. The reward levels η are auxiliary variables that
have to be optimized. However, we will later see, that their
optimal value can be computed in closed form.

3) Oracle-Based Evaluations: The constraints for the
oracle-based evaluations can be framed similarly to the
constraints for the pair-wise preferences and are given by

ΦRθ = r,

where ΦR is a NR×Nφ matrix, such that each row i is given
by φ(i)

R and r is a vector containing the respective reward.

B. ADMM-Based Optimization
The resulting optimization problem is given by

minimize
θ,η

G(θ)

subject to ΦPθ ≥ 0,

∀i<NS
,∀j∈[1,N (i)

S ] : η(i) ≥ Φ(i)
S,jθ,

∀i>1,∀j∈[1,N (i+1)
S ] : − η(i) ≥ −Φ(i+1)

S,j θ,

ΦRθ = r.

(5)

The MaxEnt-IRL dual function G(θ) cannot be given in
closed form as it depends on the softened state value
function V soft

1 (s). However, based on the assumption, that
the isolated MaxEnt-IRL problem can be solved, we can
optimize (5) using the alternating direction method of mul-
tipliers (ADMM) [13]. ADMM minimizes the augmented
Lagrangian function, given by

A(θ,η,λ) = G(θ) +

NP∑
i=1

[
λP,ig

+
P,i(θ) +

ρ

2

(
g+P,i(θ)

)2]

+

NS−1∑
i=1

N (i)
S∑

j=1

[
λ

(i)
S,jg

+
S,i,j(θ, ηi) +

ρ

2

(
g+S,i,j(θ, ηi)

)2]

+

N (i+1)
S∑
j=1

[
λ

(i)
S,jg

+
S,i,j

(θ, ηi) +
ρ

2

(
g+
S,i,j

(θ, ηi)
)2]

+

NR∑
i=1

[
λR,igR,i(θ) +

ρ

2
(gR,i(θ))

2
]
,

where λP,i, λ
(i)
S,j , λ

(i)
S,j and λR,i are Lagrangian multipliers

and ρ is a penalty coefficient, penalizing the squared con-
straint violations. The constraint violations are given by

g+P,i(θ) = max(−Φ(i)
P θ,−ρ

−1λ(i)
P ) (6)

g+S,i,j(θ, ηi) = max(Φ(i)
S,jθ − η

(i),−ρ−1λ(i)
S,j) (7)

g+
S,i,j

(θ, ηi) = max(η(i) −Φ(i+1)
S,j θ,−ρ

−1λ
(i)
S,j) (8)

gR,i(θ) = r(i) −Φ(i)
Rθ,

where we refer to [14] for the derivation of the constrained
violations for inequality constraints.

ADMM iteratively
1) minimizes A with respect to the weights θ,

θk+1 = argmin
θ

A(θ,ηk,λk).

2) minimizes A with respect to the reward levels η,

ηk+1 = argmin
η

A(θk+1,η,λk).

3) updates the Lagrangian multipliers λ,

λk+1 = λk + ρg(θk+1,ηk+1),

where λ is a vector containing all Lagrangian multipliers and
g(θ,η) is vector function that returns their corresponding
constraint violations.

Minimizing the augmented Lagrangian A with respect to
θ corresponds to minimizing the dual G after augmenting it
with a quadratic function of θ. This is similar to solving the
isolated MaxEnt-IRL problem with `2-regularization, which
is commonly done in practice, and typically feasible when
the unregularized optimization is feasible.

Minimizing the augmented Lagrangian A with respect to
the reward levels η can be performed in closed form. The
optimal reward levels are given by

η(i) =

ρ

(∑N (i)
S

j=1 λ
(i)
S,jδi,j −

∑N (i+1)
S

j=1 λ
(i)
S,jδi,j

)
∑N (i)

S
j=1 δi,j +

∑N (i+1)
S

j=1 δi,j

+

(∑N (i)
S

j=1 Φ
(i)
S,jδi,j +

∑N (i+1)
S

j=1 Φ
(i)
S,jδi,j

)
θ∑N (i)

S
j=1 δi,j +

∑N (i+1)
S

j=1 δi,j

,

where δi,j and δi,j are indicator functions that equal one,
if the corresponding constraint is active and zero otherwise.
Inequality constraints are considered active, if the maximum
operator for their constraint violations (6)-(8) returns its first
argument.

IV. EXPERIMENTS

We performed preliminary experiments on an n-by-n grid-
world, where the agent can choose between the five actions
up, down, left, right and stay. The time horizon was given by
T = 20 and the system dynamics were stochastic such that
the agent performed the chosen action with probability 0.8
and a uniformly chosen, different action otherwise. The true



reward function was constructed by assigning to each state
a reward that was uniformly sampled in the interval [0, 100].

In the first set of experiments we tested, how the individual
types of feedback can improve the result of MaxEnt-IRL. For
these experiment we chose n = 8 and presented two expert
demonstrations to the algorithm and iteratively presented
additional training data of the given type. We evaluated
the learned reward functions by comparing the policy that
is computed according to (3) based on the learned reward
function with the one that is computed based on the true
reward function. After each iteration, we compute the miss-
prediction probability, which is the probability of predicting
a different probability than the optimal policy averaged over
all states. Since even the optimal policy would have non-
zero miss-prediction probability due to its stochasticity, we
evaluate the learned reward function based on the miss-
prediction error, which is the difference between the miss-
prediction probability based on the learned reward function
and the miss-prediction probability based on the true reward
function.

We performed separate experiments for evaluating the
effect of pair-wise preferences, oracle-based evaluations and
star ratings. For evaluating the effect of oracle-based eval-
uations, we iteratively added five additional oracle-based
evaluation for a sampled trajectory. For evaluating pair-wise
preferences we added 100 additional pair-wise preferences
at each iteration, that were produced by sampling two
trajectories and comparing them on the true reward function.
For evaluating star ratings we added 20 sampled trajectories
at each iteration and rated them between 1 and 10 stars,
such that the number of feature counts with each rating
was approximately equal. For all experiments we sampled
based on a uniform policy and solved the optimization
problem from scratch at each iteration. Figure 1 shows the
missprediction errors with 2σ-confidence for each experi-
ment. The true reward could be closely recovered with each
individual type of feedback. The amount of required training
data, however, was quite large, indicating that the generated
training data was not very informative. This is also reflected
by the learned Lagrangian multipliers. For example, the ten
thousand pair-wise preferences that we presented at the last
iteration of the respective experiments, always resulted in
only approximately 60 non-zero Lagrangian multipliers.

We also evaluated the performance of the optimization
for large number of training data. For this experiment, we
increased the gridworld to n = 32 and added ten thousand
pair-wise preferences and the same amount of star ratings at
each iteration. We did not present oracle-based evaluations,
because they tend to reveal the true reward function quickly,
which might help in fulfilling the remaining constraints.
Figure 2 depicts the required computational time for each
iteration, which was always about 40 to 60 times as large as
for solving the isolated IRL problem. The experiment indi-
cates that the ADMM-based optimization scales gracefully
with the amount of pair-wise preferences and star ratings.

Fig. 1: Each type of human
feedback could be used
to substantially improve on
the reward function learned
from demonstration.
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Fig. 2: The computational
time scales gracefully with
the amount of additional
human feedback.

V. CONCLUSION

We presented a method for inferring reward functions
from a combination of several types of training data and
demonstrated its feasibility on preliminary experiments.

In future, we want to further evaluate the method on more
realistic, robotic applications. Our work did not focus on gen-
erating informative training data. However, our experiments
indicate, that the data generated by sampling from a uniform
policy has little informative value. We therefore want to
investigate, how to generate more informative training data.
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