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Abstract— For many tasks, tactile or visual feedback is
helpful or even crucial. However, designing controllers that
take such high-dimensional feedback into account is non-trivial.
Therefore, robots should be able to learn tactile skills through
trial and error by using reinforcement learning algorithms. The
input domain for such tasks, however, might include strongly
correlated or non-relevant dimensions, making it hard to specify
a suitable metric on such domains. Auto-encoders specialize in
finding compact representations, where defining such a metric
is likely to be easier. Therefore, we propose a reinforcement
learning algorithm that can learn non-linear policies in contin-
uous state spaces, which leverages representations learned using
auto-encoders. We first evaluate this method on a simulated toy-
task with visual input. Then, we validate our approach on a
real-robot tactile stabilization task.

I. INTRODUCTION AND RELATED WORK

To minimize the human engineering effort when teaching
a robot new skills, robots should be able to learn through trial
and error. Such learning can be formalized in the reinforce-
ment learning framework [1], [2]. Reinforcement learning
(RL) has been shown to be useful in optimizing, among
others, reaching, grasping, and manipulation skills [3]–[5].
These tasks rely on high-dimensional sensor inputs: visual
feedback is crucial in locating objects [3], whereas tactile
feedback is critical for robustness to perturbations and inac-
curacies [3], [6]–[9]. Such high-dimensional sensory inputs
pose a major challenge to RL algorithms.

In robotics tasks, reinforcement learning methods have ad-
dressed this challenge by relying on human-designed features
to represent policies or value functions [1], [2], [10]. For
example, [3] used the center of mass extracted from visual
images. A popular policy parametrization uses dynamic
motor primitives to generate trajectories to be tracked [4],
[5], [11]–[14]. Feedback can be integrated using e.g. task-
specific controllers [5], anomaly detectors [13], trajectories
in sensor space [11], or by adding attractors [14]. Designing
such sensory features is non-trivial in complex and high-
dimensional sensory domains. These task-specific features
are strongly dependent on manual tuning. We propose to
instead learn policies in a widely applicable form from high-
dimensional sensory inputs.
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Fig. 1. A 5-DoF robot with 228-dimension sensor data learns to manip-
ulate using a learned three-dimensional feature space. The learned latent
representation of the tactile data is plotted on the right. Different contact
states, shown on the left, yield different latent-space values. The compact
latent space is used as a feature basis for reinforcement learning.

A further challenge in robot reinforcement learning is that
datasets obtained with robots are generally quite small. In
previous work [15], [16], a reinforcement learning method
was proposed that combines non-parametric policies for
nonlinear sensor data with limited policy updates to avoid
overfitting and optimization bias on small datasets. However,
non-parametric methods usually rely on distances between
input points. In high dimensional sensor spaces, low-intensity
noise or small illumination changes may cause large dis-
placements, making distances less meaningful.

Autoencoders [17]–[19] have shown to be very successful
in learning meaningful low-dimensional representations of
(robot) movement data [20]–[22]. Therefore, we propose us-
ing the representation learned by such autoencoders as input
for reinforcement learning of policies of non-task specific
form. For example, Fig. 1 shows a robot manipulating an
object using the learned latent space.

Many previous researchers have applied neural-network
based methods to reinforcement learning problems with high-
dimensional sensor data. One possibility is to use a neural
network as a forward model for the dynamics and possibly
the reward function. Optimal control methods can then be
used to obtain optimal action. Recently, this approach was
used to find optimal policies when only simulated images of
the system are given [23], [24]. The disadvantage of such
methods is that gradients have to be propagated through a
number of connections that is the product of the planning
horizon and the network depth.



Instead, neural networks can also be used as value func-
tion. Neural networks as state-action value functions are used
in approaches such as neural fitted Q-iteration [25], [26]
and deep Q networks [27]. A possible disadvantage of such
methods is, that small changes in the Q function can have
a big effect of the maximizing policy, which can lead to
unstable behavior in on-policy learning.

As an alternative, some methods learned a neural network
policy instead of, or in addition to, a neural network value
function. Such policy search methods allow the policy to be
adapted slowly, avoiding instabilities. For example, [28] used
an evolutionary algorithm to search for network coefficients
for a visual racing task in a compressed space, [29] learned
neural-network policies using an actor-critic algorithm for
learning dynamic tasks such as locomotion from pixel
images, and [30] used trust-region policy optimization to
optimize such policies to learn to play Atari games from
pixel images as well as challenging locomotion tasks.

However, these methods tend to require on the order of
a million sampled time steps, which might not be easy to
obtain in a real-robot setting. For such real-robot tasks,
Levine et al. [31] proposed using optimized trajectories in
a low-dimensional space to train a neural network policy
that directly uses raw image data as input. Convenient low-
dimensional spaces are, however, not always provided.

Low-dimensional representations can alternatively be
learned using autoencoders [17]–[19]. Such autoencoder are
trained to reconstruct sensor inputs, as was done in [21] to
learn a pendulum swing-up task directly from visual inputs.
However, this approach does not ensure that the learned
representations respects the task dynamics. For example,
states that are easily reachable from the current state but
have a different visual representation, might be far apart in
the learned feature space. To address this issue, a smoothness
penalty can be applied to the feature points, as was done in
[22] to learn robot visuomotor tasks. More explicitly, the
dynamics can be enforced to be linear in the latent space, as
was done in the embed to control method [32].

Similar to these studies, we propose to use deep autoen-
coders to learn lower-dimensional features for reinforcement
learning. Whereas [22] used a separate exploration controller
using a simple state and reward function excluding the high-
dimensional sensor space, we aim to learn feedback policies
directly from the high-dimensional space. Compared to [32],
who learned control policies in a single shot based on data
under an exploration policy, we aim to learn iteratively
on-policy. As the policy starts to generates more relevant
samples, the learned feature representation can be improved.
We want to train our state encoders in a way that respects
the transition dynamics of the controlled system.

In our experiments, we will investigate two tasks: in
simulation, we present a visual pendulum swing-up task.
The simulated experiments will allow us to compare different
variants in quantitative experiments. Thereafter, we show that
the proposed method can acquire a real-robot manipulation
task based on tactile data.

II. POLICY SEARCH WITH LEARNED REPRESENTATIONS

Our approach consists of two steps: autoencoders are used
to learn a suitable representation and non-parametric relative
entropy policy search is used to obtain stable policy updates.
In this section, we will first explain these two subsystems.
Thereafter, we will discuss the set-up of our experiments,
including the tasks we test our algorithms on.

A. Learning Representations using Autoencoders

An autoencoder [18] is a deep neural network that trans-
forms the robot states x ∈ Rd to a latent representation
z ∈ Rd′ using an encoder, z = fθ(x) = s(wTx + b).
The parameters θ consist of the weights w and b, s is a
nonlinear transition function, d and d′ are the input vector
and latent vector dimensions, respectively. Subsequently, the
latent representation is mapped back through a decoder,
x′ = gθ′(z) = s(w′T z + b′) to reconstruction the input
x′. Parameters θ′ include the weights of the decoder w′ and
b′. The weights are restricted by w′ = wT to regularize the
network. The parameters are updated by gradient descent on
the reconstruction error

θ?, θ′? = argmin
θ,θ′

1

n

n∑
i=1

L
[
x(i), gθ′

(
fθ(x

(i))
)]
, (1)

in which L is a mean squared error loss function.
1) Denoising Autoencoder: A denoising autoencoder

(DA, [17]) is a basic version of the autoencoder, in which
noise is added to regularize learning. In the objective

θ?, θ′? = argmin
θ,θ′

1

n

n∑
i=1

L
[
x(i), gθ′

(
fθ(x̃

(i))
)]
, (2)

the inputs to the encoder x̃ are the training inputs x cor-
rupted by adding random noise. The network is trained to
reconstruct the uncorrupted x.

2) Variational Autoencoder: The variational autoencoder
(VAE, [19]) efficiently infers the unobserved latent variables
of probabilistic generative models. The unobserved latent
vectors z(i) correspond to the observed vectors x(i) in the
dataset. As prior distribution of the latent space variables,
an isotropic Gaussian p∗(z) = N (z;0, I) is used. For non-
binary data, a standard choice for the decoder p(x|z) is a
Gaussian, where

log p(x|z) = logN (x;µ,diag(σ2)),

µ = W2h+ b2,

logσ2 = W3h+ b3,

h = h(W1z+ b1) = max(0,W1z+ b1), (3)

in which the parameters µ, σ are given by a multi-layer
perceptron parametrized by W and b jointly represented
by θ. The activation function h is a rectified linear unit.
{µenc,σenc} and {µdec,σdec} represent {µ,σ} for the de-
coder and encoder, respectively.

We would like to find parameters θ that optimize the
marginal likelihood pθ(x(i)). As this objective is intractable
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Fig. 2. Illustration of the VAE with dynamics. The network is trained such
that the decoder output is close to the next state xt+1. After training, the
expected value of zt, µenc

t , is used as input to the reinforcement learning
algorithms, which generates data used to update the network in turn.

for (3), we re-write the marginal likelihood as

log pθ(x
(i)) = log

∫
pθ(x

(i)|z)p∗θ(z)dz

= DKL(qφ(z|x(i))‖pθ(z|x(i))) + L(θ, φ;x(i)). (4)

In this equation, a parametric approximation qφ(z|x) to
pθ(z|x) is used as this term relies on an intractable in-
tegral. The Kullback-Leibler divergence DKL is defined
as DKL(p||q) =

∫
p(x) log(p(x)/q(x))dx. The encoder

qφ(z|x) has a similar structure as (3), but z and x are
swapped and the weights and biases are in a different set
of parameters φ. In (4), L(θ, φ;x(i)) is a lower bound on
the marginal likelihood

L(θ, φ;x(i)) =Eqφ(z|x(i))[log pθ(x
(i)|z)]

−DKL(qφ(z|x(i))‖pθ(z)). (5)

The first term can be interpreted as a reconstruction cost,
which is approximated by sampling from qφ(z|x). The KL-
divergence term DKL quantifies the loss of information when
the approximation qφ(z|x) is used instead of pθ(z).

The lower bound is optimized by stochastic backprop-
agation. As the reconstruction term is estimated through
sampling, we compute the gradient through the sampling
process of qφ(z|x) with the reparametrization trick z =
y(φ, ε), where y is a function of φ with noise ε, as in [19].

3) VAE with Dynamics: We modified the VAE to take
the transition dynamics into account, which we expect to
yield better representations based on performance of similar
networks proposed by [32], [33]. A linear layer is added
between the encoder and the decoder (Fig. 2). It predicts the
next latent state z̃t+1 from the latent state zt and action at

z̃t+1 = [zTt aTt ]w + b, (6)

where w and b are parameters represented by θa. After that,
the model reconstructs the next state xt+1 from z̃t+1. The
transition layer is chosen to be linear to enforce control-
affine dynamics, which are convenient for control tasks. The
modified lower bound is defined as

L(θ, θa, φ;xt,a,xt+1) =Eqφ(z|xt)[log pθ(xt+1|z,a)]
−DKL(qφ(z|xt)‖pθ(z)), (7)

taking the dynamics into account.

4) DA with Dynamics: Similar to the VAE with dynamics,
the denoising autoencoder with dynamics takes transitions
into account and has an additional layer as described in (6),
written as z̃t+1 = hθa(zt,a), in the latent space. The weights
are updated by optimizing

[θ?, θ′?, θ?a] = argmin
[θ,θ′,θa]

n−1∑
t=1

L[xt+1, gθ′(hθa(fθ(x̃t),a))]

n− 1
.

5) Latent Space Updates with On-Policy Samples: To
represent data most relevant for the current policy, we
consider a variant where we update the autoencoder using
samples from the most recent policies. We can either use
data from the most recent iterations only, or, when little data
is available, we can give recent data a higher weight in the
loss function. We will specify the data used for re-training
the latent space for each experiment individually.

B. Non-Parametric Policy Updates

In this section, we give a brief overview of non-parametric
relative entropy policy search (NP-REPS, introduced in [15],
[16]). First, we will introduce the notation that we will use
in the rest of this section. Thereafter, we will show how NP-
REPS can be used to obtain a re-weighting of sampled state-
action pairs to provide stable updates policy updates. Finally,
we explain how the policy represented by those weighted
samples can be generalized to the entire state space.

1) Notation: To use reinforcement learning (RL) methods,
we represent the learning problem as a Markov Decision
Process (MDP). In a MDP, an agent in state s selects an
action a ∼ π(a|s) according to a policy π and receives a
reward Ra

s ∈ R. We assume continuous state-action spaces:
s ∈ S = RDs , a ∈ A = RDa . The stationary distribution
µπ(s) under policy π is the state distribution for which∫
S
∫
A P

a
ss′π(a|s)µπ(s)da ds = µπ(s

′), under transition dy-
namics Pa

ss′ = p(s′|a, s). The goal of a reinforcement
learning agent is to choose a policy such that the joint state-
action distribution pπ(s,a) = µπ(s)π(a|s) maximizes the
average reward J(π) =

∫
S
∫
A π(a|s)µπ(s)Ra

sda ds.
2) Non-parametric REPS: Traditional methods for rein-

forcement learning have no notion of the sampled data,
and can thus suffer from optimization bias and overfitting,
which can lead to oscillations and divergence [34], [35]. To
prevent these problems, the divergence between subsequent
policies [35] or state-action distributions [34] might be
bounded. This latter method, relative entropy policy search
(REPS), works well in practice, and needs relatively few
samples such that learning on the real robot is feasible. REPS
is defined by the optimization problem

max
π,µπ

∫∫
S×A
π(a|s)µπ(s)Ra

sdads, (8)

s. t.
∫∫
S×A
π(a|s)µπ(s)dads = 1, (9)

∀s′.
∫∫
S×A
π(a|s)µπ(s)Pa

ss′dads = µπ(s
′), (10)

DKL(π(a|s)µπ(s)||q(s,a)) ≤ ε. (11)



Equation (8) states that the joint state-action distribution
should maximize the expected average reward, (9) constrains
π(a|s)µπ(s) to be a probability distribution, and (10) forces
the optimizer to respect the system dynamics Pa

ss′ . Fur-
thermore, (11) specifies an additional bound on the KL di-
vergence between the proposed state-action distribution and
sampling distribution q that ensures smooth policy updates.
The solution to the optimization problem obtained through
Lagrangian optimization is given by

pπ(s,a) = π(a|s)µπ(s) ∝ q(s,a) exp
(
δ(s,a, V )

η

)
,with

δ(s,a, V ) = Ra
s + Es′ [V (s′)|s,a]− V (s) (12)

where V (s) and η denote Lagrangian multipliers [34]. The
Lagrangian multiplier V (s) is a function of s and resembles
a value function, so that δ can be interpreted as the Bellman
error. Therefore, (12) can be interpreted as a re-weighting of
the old policy with the soft-max of the advantage function.
Thus, the probability of choosing actions that yield higher
expected future rewards will be increased. We assume the
function V =

∑
s̃∈S̃ αs̃k(s̃, ·), where S̃ is the set of sampled

states [15]. That is, V is member of a reproducing kernel
Hilbert space specified by a kernel k. For characteristic
kernels, such as the squared exponential (Gaussian) kernel,
this assumption allows for non-linear and highly flexible V
that can adapt to the complexity of the dataset.

The multiplier V is completely determined by the em-
bedding strengths α. These embedding strengths and η are
obtained through minimization of the dual function

g(η,α) = ηε+ η log

(
n∑
i=1

1

n
exp

(
δ(si,ai,α)

η

))
, (13)

where the samples (si,ai) are drawn from q(s,a). To
calculate the Bellman error δ, the transition distribution is
required. As this distribution is usually not known, δ needs
to be approximated. Earlier work [15] showed that this
approximation can be done efficiently using kernel methods.

We set the reference distribution q to the state-action
distribution induced by previous policies. Learning starts
with samples from an initial wide, uninformed exploration
policy π̃0. The variance of policies typically shrinks after
every iteration, such that the policy converges to a (locally)
optimal policy. Note that this method only learns about
the reward function and system dynamics through samples,
and therefore does not need an analytical dynamics or
kinematics model. The kernel bandwidths for ks are tuned to
optimize learning performance. The hyper-parameter λ and
the bandwidths of ksa are set to minimize the two-fold cross-
validation prediction error of the embedding of s′.

3) Fitting Generalizing Control Policies: Equation (12)
can only be computed for the sampled state-action pairs,
since the reward Ra

s is only observed at those samples.
We obtain a control policy that generalizes to all states
by conditioning. We consider policies π̃(a|s,θ) = θTφ(s)
linear in features φ(s). We choose those features such

that their inner product approximates a Gaussian kernel, as
suggested by [36].

As the parameters θ are not known beforehand, we place a
Gaussian prior over these parameters. We subsequently con-
dition on the sampled actions to obtain a generalizing policy.
We have to consider, however, that the actions were drawn
from the previous distribution q(a, s), not the desired distri-
bution pπ(a, s). Therefore, we include importance weights
wi, and obtain a posterior distribution over parameters

p(θ|a1, s1, . . . ,an, sn) ∝ p(θ)
n∏
i=1

π̃(a|s,θ)wi ,

with samples (si,ai) ∼ q(a, s) and importance weights

wi = pπ(si,ai)/q(si,ai) = exp(δ(si,ai, V
∗)/η∗),

since pπ is of the form given in (12). Hyper-parameters
are automatically set by maximizing the marginal likelihood
using cross-validation.

III. EXPERIMENTAL SET-UP AND RESULTS

We perform two experiments with high-dimensional sen-
sory input. The first experiment considers a simulated pen-
dulum swing-up task with visual input, and the second
considers a real-robot manipulation task with tactile input.
After describing the set-ups, we will present our results.

A. Experimental Set-Ups

The reinforcement learning agent starts by exploring its
environment using its stochastic policy. After every iteration
of data gathering, the learned model and the policy of the
agent are updated. To bootstrap the model and the policy, the
agent is given 30 initial roll-outs using a random exploratory
policy (45 roll-outs in the real-robot experiment). To avoid
excessive computations, we only keep data from the last three
iterations1.

For the simulated experiment, after each update, the learn-
ing progress is evaluated by running the learned policy on
100 roll-outs with a fixed random seed. This data is not used
for learning. For the real-robot experiment, performance of
the training roll-outs is reported. The KL bound ε of the
REPS algorithm was set to 0.5 in our experiments.

Simulated visual pendulum swing-up: In this experi-
ment, we simulate a pendulum that has to be swung up
and balanced at the upright position, based on visual input.
We reproduce the set-up of [15], where the pendulum has
length l = 0.5m, mass m = 10 kg, and friction coefficient
k = 0.25Ns. The action a is a torque applied at the pivot,
with a maximum of 30 Nm such that the pendulum cannot
be swung up from the downward position directly.

After each time step of 0.05 s, the agent receives a reward
according to r(s, a) = −10θ2 − 0.1θ̇2 − 10−3a2. A rather
high level of additive noise is applied to the controls (with
a standard deviation of 4.5Nm). We ended the roll-out after
each time-step with a probability of 0.02, resulting in an

1As a consequence, the reference distribution q is a mixture of the
previous three state-action distributions in our experiments.
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Fig. 3. Set-up of the tactile control experiment. The five-DoF robot touches
a blue pole that can rotate about two axes using the green BioTac fingertip
sensor. The pitch and roll of the pole are measured to provide a feedback
signal, but not used in the control policy.

effective discount factor γ = 0.98. For this experiment, we
used 10 roll-outs per iteration.

The agent only has access to images of the pendulum.
We render an image of the pendulum in its current state, as
well as a difference image between visual representations of
the pendulum in its current and previous state (to provide a
notion of angular velocity). We blur the image and difference
image with a Gaussian filter to enhance the spatial general-
izability of the kernel. This filter has a standard deviation of
20% of the image width. Both images are resized to 20×20
pixels and concatenated into a vector with 800 features. We
choose squared-exponential kernels for all variables.

The denoising autoencoder (DA) has one input layer,
five hidden layers and one output layer. The number of
neurons per layer are 800, 120, 50, d′, 50, 120 and 800
respectively, where d′ is the number of latent dimensions.
We set the corruption level to 0.2, which means 20% of
the image is corrupted in every training image. The DA
with dynamics uses the same parameters but uses one more
layer, as explained in Sec. II-A.4. For the VAE, we set
the number of neurons per layer to 800, 512, d′, 512, and
800, respectively. All network parameters where chosen to
minimize the reconstruction error. The VAE with dynamics
has the same architecture, except the layer from zt to zt+1, as
shown in Fig. 2. The encoder networks in both VAE and VAE
with dynamics used the square as the transfer function for
the σ output. We furthermore evaluate a VAE that is retrained
on the three most recent iterations with each policy update
(note that, since (13) is based on samples only, re-training
the VAE does not impact the KL constraint).

With this set-up, we want to answer two questions. First,
we want to investigate which type of autoencoder is most
suitable to find features for the reinforcement learning task.
Secondly, we want to validate whether updating the autoen-
coder to represent the states visited by the most recent policy
improves learning of the task.

Real-robot tactile control experiment: In this experi-
ment, a 5 degree of freedom robot manipulates a pole through
a SynTouch BioTac tactile sensor on the end-effector (see
Fig. 3). The pole is on a platform which is able to rotate
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Fig. 4. Comparison of learning curves for the pendulum task using
representations learned with different types of autoencoders. Shown are
results of denoising autoencoders (DA) with 10 latent variables, and of
variational autoencoders (VAE) with three or five latent variables. For the
best category of encoders, ‘VAE 5’, we also compare to a version that
is retrained with every policy update. Error bars show the sample standard
deviation. Averages are calculated over five independent runs, using a single
learned feature space per encoder type. The ‘retrained’ encoder is retrained
independently for each run. Rollouts contained 50 time steps, on average.

in roll (α) and pitch (β), measured in degrees. Two angle
sensors are mounted on the platform to measure the pole
angles. The initial position of the pole is a 5◦ rotation from
the central position with a uniformly random angle. The task
for the robot is to move the pole to the stable center position
where α and β are zero degree by manipulating the top of the
pole. The reward function defining this upright pole position
as a goal is r(s, a) = 60(exp (−(α2 + β2)/60) − 1). The
reset probability is set to 0.05 (equivalent to γ = 0.95). In
this experiment, we use 15 roll-outs per iteration.

The input to the neural network is a 12-time step window
of the 19 electrodes of the BioTac sensor, yielding 228-
dimensional input data. We used a hidden layer with 512
neurons and a feature layer with three neurons, chosen based
on reconstruction error. In this experiment, the σ values of
the decoder networks are constant, independent of z. Actions
consist of an increment in forward-backward and left-right
position. The desired position is kept constant during the
33ms time window. The control frequency is 2.8 kHz.

As the data size recorded on the real robot is relatively
small, sampled data from all previous iterations is used to
retrain the autoencoder. Recent data is more relevant than
older data, and therefore errors on recent data were given a
bigger weight in the loss function (triple weight for the most
recent iteration, and double for the iteration before that).

B. Results of the Visual Pendulum Swing-up Experiments

In the first evaluation on the simulated visual pendulum
swing-up task, we compared different types of autoencoders
and inspect the effect of re-training the encoder on the
most recently sampled data. For the evaluation, we use
five independent trials for each feature representation. The
results of this experiment are shown in Fig. 4. Compared
to the denoising autoencoder, most variational autoencoders



(a) VAE, angle (b) VAE, velocity

(c) VAE+dynamics, angle (d) VAE+dynamics, velocity

Fig. 5. Visualization of the learned feature spaces by the VAE with
3 latent features. The graph shows the three-dimensional feature space,
represented by the x, y and z axis. The color encodes the pendulum angle
(left column) or velocity (right column). The latent space was learned using
the variational autoencoders (top row), or the modified encoders with system
dynamics (bottom row). The angle and velocity are not directly available
to the learning algorithm, but are used to calculate the learner’s reward. All
learned structures reflect the periodic nature of the angle variable.

provide representations that yield higher average rewards
when used with reinforcement learning compared to using
the raw sensor data, a truncated PCA with five components,
or the denoising autoencoder in our tasks. An exception is
the variational autoencoder with three latent features without
additional dynamics. The learned representation for this type
of encoder is presented in Fig. 5. Without the dynamics
information, points which are regularly spaced in the original
space are not so in the learned feature space. The encoder
that forces the dynamics to be linear learned a more regular
feature space. In the other cases, the encoders with dynamics
also tended to yield slightly better representations.

Figure 4 also shows the performance based on features
that are updated as the policy improves. These updates
should intuitively ensure that the variational autoencoder
focuses on representing the states visited by the current
policy. In our experiment, updating the autoencoder this way
improves the learning progress. As training the encoder is a
computationally expensive procedure, we only performed a
this evaluation for the most promising encoder type.

C. Results of the Tactile Manipulation Robot Experiment

As shown in the visual pendulum experiment, retrained
VAE with dynamics yielded the best representation. There-
fore, this encoder was chosen for the real robot experiment.
The learned representation is shown in Fig. 6. The results
of reinforcement learning of the tactile manipulation task
with or without the encoder are shown in Fig. 7. With the
learned representation, RL progress is smooth and stable.
The final policy brings the pole within 1◦ of the desired
location in rollouts with at least 10 time steps, on average.

(a) roll (b) pitch

Fig. 6. Latent space for BioTac sensor. The x, y and z axis represent
the latent values, the samples are colored according to roll and pitch of the
platform. The visualization shows that in the learned feature space, the pitch
and roll components are perpendicular to each other.
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Fig. 7. Left: Learning progress on the real robot tactile manipulation task.
During learning, performance of the learned policy including the learned
exploration term is shown. After learning, we evaluate the learned mean
policy without exploration. Error bars show the sample standard deviation.
Averages are calculated over five independent runs, with independently
learned feature encoders. Rollouts contained 20 steps, on average. Right:
On raw sensor data, the learner is very sensitive to noise. In the simulated
experiment, performance collapses for noisy raw sensor inputs, but not when
the learned representation is used.

The performance of a baseline policy on the raw data directly
is very poor. A possible cause for this poor performance is
that the sensor data is too noisy.

To better understand the behavior of the system in the
presence of observation noise, we evaluated the performance
of reinforcement learners on the simulated visual pendulum
swingup with low-intensity per-pixel noise (about 1% of the
maximum image value). Figure 7 shows the performance
on the noisy pictures, compared to the performance on the
original task. When the images are corrupted with a small
amount of noise, the learner using raw images seems unable
to learn the task.

IV. DISCUSSION AND CONCLUSION

In this paper, we have introduced a reinforcement learning
system consisting of two parts: an autoencoder that repre-
sents high-dimensional sensor representations in a compact
space, and a reinforcement learner that is able to learn stable,
non-linear policies. These stable updates allow on-policy
learning with relatively small batches of data, making it
possible to adapt the neural encoding during learning.



In our experiments, first we compared different types
of autoencoder on a simulated visual task. We found that
better results were obtained for this task with variational
autoencoders compared to the more traditional de-noising
autoencoders. Modifying the objective to reproduce the sys-
tem dynamics, rather than encode individual input patterns,
also tended to improve reinforcement learning performance.
Re-training the encoders on the state distribution induced
by the policy markedly improved performance. In this case,
the encoder objective incurs the biggest loss for states that
are most relevant to the policy, and therefore, such states are
likely to be represented especially well in the learned feature
space.

In a second set-up, we considered a real-robot manip-
ulation task based on tactile feedback. In this scenario,
we showed that the robot was able to learn a policy that
manipulates and stabilizes a platform. Rather then using
joint encoders or handcrafted features, our algorithm learned
the tasks based on complex and high dimensional tactile
representations.

For both tasks, we noticed that learning from the raw data
tends to perform especially poorly in the presence of noise.
Distances in the learned feature space are not distorted by
noise as much as those in the image space, as the learned
feature representation tends to average over multiple input
channels. Thus, reinforcement learning on the learned feature
space is still successful for the noisy task.

We consider this real-robot task to be a first step towards
more complex manipulation tasks, where tactile feedback
has the potential to improve robustness with respect to
perturbances and inaccuracies. We are currently working
on learning manipulation policies on multi-fingered robotic
hands. In future work, we plan to investigate efficient explo-
ration strategies that are critical for success in this domain.
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