
  

  

Abstract— This paper addresses the idea of establishing 
symbolic communication between mobile robots through 
gesturing. Humans communicate using body language and 
gestures in addition to other linguistic modalities like prosody 
and text or dialog structure. This research aims to develop a 
pointing gesture detection system for robot to robot 
communication scenarios to grant robots an ability to convey 
object identity information without global localization of the 
agents. The detection is based on RGB-D and a NAO humanoid 
robot is used as the pointing agent in the experiments. The 
presented algorithms are based on PCL library. The results 
indicate that real-time detection of pointing gesture can be 
performed with little information about the embodiment of the 
pointing agent and that an observing agent can use the gesture 
detection to perform actions on the pointed targets.  

I. INTRODUCTION 

Humans are species that gesture [1]. In human 
communication, gesturing is closely associated to verbal 
communication and complements spoken language by 
providing additional information or emphasizing specific 
meanings and descriptions. Furthermore, deictic gestures 
(pointing gestures) can help recipients to identify the target 
object of a conversation by guiding the recipient’s gaze in the 
target’s region. 

Deictic gestures can thus be used to obtain an agreement 
on the symbols used in the communication between the 
interacting parties. In this research, we propose to use 
gestures to obtain the agreement on names of physical objects 
between two robots. In other words, gesturing is used to 
cooperatively anchor names (symbols) to physical objects in 
a heterogeneous multi-robot system. Such anchoring is 
necessary for the agents to be able to collaborate on solving 
tasks.  

Therefore, this paper presents a pointing gesture detection 
system for robot to robot communication scenarios to grant 
robots an ability to convey object identity information. The 
detection is based on RGB-D data and analysis of the 
resultant point cloud. The approach offers the distinctive 
benefit that the communicating robots do not require a 
synchronized coordinate frame in order to pinpoint an object 
of interest in space (transmitting absolute coordinates 
between them). Each robot can carry its own local coordinate 
frame and localize objects of interest through a pointing 
gesture. Additionally, robots equipped with more human-like 
communication capabilities can more naturally blend in 

 
*Resrach is supported by EU FP7 grant RECONFIG (no. IST-600825). 
P. Kondaxakis (corresponding author), J. Pajarinen and V. Kyrki are 

with the Intelligent Robotics Group, Electrical Engineering and Automation 
Department, Aalto University, Finland. (E-mail: {polychronis.kondaxakis, 
joni.pajarinen, ville.kyrki}@aalto.fi). 

human environments and houses. Most of people are not 
accustomed with robotic devices and thus robots exhibiting 
familiar human-like communication behaviors could more 
easily blend in household environments. According to our 
best knowledge, this is the first work proposing to understand 
deictic gestures between robotic agents. The particular 
contribution of this work is: a) the idea of using deictic 
gestures for anchoring object identities, b) a description of a 
system for understanding robot-robot deictic gestures and c) 
an experimental study of the capabilities of such a system. 

The paper is organized as follows: We begin by surveying 
the related literature in Section II. In Section III the scenario 
including the hardware platforms is introduced. Section IV 
describes the pointing gesture detection and tracking 
algorithm. In Section V the object extraction and 
segmentation algorithm is explained. Section VI illustrates 
the fusion of the developed algorithms and the final 
extraction of the object. Section VII presents real world 
experiments which support the effectiveness of the proposed 
system. Finally a conclusion is given in Section VIII. 

II. RELATED WORK 

There is currently many on-going research endeavors on 
detecting and recognizing human gestures based on data from 
for example visual sensors. In human-machine interaction, 
gesturing has been utilized as a natural interface for human 
operators to control complex devices such as TV sets or 
games consoles. In robotics, gestures have been exploited as 
an intuitive human-robot command interface, where the 
human controller directs and communicates actions to its 
robot counterpart through gesturing. 

However, most methods geared towards human-machine 
interaction scenarios rely on ready-made skeletal and hand 
tracking libraries provided for example by OpenNI and 
Mirosoft SDK, which are designed to detect and track only 
human shapes and heights. So far and to the extent of our 
knowledge, there is very limited research on robot to robot 
interaction through body language. An example can be found 
in [2] where the authors present their work on language 
evolution using gestures in a robot to robot or human to robot 
scenarios. They also discuss the applicability of this 
framework on grounding communication modalities between 
robots. However, their research mainly concerns the 
linguistic aspects of the developing communication system 
that includes both voice and gestures and not the usability of 
a human-like gesturing system. Furthermore, according to 
Chapter 5 of the book [2], the authors implement very limited 
visual strategies to detect gestures. More specifically, deictic 
gestures are not explicitly detected between participating 
robots, in a language game experiment, but the coordinates of 
the pointed objects are broadcasted by the pointing robot.     

Real-Time Recognition of Pointing Gestures for Robot to Robot 
Interaction   

Polychronis Kondaxakis, Joni Pajarinen and Ville Kyrki* 



  

Despite the differences between human-robot and robot-
robot gesturing, we next provide an overview of the works in 
human gesture detection. Gesture detection systems deploy a 
variety of visual sensors and algorithms to recognize hand 
moves and track their trajectories. For example, RGB-D 
sensors are widely used for this purpose. In [3], the authors 
recognize pointing gestures using Kinect based depth image 
and skeletal points tracking. To detect the direction of the 
pointing gesture, they detect and track the pointing fingertip 
using a minimum bounding rectangle and a Kalman filter 
estimator. In a similar trail of thought, the authors in [4] use 
the skeletal tracker provided by the Kinect SDK and a data 
mining classifier to recognize human gestures. Simpler 
sensor setups such as a simple 2D camera have been also 
deployed to detect human gesturing as described in [5], [6] 
and [7], where probabilistic and other classifier methods were 
used to categorize a number of gestures. Another 3D method 
(PinPoint system) is described in [8] and it utilizes a pair of 
calibrated cameras to achieve stereo vision and detect 
pointing gestures. Finally, a 3D time of flight (TOF) camera 
is utilized in [9] to detect and categorize pointing gestures 
based on the pointing direction for a slideshow presentation 
scenario.  

In the more related human-robot interaction research, 
there are also plenty of approaches that utilize RGB-sensors 
to detect gestures. For example, both approaches in [10] and 
[11] use 3D Kinect sensor and OpenNI and NITE skeletal 
tracker to recognize a number of pointing and other gestures. 
OpenNI and NITE libraries [12] as well as Microsoft Kinect 
SDK [13] provide a simple ready-made skeletal tracking 
solution for human detection [14] and joint tracking and thus 
they are widely used in human-robot interaction scenarios 
and in gesture detection approaches. Another method that 
uses 3D Kinect mounted on a mobile robot is presented in 
[15], where the authors use the available OpenNI hand 
tracker to initiate pointing gesture detection. Having that 
natural interface, a human operator can direct the mobile 
robot to specific locations in space by simply gesturing. 
However, there are other available visual sensor setups such 
as in [16] and [17] where the authors of both publications 
use stereo vision to recognize gestures and have similar 
algorithmic implementation methods. On one hand, in [16] 
the authors use 3D particle filtering for tracking and a 
cascade of two hidden Markov model (HMM) for pointing 
direction estimation. On the other hand, in [17] a multi 
hypothesis tracking framework is established to find the 
positions in space of the respective body parts and an HMM-
based classifier is trained to detect pointing gestures. Finally, 
there are simple 2D methods utilizing a single color camera 
to control robotic artifacts such as in [18], [19] and [20]. To 
detect deictic gestures, the authors in [18] apply a model that 
enables a humanoid robot to recognize the static orientation 
of the gesture as an edge image and movement as an optical 
flow. These gestures are used to influence a learning 
mechanism on the robot that enables to further understand 
its environment. In [19] deictic gestures are recognized 
through extending a trajectory recognition algorithm based 
on particle filtering with symbolic information from the 
objects in the vicinity of the acting hand. Finally, in [20] 
counting gestures are detected by a swarm of mobile robots 

to play games. Each robot is equipped with a statistical 
classifier, which is used to generate an opinion for the 
sensed gesture. 

    
Figure 1. The NAO robot is pointing to an object of interest, in this case the 
red wooden toy-car and a 3D Kinect device is observing the scene.  

III. SYSTEM SETTINGS 

This research is conducted on a scenario where deictic 
gestures from a humanoid platform (in this case the 
Aldebaran’s NAO robot) will be detected by a Kinect 3D 
sensor device (Figure 1). On one hand, the Kinect device is 
composed by a VGA color camera and a depth sensor. Depth 
measurements are extracted utilizing an infrared projector 
and a monochrome CMOS sensor that work together to "see" 
the room in 3D regardless of the lighting conditions. The 
default RGB video stream uses 8-bit VGA resolution 
(640×480 pixels) at 30FPS with a Bayer color filter [21]. On 
the other hand, NAO robot is a 25-degrees of freedom 
humanoid platform equipped with a colored camera sensor. 
The robot can perform all kinds of deictic gesture moves and 
can detect and home to any objects of interest in its 
environment. In our robot to robot interaction scenario, the 
Kinect sensor represents the observing robot. Moreover, 
pointing and observing robots are synchronized when a 
deictic gesture starts, to avoid potential outliers from other 
moving objects in the scene. Some basic assumptions made 
in this research are: a) The hand detection algorithm relies on 
movement and thus any moving object in Kinect field of 
view is a potential pointing arm, b) The size of the pointing 
arm has to be known a priori, c) Pointing and observing 
agents should remain stationary during gesture execution. 
Later-on in the Experimental Results section, the Kinect 
sensor will be augmented by a manipulator arm, which will 
demonstrate some dynamic grasping on the pointed objects. 
All developed algorithms have been tested on an Intel® 
Core™ i5-3320M CPU @ 2.60GHz×4 with 8GB of RAM 
memory. They are based on Point Cloud Library (PCL) [22] 
and divided into three distinctive modules under the ROS 
framework (ROS-nodes). Figure 2 presents the interactions 
between the three nodes and how they are connected to each 
other. In more details, the Hand Detection and Object 
Detection ROS nodes subscribe to the ROS Kinect driver 
Node and obtain RGB-D data. Secondly, the Find Pointed 
Object ROS node subscribes to the Hand Detection and 
Object Detection ROS nodes, which provide the pointing 
vector and the point clusters of the segmented objects 
respectively. Finally, a resulting point-cluster of the pointed 
object is published by the Find Pointed Object Action ROS 
node.  

IV. ARM DETECTION COMPONENT 

This section describes the implementation of the arm 



  

detection and tracking node. This node subscribes to the 
ROS Kinect node, which provides the RGB-D point cloud 
data as obtained by the Kinect sensor. After processing these 
data, the node publishes the detected pointing vector as two 
distinctive points that represent the beginning and the end of 
the vector. Upon detection of a deictic gesture, the pointing 
vector is constantly provided to the subscribed modules even 
if the pointing arm remains stationary. The algorithm is 
divided into three parts. The first part segments the point 
cloud to extract moving points, that is, areas with spatial 
changes in the environment. The second part assigns a 
bounding box according to the dimensions of the arm that 
needs to be detected. The third part extracts the pointing 
vector. Figure 3A below visualizes the aligned bounding box 
and the corresponding pointing vector on an unsegmented 
point cloud obtained by the Kinect device. In the current 
setup this algorithm performs at ≈3.3Hz update rate. 
Therefore, although it detects the pointing arm 
independently of its moving speed, there are speed 
restrictions on NAO’s pointing action. This is due to the 
detection algorithm’s relatively low update frequency. 
However, it is extremely robust on slow pointing arm 
rotation rates. 

 
Figure 2. Pointing gesture detection algorithm developed under the ROS 
framework. 

A. Spatial Change Detection 
The first step is to detect spatial changes between 

multiple consecutive unorganized point clouds that could 
vary in size, resolution, density and point ordering. To 
achieve real-time implementation, we first reduce the 
number of input points by downsampling the raw point 
cloud data. This is achieved by utilizing a VoxelGrid filter 
from PCL. This filter approximates all available points in 
each 3D cell of the created voxel-grid with their centroid. 
Next, we create an octree data structure for organizing the 
sparse 3D downsampled data. Spatial changes are identified 
by recursively comparing the tree structures of the octrees 
and locating differences in voxel configuration. Then the 
algorithm processes only these differences between two 
consecutive point clouds by comparing all octree’s leaf 
nodes that did not exist in previous buffer. Finally, we 
further remove outlier data by utilizing a RadiusOutlier filter 
from PCL. This filter removes all points in its input cloud 
that do not have a minimum number of neighbors within a 

certain range. The remaining point data are further 
segmented into clusters using the Euclidean Cluster 
Extraction method from PCL. This method is described in 
[23] and it uses the filtered point cloud (from the 
RadiusOutlier filter) and a Kd-tree structure for finding 
nearest neighbors of every point in the cloud. For each point, 
the neighboring points are evaluated according to their 
Euclidean distance. Points positioned inside a sphere with a 
particular radius, with distance values below a certain 
threshold, are collected into the same cluster. 

B. Bounding Box 
The second step of the proposed algorithm is to initially 

assign a 3D rectangular bounding box to the most 
appropriate cluster extracted by the Euclidean segmentation 
algorithm and then calculate the relative pointing vector. The 
bounding box technique provides a simple but yet efficient 
solution for real-time arm detection and it simultaneously 
avoids any heavy processing model registration methods. It 
also provides a level of modularity and re-configurability in 
case different arm shapes and sizes need to be detected. 
More specifically, we manually assign threshold values for 
the max and min side sizes of a 3D rectangular box that 
represents the dimensions of the arm we want to detect, and 
we compute the best fit to the available clusters based on the 
following criteria: 𝐝𝐢𝐦𝑚𝑖𝑛 < 𝐝𝐢𝐦𝑖 < 𝐝𝐢𝐦𝑚𝑎𝑥, where 𝐝𝐢𝐦 
is the dimensional vector (𝑤𝑖𝑑𝑡ℎ, ℎ𝑖𝑔ℎ𝑡, 𝑙𝑒𝑛𝑔𝑡ℎ) and i is the 
number of a particular cluster. Here, NAO robot uses its 
fully extended arm to point at objects. The min and max arm 
dimensions are modeled as (0.02m, 0.06m, 0.2m) and 
(0.08m, 0.09m, 0.3m) respectively.  

To assign a bounding box in each available cluster we 
execute the following steps:  
1. Compute the centroid of each available cluster 𝐱𝑐𝑒𝑛𝑡𝑖 =

�𝑥𝑐𝑒𝑛𝑡𝑖, 𝑦𝑐𝑒𝑛𝑡𝑖 , 𝑧𝑐𝑒𝑛𝑡𝑖�. 
2. Determine orientation by calculating the eigenvectors of 

the covariance matrix of the cluster points so that the 
eigenvectors 𝐞𝐢𝐠𝐃𝐱 = (𝒆�1, 𝒆�2,𝒆�3) are used to obtain the 
rotational matrix 𝐑𝑙 

𝑤 = (𝒆�1|𝒆�2|𝒆�1 × 𝒆�2), (w = world 
frame, l = local frame) with 𝒆�1 × 𝒆�2 = ±𝒆�3. 

3. Transfer the points of each cluster i to the local frame of 
that cluster by: 

𝐏𝑖 = 𝐑 𝑤 𝑙
𝑇

 
𝑙 � 𝐏𝑖 

𝑤 − 𝐱𝑐𝑒𝑛𝑡𝑖�                                              (1) 

4. Compute the max, the min and the center of the diagonal 
points. 

𝐱𝑚𝑒𝑎𝑛_𝑑𝑖𝑎𝑔𝑖 = 0.5 × �𝐱𝑚𝑎𝑥𝑖 + 𝐱𝑚𝑖𝑛𝑖�                           (2) 

5. Given a box centered at the origin with size �𝑥𝑚𝑎𝑥𝑖 −
𝑥𝑚𝑖𝑛𝑖, 𝑦𝑚𝑎𝑥𝑖 − 𝑦𝑚𝑖𝑛𝑖, 𝑧𝑚𝑎𝑥𝑖 − 𝑧𝑚𝑖𝑛𝑖� we apply the 
following transformation to the box center coordinates to 
place it in the right position and orientation in space:  
Translation 
𝐱𝑏𝑜𝑥_𝑐𝑒𝑛𝑡𝑒𝑟 = 𝐑𝑙 

𝑤 𝐱𝑚𝑒𝑎𝑛_𝑑𝑖𝑎𝑔𝑖 + 𝐱𝑐𝑒𝑛𝑡𝑖                         (3) 

Rotation 
𝐑𝑙 

𝑤 = (𝒆�1|𝒆�2|𝒆�1 × 𝒆�2)                                                 (4) 



  

C. Pointing Vector Extraction 
Having isolated NAO’s pointing arm by using the 

bounding box technique, we next extract the pointing vector. 
To achieve this, we first calculate the center points of the 
two far sides of the rectangular bounding box. These two 
sides are located one near the detected arm’s fingertips and 
the other near the shoulder of the robot as shown in Figure 
3A. The vector is defined by these two center points. To 
obtain the pointing direction, we take into account two 
vectors from two consecutive time instants (t and t-1) when 
the robot starts pointing at something. Next, we project these 
two lines into a 2D plane by ignoring the z-axis direction 
and we find their 2D intersection. Finally, we compare the 
2D Euclidean distance between this point and the two center 
points defining the vector line at time t. The center point 
with the smaller distance from the intersection point is 
defined as the back point of the vector and the other as the 
front vector point. Therefore, the arm is pointing towards the 
front center point direction.   

Figure 3. A) A raw 3D Kinect point cloud with a NAO robot pointing at 
objects. NAO pointing arm is detected by fitting a bounding box to it and 
the pointing vector is extracted. B) The “Object Detection” ROS node 
segments the raw point cloud data from the Kinect sensor and outputs point 
cloud clusters of potential objects. C) The red wooden toy-car is detected by 
the merging “Find Pointed Object” component. 

V. OBJECT DETECTION COMPONENT 

This ROS node is responsible for segmenting the 
available point cloud and creating clusters of points that 
represent objects. It subscribes to the ROS Kinect node to 
obtain the raw point cloud data and it publishes the extracted 
point cloud clusters for later use. 

The developed algorithm is also based on the PCL 
library. Firstly, we compute normals for an organized point 
cloud using integral images. To achieve this we utilize a 
covariance matrix method, which creates nine integral 
images to compute the normal for a specific point from the 
covariance matrix of its local neighborhood. Following that, 
the obtained normals are inserted into the organized 
multiplane segmentation functionality of PCL to segment the 
raw point cloud data into clusters. This algorithm finds all 
planes present in the input cloud, and outputs the plane 
equations, as well as point clouds corresponding to the inliers 
of each detected plane. It uses the 2D image information to 
detect segment boundaries and a flood fill technique to 
connect pixels. Following a common approach, we first 
segment planes from the point cloud, then mask the 
segmented planes, and then employ an Euclidean point 

similarity measure to extract objects. It is worth mentioning 
here that the organized multiplane segmentation algorithm 
used in this work, operates efficiently in real time, making it 
ideal for the developed system at hand. In the current setup, 
the segmentation algorithm runs at ≈0.95Hz. Figure 3B 
visualizes the output of the Object Detection ROS node that 
has detected a number of point cloud clusters marked with 
different colors. Furthermore, a number of outlier clusters 
have been detected, which will be removed later on the Find 
Pointed Object integration component.  

VI. FIND POINTED OBJECT COMPONENT 
For extracting the pointed object information, a third 

ROS node has been built to manipulate and combine the 
output from the two previous nodes. As Figure 2 
demonstrates, this ROS node subscribes to both Hand 
Detection node and Object Detection node and then receives 
the pointing vector information and the detected object 
point-cloud clusters respectively. The implemented 
algorithm in this node, firstly selects the point-cloud cluster 
with the shortest vertical projection distance of its centroid 
to the pointing vector line. Next, it further filters out possible 
outliers (wrong clusters) by utilizing a 3D grid map 
technique.   

A. Object Cluster Selection 
The criteria to select the most relevant point-cloud 

cluster from the available ones, provided by the Object 
Detection ROS node, is the shortest vertical projection 
distance of its centroid to the pointing vector line. Assuming 
that we have the front and back pointing-vector points 
(𝐱𝑓 and 𝐱𝑏) as well as the centroid points of each cluster i, 
this distance is calculated using the following equation: 

𝑑 = ��𝐱𝑓−𝐱𝑐𝑒𝑛𝑡𝑖�
2
�𝐱𝑏−𝐱𝑓�

2−��𝐱𝑓−𝐱𝑐𝑒𝑛𝑡𝑖�∙�𝐱𝑏−𝐱𝑓��
2

�𝐱𝑏−𝐱𝑓�
2                       (5) 

Also, the sign of the dot product �𝐱𝑓 − 𝐱𝑏� ∙ �𝐱𝑐𝑒𝑛𝑡𝑖 − 𝐱𝑓� 
provides information regarding the projected location of the 
centroid to the pointing vector. If the sign is positive, the 
projection lies after the front vector point and all relative 
clusters will be evaluated as possible pointed objects. On the 
other hand, if the sign is negative all objects represented by 
detected clusters will be disregarded as outliers.     

B. 3D Grid Map Filtering 
To obtain a consistent object selection mechanism, we 

implement a time-delay filter to remove any further outliers 
that might occur. These outliers are caused by small 
variations on the computed vertical projection distances 
among consecutive algorithmic iterations. The proposed 
technique is inspired by authors’ previous work in [23]. It 
can be understood as a 3D grid map where a counter in each 
cell totals possible object centroid hits. In each algorithm 
iteration, the object’s centroid point is associated with a 
particular cell in the grid-map and a cell counter increases 
linearly until it reaches a maximum value (7 in this case). 
The general rule here is that the dominant pointed object is 



  

the one whose centroid falls inside a grid cell with the most 
counts in it. Also, for every iteration a linear forgetting 
factor decreases the counts inside the cells that have not 
been updated with a new centroid point. If at a particular 
time instant an outlier object appears, with its centroid point 
falling inside a cell with a lesser count-value, the algorithm 
takes into account the last centroid-verified object point 
cloud. Therefore, the object appearing most is assumed to be 
the final pointed object of interest.  

 
Figure 4. Experimental setup with distinctive pointing positions for NAO 
robot. The space is divided clockwise into eleven segments (1 to 11) 
starting from 0° to 337.5°. 

 
Figure 5. NAO robot is at position 8 at 135° and is pointing at the red car 
object. The Kinect device observes the objects at 0°. 

VII. EXPERIMENTS AND RESULTS 
To evaluate the performance of the proposed algorithm 

we completed a series of real world experiments. Here, the 
NAO robot is placed on a number of predefined positions 
and performs a pointing gesture at three objects (IKEA 
wooden toy cars). These objects are placed in fixed locations 
on top of a cardboard box serving as a table. A Kinect sensor 
is at a fixed position in space, observing the box with the 
objects at 1m distance and at 270° according to Figure 4. 
Eleven discrete pointing positions have been defined around 
the box at approximately 60 cm distance from the center of 
the box (purple spots at Figure 4). In each position, NAO 
executes a separate pointing gesture for each object. For 
example, in Figure 5 NAO is located at position 8 (135°) and 
it points towards the red wooden car. Moreover, during this 
experiment the Kinect sensor was facing the paper box with 
the objects on top from three different locations. For 
positions 1 to 3 the Kinect was placed at +20°, for positions 
4 to 8 at 0° and for positions 9 to 11 it had a -20° orientation 
(Figure 5). These orientations provided the Kinect device 
with the proper field of view to observe the NAO pointing 
gestures at all positions.   

The results of the experiment are illustrated in Table I 
below. In each spot, NAO performs a pointing gesture ten 
times for each object. This pointing gesture repeatability 
assesses the robustness of the algorithm. According to the 
results in this table, the proposed system is accurately 
recognizing most of the pointed objects from all predefined 
positions. However, there are position-object combinations 
that the current implementation could not detect. These 
outliers occur whenever there are occlusions of objects and 
more specifically they appear at positions 1 (red car), 3 (red 
car), 5 to 9 (yellow car), 10 (blue car). Here, we define that 
an object is occluded when there is another blocking object 
before, at the same pointing vector direction. For example, 
in position 3 we say that the red car is occluded by the blue 
car. At this position, the system assumes that the blue car is 
the pointed object, because the arm of the pointing robot is 
almost horizontal. Although such situations are extremely 
difficult to overcome, some improvements in: a) the 
accuracy of the pointing arm detection mechanism, b) the 
pointing precision of robot’s arm, c) dynamic change in 
pointing position to avoid occlusions, could provide 
adequate solutions to the problem.       

TABLE I.  NAO POINTING EXPERIMENTAL RESULTS  

 
According to Table I the overall success rate of the 

experiment is approximately 73%, which indicates that the 
developed system operates adequately. 

In a final demonstration of the algorithm’s functionality, 
we implemented an interactive scenario where a Kinova 
JACO arm was used to grasp and transfer the pointed object. 
The relative pose between the arm and Kinect was 
calibrated. To control the JACO arm a separate ROS node is 
implemented. This module subscribes to the Find Pointed 
Object ROS component and obtains the centroid of the 
detected pointed object. Upon receiving the centroid, the 

Red Left
Blue Left

Yellow Right
Red Left
Blue Left

Yellow Right
Red Left
Blue Left

Yellow Right
Red Left
Blue Right

Yellow Right
Red Left
Blue Right

Yellow Right
Red Right
Blue Left

Yellow Left
Red Left
Blue Right

Yellow Left
Red Left
Blue Left

Yellow Left
Red Left
Blue Right

Yellow Left
Red Left
Blue Right

Yellow Left
Red Left
Blue Left

Yellow Left
240/330 ≈73%Overall Succes

90%
100%

0%
80%
0%

80%
100%

100%
100%
10%
100%
90%

100%
0%

100%
90%
0%

100%
100%
100%

0%
100%

10/10
9/10
10/10

Percentage

0%
100%
90%
70%
100%
100%

0%
100%
100%
100%
100%

9/10
0/10
8/10
0/10
8/10

0/10
10/10
10/10
1/10
10/10

10/10
10/10
0/10
10/10
9/10

10/10
10/10
10/10
10/10
0/10

Kinect Orientation NAO Position Objects Arm Success Rate

1 (337,5°)

2 (0°)

3 (22,5°)

4 (45°)

10/10
0/10
10/10
10/10
10/10

0/10
10/10
9/10
7/10
10/10

5 (67,5°)

6 (90°)

7 (112,5°)

8 (135°)

9 (157,5°)

10 (180°)

11 (202,5°)

 -20°

 +20°

0°



  

arm aligns its gripper to this point and performs a predefined 
pick up and place sequence. The demonstration is shown on 
the accompanying video. It provides a practical proof that 
the proposed system offers a future framework on multi 
robot interaction scenarios. In such scenarios gestures and 
active body language between robots will play a key role in 
the manipulation of their environment.  

 
Figure 8. Robot to robot interaction scenario where NAO points at red 
wooden car and Kinova’s JACO arm grasps and relocates the object. 

VIII. CONCLUSIONS 
This paper presents the idea that deictic gesturing can be 

used as a mechanism for transferring identity and class 
information of objects between robots. The idea is 
demonstrated by developing a real-time pointing gesture 
detection system as well as a pointed object segmentation 
and recognition mechanism. The algorithm utilizes a point 
cloud from an RGB-D sensor. 

From the experimental results we conclude that the 
algorithm is effectively detecting pointed objects from the 
humanoid robot NAO. It has detected most of the objects 
correctly with a success rate of approximately 73%.  

In the future, we are planning to implement a more 
sophisticated probabilistic approach to overcome occlusions. 
In this forthcoming framework, probabilities will be 
assigned at the pointed objects and they will be updated in a 
recursive manner according to measured features such as 
vertical distance from pointing vector, distance from 
pointing robot, pointed objects surface area, etc. 
Furthermore, a future implementation of a prediction-
estimation technique such as Kalman filters or Particle filters 
could increase the accuracy of the current pointing arm 
detection algorithm and improve overall system robustness.   

REFERENCES 
[1] M. M. Louwerse and A. Bangerter, “Focusing Attention with Deictic 

Gestures and Linguistic Explessions” In The Annual Conference of 
Cognitive Science Society, Stresa, Italy, July 21 – 23: Erlbaum, 2005, 
pp. 1331 -1336. 

[2] L. Steels and M. Hild, Language Grounding in Robots, New York: 
Springer, 2012. 

[3] P. Jing and G. Ye-peng, “Human-computer Interaction using Pointing 
Gesture based on an Adaptive Virtual Touch Screen” In International 
Journal of Signal Processing, Image Processing and Pattern 
Recognition, Volume 6, Issue 4, August, 2013, pp. 81-91. 

[4] O. Patsadu, C. Nukoolkit and B. Watanapa, “Human Gesture 
Recognition Using Kinect Camera” In 2012 Ninth International Joint 
Conference on Computer Science and Software Engineering 
(JCSSE12),  Bangkok, Tailand, May 30 -June 1, 2012, pp. 28 – 32. 

[5] X. Zabulis, H. Baltzakis, A. Argyros, “Vision-based Hand Gesture 
Recognition for Human-Computer Interaction”, In The Universal 
Access Handbook, Human Factors and Ergonomics. Lawrence 
Erlbaum Associates, Inc. (LEA), 2009. 

[6] M. Sigalas, H. Baltzakis and P. Trahanias, “Gesture recognition based 
on arm tracking for human-robot interaction”, In The IEEE/RSJ 
International Conference on Intelligent Robots and Systems (IROS10), 
Taipei, Taiwan, October 18-22, 2010, pp. 5424 – 5429. 

[7] T. Axenbeck, M. Bennewitz, S. Behnke and W. Burgard, 
“Recognizing Complex, Parameterized Gestures from Monocular 
Image Sequences”, In 8th IEEE/RAS International Conference on 
Humanoid Robots, Humanoids 2008, Daejeon, Korea, December 1-3, 
2008, pp. 687 – 692. 

[8] P. Matikainen, P. Pillai, L. Mummert, R. Sukthankar, “Prop-Free 
Pointing Detection in Dynamic Cluttered Environments”, In IEEE 
International Conference on Automatic Face and Gesture 
Recognition, Santa Barbara, CA, USA, March 21 - 25, 2011, pp. 374-
381. 

[9] M. Haker, M. Böhme, T. Martinetz and E. Barth, “Deictic gestures 
with a time-of-flight camera”, In  GW09 Proceedings of the 8th 
International Workshop on Gesture in Embodied Communication and 
Human-Computer Interaction, Bielefeld, Germany, February 25-27, 
2009, Volume 5934, pp. 110-121. 

[10] C. P. Quintero, R. T. Fomena, A. Shademan, N. Woolleb, T. Dick and 
M. Jagersand, “SEPO: Selecting by Pointing as an Intuitive Human-
Robot Command Interface”, In IEEE International Conference on 
Robotics and Automation (ICRA13), Karlsruhe, Germany, May 6 – 10, 
2013, pp. 1158 – 1163. 

[11] N. S. Mohd Nor, Y. Maeda and M. Mizukawa, “Pointing Angle 
Estimation for human – Robot Interface”, In Journal of Advances in 
Computer Networks, Volume 1, Issue 2, June,  2013, pp. 75 – 78. 

[12] OpenNI NITE 2.2, URL: http://www.openni.org/files/nite, 2013. 
[13] Microsoft Kinect SDK 1.8, URL: http://www.microsoft.com/en-

us/kinectforwindowsdev/start.aspx, 2013. 
[14] J. Shotton, A. W. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,  

Richard Moore, Alex Kipman, Andrew Blake, “Real-Time Pose 
Recognition in Parts from Single Depth Images” In IEEE Computer 
Vision and Pattern Recognition (CVPR11), Colorado Springs, USA, 
June 21-23, 2011, pp. 1297 – 1304. 

[15] M. Van den Bergh, D. Carton, R. De Nijs, N. Mitsou, C. Landsiedel, 
K. Kuehnlenz, D. Wollherr, L. V. Gool and M. Buss, “Real-time 3D 
Hand Gesture Interaction with a Robot for Understanding Directions 
from Humans”, In 20th IEEE International Symposium on Robot and 
Human Interactive Communication (RO-MAN), Atlanta, Georgia, 
USA, 31 July - 3 August, 2011, pp. 357 -362. 

[16] C. B. Park and S. W. Lee, “Real-time 3D pointing gesture recognition 
for mobile robots with cascade HMM and particle filter”, In Journal 
of Image and Vision Computing, Volume 29, Issue 1, January, 2011, 
pp. 51–63. 

[17] K. Nickel and R. Stiefelhagen, “Visual Recognition of Pointing 
Gestures for Human-Robot Interaction”, In Journal of Image and 
Vision Computing, Volume 25, Issue 12, December, 2007, pp. 1875–
1884. 

[18] Y. Nagai, “Learning to Comprehend Deictic Gestures in Robots and 
Human Infants” In Proceedings of the 14th International Workshop 
on Robot and Human Interactive Communication (RO-MAN), 
Nashville, Tennessee, USA, 13-15 August, 2005, pp. 217-222. 

[19] N. Hofemann, J. Fritsch and G. Segerer, “Recognition of Deictic 
Gestures with Context”, In proceedings of Pattern Recognition, 26th 
DAGM Symposium, Tübingen, Germany, August 30 - September 1, 
2004, pp. 334 -341. 

[20] A. Giusti, J. Nagi, L. Gambardella and G. A. Di Caro, “Cooperative 
Sensing and Recognition by a Swarm of Mobile Robots”, In 
IEEE/RSJ International Conference on Intelligent Robots and Systems 
(IROS12), Vilamoura, Algarve, Portugal, October 7-12, 2012, pp. 551 
– 558. 

[21] URL: http://en.wikipedia.org/wiki/Kinect. 
[22] Point Cloud Library (PCL 1.7), URL: http://pointclouds.org/, 2013. 
[23] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in 

Human Living Environments”, PhD dissertation, Computer Science 
department, Technische Universitaet Muenchen, Germany, October, 
2009. 

[24] P. Kondaxakis and H. Baltzakis, “Multiple-Target Classification and 
Tracking for Mobile Robots Using a 2D Laser Range Scanner”, In 
International Journal of Humanoid Robotics, Volume 9, Issue 3, 
August, 2012, pp. 1250025-1 - 1250025-23. 


	I. INTRODUCTION
	II. Related Work
	III. System Settings
	IV. Arm Detection Component
	A. Spatial Change Detection
	B. Bounding Box
	C. Pointing Vector Extraction

	V. Object Detection Component
	VI. Find Pointed Object Component
	A. Object Cluster Selection
	B. 3D Grid Map Filtering

	VII. Experiments and Results
	VIII. Conclusions

