
Probabilistic Segmentation Applied to an Assembly Task

Rudolf Lioutikov1, Gerhard Neumann1, Guilherme Maeda1, Jan Peters1,2

Abstract— Movement primitives are a well established ap-
proach for encoding and executing robot movements. While
the primitives themselves have been extensively researched, the
concept of movement primitive libraries has not received as
much attention. Libraries of movement primitives represent
the skill set of an agent and can be queried and sequenced in
order to solve specific tasks. The goal of this work is to segment
unlabeled demonstrations into an optimal set of skills. Our
novel approach segments the demonstrations while learning
a probabilistic representation of movement primitives. The
method differs from current approaches by taking advantage of
the often neglected, mutual dependencies between the segments
contained in the demonstrations and the primitives to be en-
coded. Therefore, improving the combined quality of both seg-
mentation and skill learning. Furthermore, our method allows
incorporating domain specific insights using heuristics, which
are subsequently evaluated and assessed through probabilistic
inference methods. We demonstrate our method on a real robot
application, where the robot segments demonstrations of a chair
assembly task into a skill library. The library is subsequently
used to assemble the chair in an order not present in the
demonstrations.

I. INTRODUCTION

A key goal of modern robotics is to provide robots
with the ability to learn new tasks. A commonly followed
concept to achieve such behavior is imitation-learning. The
robot is provided with one or more demonstrations of a
task, which the robot subsequently applies and improves.
Usually an entire task consists of a single motion, encoded
as a movement primitive. This concept has been applied
in a variety of tasks, including hitting movements in table
tennis [1] and locomotion [2].

Solving more complex, non-monolithic tasks with a single
movement primitive implies, however, a great loss of gener-
ality. Considering complex tasks as a sequence of primitives
offers multiple advantages. For example, primitives can be
easily generalized between the points where they connect.
Also, the same set of primitives can be reused to execute
different tasks, and the movement plan can be adapted by
replacing one primitive within the sequence by a different
one. The fundamental problems of such approaches are
related to the autonomous acquisition of these primitives
without relying on hand labeled demonstrations, and to the
subsequent sequencing of the learned skills. In this paper
we address the former problem by proposing a framework
for segmenting unlabeled demonstrations into a library of
movement primitives.
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Fig. 1: The robot platform used for a chair assembly ex-
periment. We used a seven DoF KUKA lightweight arm
equipped with a five finger DLR HIT Hand II as end
effector. The executed movement primitives were learned by
segmenting human demonstrations.

Essentially, there are two problems we tackle in this work
which will be solved in conjunction. First, the segmenta-
tion of demonstrated trajectories. Second, the learning of
a movement primitive library given these demonstrations.
Each demonstrated trajectory can be considered a multidi-
mensional time series. A common way to segment time series
data is to apply heuristics. However, the quality of such
heuristic and therefore, the corresponding segmentation is
highly task depended. For instance, while an assembly task
consisting of point to point motions might be well segmented
at zero crossing velocities, the same heuristic applied on
continuously written words might achieve poor, meaningless
results. Furthermore, different parts of the data could be best
explained by different heuristics, which raises the problem
of identifying at what point to apply which heuristic.

Our approach starts from the premise that a task-specific
heuristic can only segment a given trajectory sub-optimally,
therefore, leading to a low-quality library. As a consequence,
some skills may not be meaningful while others will suitably
describe the data. Therefore, our method applies probabilistic
inference to reason iteratively over all possible segmenta-
tions, by learning a probabilistic representation of movement
primitives from a weighted set of segments. In return, the
learned primitives are used to improve the set of segments
by down-weighting segments that are less plausible given the
current sill library. We provide the mathematical formulation
for the solution of this problem as an iterative Expectation-
Maximization (EM) algorithm and show that our algorithm
converges to a compact set of skills given over-segmented



demonstrations.
In summary, the main contribution of this work is the Prob-

abilistic Segmentation (ProbS) algorithm that concurrently
improves a given segmentation and the library of skills. Ad-
ditionally, the method is validated on a real robot platform,
by segmenting the human motion of a chair assembly and
subsequently sequencing skills from the learned library to
assemble the chair with the robot.

A. Problem Statement and Notation

Given a set of observed trajectories T =
{τ 1, τ 2, . . . , τ |T |}, the goal of this work is to learn a
set of underlying skills M = {m1,m2, . . . ,m|M|} which
explains T , i.e., the movement primitive library which
produced T . Since we are interested in the underlying
library M of a task domain, the trajectories in T can
describe the same or multiple tasks, as long as they belong
to the same domain, and, therefore, can be explained by the
same library. The duration of each individual demonstration
τ might be different. An example of a one dimensional
trajectory is illustrated in Figure 2. For each trajectory
τ ∈ T , a set of possible cutting points is defined C[τ ].
Each cutting point ci is a time step at which one segment
ends sh,i and another one starts si,j , with ch, ci, cj ∈ C[τ ].
We assume that C[τ ] over-segments τ , i.e, there are more
cutting points in C[τ ] than transitions between the underlying
segments. Unfortunately, it is unknown which of the cuts
are true positives and which are false positives. Therefore,
each possible subset d[τ ] ⊆ C[τ ] has to be considered
as a possible segmentation. The set of all possible
segmentations will be denoted as D[τ ]. Furthermore, the set
of segments S [τ ] does not only contain segments between
two consecutive cuts, but all segments defined by each
possible combination of two cuts in C[τ ]. The presented
method tackles two challenges simultaneously: Determine
the correct segmentation d[τ ],? ⊆ C[τ ] and learning a MP
library from the chosen segments.

The segments s[τ ]i,j ∈ S [τ ], the segmentations d[τ ] ∈ D[τ ]

and the cuts c[τ ]i ∈ C[τ ] are always defined with respect to
a trajectory τ . For simplicity we will drop the superscript
from now on.

The remainder of this paper is organized as follows. In
Section II related work is presented and discussed followed
by Section III where the Probabilistic Segmentation approach
is introduced. In Section IV a chair assembly task is used
to compare the proposed method to a baseline method and
a state-of-the-art segmentation method. The experiment was
executed and validated on a real robot platform.

II. RELATED WORK

Algorithms for automatic segmentation have been inves-
tigated extensively, not only for the purposes of generation
of robot skills but mainly as a general tool for movement
analysis and classification. Hidden Markov Models (HMMs)
have been widely adopted in this context. For example,
in [3], video images are analyzed to train a HMM to

classify if a person is walking, running or crouching. In [4]
automatic segmentation of motion patterns based on HMMs
have been used to group segments hierarchically, where
higher level representations of symbols can then be used to
orchestrate and generate low level robot movements. More
recently, in [5], the authors propose on-line segmentation
method based on HMMs that creates a tree of primitives; the
lower nodes representing detailed movements with generality
increasing towards the root. HMMs have also been used in
conjunction with the superposition of movement primitives
for the specific case of handwriting analysis [6]. In gen-
eral, HMMs and methods that explicitly address temporal
sequences (e.g. [7]) have been generally accepted for seg-
mentation. In this paper, however, we opt for a shape-based
clustering approach on the basis that our desired library must
be invariant to the possible combinations of skills transitions.
The encoding of trajectories that do have a sequential pattern
are naturally addressed by our method as it maintains only
the most probable combinations of segments.

Our work takes advantage of movement primitive repre-
sentations that are time invariant, such as Dynamical Move-
ment Primitives (DMPs) [8] or Probabilistic Movement Prim-
itives (ProMPs) [9]. Segmentation with movement primitives
is particularly suited for library construction as segments
with the same profile, but with different time scales are
treated as the same skill. In [10], for example, the expected
time scales of possible segments had to be taken into account
with the introduction of a heuristic about the minimum and
maximum duration of the skills; in our approach such user-
defined inputs are not necessary.

From the movement primitive perspective, our algorithm
relates to the work of [11], and [12] where DMPs have
been used in different ways. In the first approach, a library of
primitives is assumed given, while in our work we design our
algorithm to start from an empty set. Compared to the work
of [12], the authors treat segmentation as an independent
initial step which therefore, later affects the reconstruction
of a task, in this case using finite state automatons. As
a consequence, interactive corrections given by a human
demonstrator are introduced. In contrast, our approach treats
segmentation and primitive learning as an iterative optimiza-
tion process where both are intrinsically connected.

The concept of hierarchical skills has been explored in
[4], [5], [13], and [14], and can be very efficient for on-
line applications or to represent different granularities in the
task. The philosophy of our method differs in the sense that
we do not enrich a model by adding branches, but instead
prune unnecessary segments given by a possibly erroneous
initial heuristic. We leverage on batch, off-line learning to
essentially reconstruct the segmentation-library, iteratively.
This leads to a single level representation which decreases
the number of segments as the library is improved after each
EM iteration.

A general problem in movement segmentation and library
generation is the trade off between the generality of the
method and its tractability, the latter usually achieved by
the introduction of heuristics. For example, Zero Crossing
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Fig. 2: An illustration of a possible segmentation. (a) shows a one dimensional, continuous observation. (b) shows the
initially suggested cuts, illustrated as black squares. (c) shows a possible segmentation. Grey squares are eliminated false
positive cuts.

Velocity (ZCV) has usually been used as an intuitive criterion
to obtain the initial segmentation of trajectories [15], [16],
[17]. In the context of movement primitives, however, ZCV
usually leads to over-segmentation, especially when the robot
moves at low speeds. In [18] the authors proposes segment-
ing demonstrations based on geometric similarities. Other
heuristics applied to segmentation include the two-thirds
power law [19], velocity profiles and minimum jerk [20],
and changes of the system dynamics [21]. Our work differs
by being insensitive to the particular choice of the heuristic.
Our assumption is that a given heuristic will lead to an
initial number of excessive segments, which will be then
optimized by decreasing the occurrence of cuts among them
when necessary.

III. LEARNING SKILL LIBRARIES USING PROBABILISTIC
SEGMENTATION

We assume that each observation τ ∈ T consists of a
single or multiple segments s ∈ S, where S denotes the set
of all possible segments for trajectory τ . Each segment si,j
is defined by the cutting points at which the segment starts
and ends ci, cj ∈ C.

The method is initialized with a set of possible cutting
points C, which divides each trajectory into multiple seg-
ments as shown in Figure 2. Each demonstration τ can
consist of a single or multiple segments

si,j ∈ S , where sh,i, si,j , with 0 ≤ h < i < j ≤ |C[τ ]|+ 1

describe two consecutive segments, separated by a discrete
cutting point ci ∈ C. Every possible combination of active
cutting points within C can be considered one possible
segmentation d.

Our goal is to determine the correct segmentation d∗ while
simultaneously learning the underlying library M. Since d∗

is not known, we treat d∗ as a latent variable. Unfortunately,
the number of possible segmentations |D| = 2|C| is expo-
nential in the number of cuts |C|, which makes a direct
evaluation of D unfeasible. However, we can equivalently
evaluate the set of all possible segments S, which is only
quadratic |S| = 0.5(|C| + 1)(|C| + 2) in the number of
cuts. We therefore directly learn the optimal set of segments
S∗ ⊆ S instead of d∗. Therefore, we define a set of complete
sets of segments R = {R|R ⊂ S, concat(s ∈ R) = τ}.

Each set of segments R ∈R is complete in τ , such that the
concatenation of all segments s ∈ R is equivalent to τ . The
proposed approach applies probabilistic inference methods
to learn locally optimal M and d∗ in conjunction.

A. Defining the Cutting Points C
Our proposed method depends on the set of possible

cuts C. Considering every time step of the observation as
a cutting point is unfeasible. A possibility to restrict C to a
manageable size is to initially use heuristics to determine C.
These heuristics can be chosen task specifically and different
heuristics can also be combined seamlessly. Alternatively,
any kind of initial segmentation can be used to determine C.
However, the method only considers the cuts contained in C,
i.e., it is restricted to eliminate false positive cuts. Therefore,
C has to provide a weak over-segmentation, i.e., C∗ ⊆ C,
where C∗ denotes the set of true cuts.

B. Generative Skill Model

Each skill m ∈ M is represented by a parameterized,
generative model. Therefore, a segment s can be considered
as a sample drawn from a distribution representing the skill

s ∼ p (s|θk) , (1)

with θk denoting the parameters of the kth skill mk. The
skill library is defined as a mixture of skills, which allows
computing the probability of a segment given the entire
library

p (s|Θ) =
∑|M|

k=1
λkp (s|θk) , with (2)

Θ =
{
(λ1,θ1) , . . . ,

(
λ|M|,θ|M|

)}
,

where λk denotes the mixture coefficient for skill mk.
Furthermore, we assume that every segment can be projected
into a lower dimensional space describing the shape of the
movement

v : s → w, s ∈ S and w being a real vector. (3)

Such projections are very common in movement primi-
tives, e.g, Dynamic Movement Primitives [8] or Probabilistic
Movement Primitives (ProMPs) [9]. In this work, we will use
ProMPs as generative skill model.

ProMPs project trajectories into a weight space using
a ridge regression and subsequently define a distribution



over the projected segments w corresponding to the given
trajectories.

The projected segment w for each segment s are com-
puted as

w = v (s) =
(
ΦΦT + εI

)−1
Φs, (4)

where Φ denotes the feature matrices as defined in [9]. The
features Φ are usually represented as radial basis functions
and depend on the duration of s and therefore render the
weight w time invariant. Furthermore, if the segment si,j
is a valid segment, there exists an underlying skill mk with
parameters θk which produced the corresponding weights

w ∼ N (w|θk) ,θk = {µk,Σk} .

We only consider correlations between the dimensions and
not between the single time steps. Therefore, the probability
of a segment s given a skill mk is defined as

p (s|θk) =
∏|s|

t=1
p (st|θk) ,

where |s| denotes the number of time steps in s, hence it’s
duration, and st describes the segment s at the time step t.

The probability for a single time step t given the skill mk

is

p (st|θk) = N
(
st | φT

t µk, φ
T
t Σkφt

)
,

with φt, µk and Σk being the feature vectors and the skill
parameters at time step t.

C. Probabilistic Inference on Segmentations

We assume that every observation τ ∈ T was drawn from
a parameterized generative model

τ ∼ p (τ |Θ,S∗) =
∏

s∈S∗
p (s) , [Θ] (5)

with S∗ being the set of correct segments. Since S∗ is
unknown, we can treat it as a latent variable, and integrate
it out. Such formulation leads to

p (τ |Θ) =
∑
R∈R

p (R)
∏

s∈R
p (s|Θ) ,

where R is the set of complete sets of segments. The
most likely model Θ is now determined by maximizing the
likelihood

Θ∗ = argmax
Θ

∑
τ∈T

p (τ |Θ)

We optimize this likelihood by applying the EM algorithm
[22] to the auxiliary function

Q
(
Θ,Θ′

)
=
∑

τ∈T

∑
s∈S

αs log ps p (s|Θ) , (6)

with αs =
∑
R∈R

Is∈R p
(
R|τ ,Θ′

)
, (7)

where the weighting is given by αs . The marginal αs
weights each segment, depending on its probability to be
part of the correct Segmentation s ∈ S∗ or not. The prior
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Fig. 3: The factor graph describing the relation between a
specific segment si,j and all possible preceding and suc-
ceeding segments.The blocks r0,i and rj,|C|+1 contain all
possible preceding respectively succeeding segments. The
messages, mf→s and ms→f allow an efficient computation
of the marginal αsi,j .

coefficient ps emerges from defining the prior p (R) as a
product of priors over segments

p (R) = pc
∏

s∈R
ps with ps = (1− pc)j−i−1pc.

The constant 0 < pc < 1 defines how probable it is that a
cut is a true positive cut and i, j are indices of the two cuts
limiting s. For pc > 0.5 segments which span over multiple
cutting points are preferred, whereas pc < 0.5 indicates that
longer segments are preferable.

Given the function defined in Equation 6, the EM algo-
rithm iteratively computes the weighting αs in E-Step and
updates the current model estimate Θ′ in the M-Step.

D. Expectation Step: Computing the Probability of the Seg-
ments

In the E-Step, the marginal as described in Equation
6 is updated, and therefore the segments s ∈ S are re-
weighted. In order to efficiently compute αs , Equation 7
is reformulated by applying Bayes Theorem on Equation 5

αs =
1

Z

∑
R∈R

Is∈R
∏

s∈R
ps p

(
s|Θ′

)
, (8)

Z =
∑
R∈R

∏
s∈R

ps p
(
s|Θ′

)
,

where Z denotes the normalizing constant. Such a for-
mulation is well studied in Graphical Models and can be
solved efficiently using message passing algorithms. Figure
3 describes the factor graph corresponding to this particular
case. The factors and messages are given as

fi,j = psi,j p
(
si,j |τ ,Θ′

)
.



For each segment si,j ∈ S the for the remaining nodes can
be computed as

ms→f (sx,y) =

{
1, if y = b∑b

k=j+1mf→s (sy,z) , otherwise

mf→s (si,j) = ms→f (sx,y) fx,y,

with b ∈ i, |C|+ 1 depending if we compute the messages
for all possible preceding or succeeding segments. Since
message re-occur for different si,j , these messages can
be computed once and reused for different segments. The
complexity to compute αs is quadratic in the number of
cuts and the marginal can be computed as

αs =
1

Z
ms→f (s) fi,j , (9)

with Z = ms→f

(
s0,|C|+1

)
. (10)

The message formulation in Equation 10 grows quadratically
with the number of cuts, and therefore allows the algorithm
to consider significantly more cuts than a naive application
of Equation 6.

E. Maximization Step: Learning the Skill Library

In the maximization step, the model parameters Θ are
updated by maximizing Q

(
Θ,Θ′

)
. We assume that all

observed demonstrations were generated by the same un-
derlying model, implying that the model update considers
all possible segments independently of their corresponding
demonstration. Following [9], we update the model based on
the projected segments rather than the trajectories directly.
Therefore, the maximization step is defined over the set of
projected segments

W =
{
w|w = v (s) ,∀s ∈ S [τ ],∀τ ∈ T

}
, (11)

where v is the projection function defined in Equation 3. In
addition, we also define αs over the projected vectors

αw = αs ⇐⇒ w = v (s) .

Given these definitions, the reformulated auxiliary function

Q
(
Θ,Θ′

)
=
∑

w∈W
αw log p (w|Θ) ,

takes the form of a weighted log likelihood. Maximizing
Q
(
Θ,Θ′

)
directly with respect to Θ is unfeasible as

p (w|Θ) is a mixture model containing latent variables as
we don’t know which projected segment belongs to which
skill. It is, however, possible to estimate Θ by maximizing
the weighted maximum likelihood. Given the nature of
our model we can again apply a weighted EM algorithm
on Gaussian Mixture Models (GMM), with the auxiliary
function

Q2

(
Θ,Θ′

)
=
∑|M|

k=1

∑
w∈W

αwβk,w log λkp (w|θk)

s.t.
∑|M|

k=1
λk = 1,

where βk,w = p
(
k|w,Θ′

)
are typically referred to as the

responsibilities. The EM algorithm for GMMs is widely
applied and well known.
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Fig. 4: The first three dimensions, corresponding to the
Cartesian position, of the six observations. Each observation
demonstrates the insertion of a chair leg into a hole in
the seat. The cuts determined by the initial heuristic are
illustrated as dots.

A known disadvantage of EM for GMMs is that the
number of skills |M| has to be known a priori. In our
approach, however, |M| depends on the latent segmentation,
and can therefore change every time we change the weighting
of the segments. We circumvent this problem by using the
Gaussian-means algorithm [23] to determine the number of
skills, including an initial labeling for the EM Algorithm. The
Gaussian-means algorithm is a bisecting k-means algorithm
which uses a test based on the Anderson-Darling statistic
to determine if the data assigned to a cluster is Gaussian or
not. If the data is not Gaussian the cluster is split. The ProbS
method is summarized in Algorithm 1.

Algorithm 1: Probabilistic Segmentation
input : The set of all possible segments S
output : The mixture model Θ∗ explaining S
K : current number of clusters
L : current labeling of the segments
while not converged do

E-Step : – compute the weighting αsi,j
as described in Equation 9

M-Step: – compute W according to Equation 11
– determine K and L by applying

Gaussian-means on W
– update Θ∗ by using an EM-GMM

on W with K clusters and
initial labeling L



−0.1
0.18
0.45
0.73

1
x

[m
]

skill 1: approaching leg skill 2: showing leg skill 3: approaching seat skill 4: back to home

−1
−0.73
−0.45
−0.18

0.1

y
[m

]

1 25 50 75 1001 25 50 75 1001 25 50 75 1001 25 50 75 100
−0.7
−0.43
−0.15
0.13
0.4

time steps

z
[m

]
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IV. EXPERIMENTS

We evaluated and compared ProbS on a chair assembly
task. In order to show that useful skills were extracted, we
replayed the skills on the real robot, while conditioning the
skills to assemble the chair in and undemonstrated order.
Figure 1 shows the experimental platform, a seven DoF
KUKA lightweight arm equipped with a five finger DLR
HIT Hand II as end effector.

The assembly was demonstrated by a human, as seen in
Figure 4. The wrist of the human was tracked using the Op-
tiTrack motion capture system. A total of six demonstrations
were performed, where each demonstration consisted of four
phases, i.e., approaching and picking up a chair leg, showing
the leg tip to the camera, approaching and inserting the leg
into the seat and finally retreating to the home position. Each
data point is a seven dimensional vector containing the wrist
position in the three dimensional space and the orientation
encoded as a quaternion. The tracked positions are shown in

Figure 4.

ProbS successfully identified the true positive cutting
points and learned a total of four skills, corresponding to
the four steps in each demonstration. The learned skills are
shown in Figure 5.

The initial over-segmentation was produced by a velocity
based heuristic where the cutting points where positioned
at the extrema of the velocity profile for each observation.
The heuristic resulted in nine cuts per observation leading
to a total of 768 possible segmentations or equivalently
216 segments. Even though the applied heuristic results in
the same number of cuts per demonstration, this is not a
requirement for ProbS.

In order to demonstrate the advantage of optimizing both,
the segmentation and the skill library iteratively, we chose an
Expectation-Maximization algorithm over Gaussian mixture
models (EM-GMM) as a baseline, where the number of
clusters as well as the initial labeling is determined by the
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Fig. 6: The first demonstrations explained by the three different methods. Different colors within each plot illustrated different
skills. ProbS explains the demonstration with four skills, EM-GMM identified eight skills in the demonstration and BP-AR-
HMM found separated the demonstration into a total of 11 segments. Most of the segments span over a very short amount
of time and are not visible in the plot.
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Gaussian-means algorithm. In addition, we compared our
method to the state-of-the-art, non-parametric segmentation
method Beta Process Autoregressive Hidden Markov Model
(BP-AR-HMM), as applied in [24] and [25].

A. Learned Skills

ProbS was able to identify four underlying skills. Each
of the skills occurs exactly once in every demonstration and
corresponds to the four steps of each demonstration. The
first three dimensions are shown in Figure 5. It is clearly
visible that the skills preserve a characteristic shape while
the variance at certain time steps shows the adaptability of
the skill at those points.

Given the found number of skills and the initial labeling
of the Gaussian-means algorithm, the EM-GMM baseline
identified a total of eight skills. Analogously to ProbS each
found skill is present exactly once in each demonstration.
The identified skills of the first demonstration are shown in
Figure 6.

The BP-AR-HMM method does not rely on an initial
segmentation, however, because of the expensive sampling
process, the algorithm is computationally very expensive. We
evaluated various hyper parameters and compared to the best
found solution.However, the method failed to identify most
of the re-occurring movements throughout the demonstra-
tions and identified a total of 19 skills.

B. Encoding Length
As a metric to quantify the value of the segmentation

we compute the number of bits necessary to encode each
observation given the identified segments. The coding length
for each observation as well as the average is shown in Figure
7.

Both ProbS and EM-GMM found skills which occur
exactly once in every demonstration. This results a constant
encoding length throughout the demonstrations. In the case
of EM-GMM this results in 24 bits per observation. By
reducing the number of active cuts and learning a small set
of skills ProbS achieves an average encoding length of 8 bits.
BP-AR-HMM found a total number of 19 segments. Each
observation is explained by more segments than in either the
EM-GMM or ProbS. This leads to a high average encoding
length of 55 bits. This evaluation shows, that ProbS is able
to find segments, that allow a compact representation of the
observations.

(a) Demonstration of the chair assembly via the OptiTrack motion capture system.

(b) Execution of the learned skills.

Fig. 8: Demonstration and execution of the chair assembly task. The human was tracked during the chair assembly. The
observed demonstrations were subsequently segmented using ProbS. The skills of the learned library were subsequently
sequenced and executed on a robot platform to assemble the chair.



C. Chair Assembly

Finally, we show the applicability of our method in real
robot scenarios, by assembling an Ikea chair using the
learned skill library. As shown in Figure 8, the robot is able to
extract the necessary skills from the given demonstrations.
The start and end point of each skill were conditioned to
the corresponding point of interest, e.g, the ”inserting” skill
was conditioned to the hole position. Since each skill was
learned from only six samples, the variance at some points
was too low to successfully condition the corresponding
ProMP. We therefore scaled the covariance matrix of each
skill artificially. This step would be unnecessary if there had
been sufficient demonstrations available. This experiment
shows that ProbS is able to segment entire demonstrations
to extract meaningful skills. These skills can be used and
sequenced in order to solve observed as well as new tasks.
For example, the chair was assembled with combinations of
legs and holes which were not present in the demonstrations.

V. CONCLUSION

We proposed a new algorithm for segmentation of unla-
beled trajectories. The algorithm builds a skill library that
is used to infer correct segmentations. The skill library as
well as the inferred segmentations of the trajectories are
iteratively optimized as there is a high dependency between
both entities. Our algorithm takes advantage of heuristics that
are used to over-segment the trajectories. In comparison to
other state of the art methods such as non-parametric auto-
regressive HMMs, our algorithm has less hyper-parameters
to fine tune and clear computational advantages. Finally, the
returned skill library looked much more compact than the
ones retrieved with related approaches.

In future work we will concentrate on reducing the reliance
on the heuristics as well as learning high level control
variables of each skill, such as possible conditioning points.
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