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Abstract

Computational agents often need to learn policies that
involve many control variables, e.g., a robot needs to
control several joints simultaneously. Learning a pol-
icy with a high number of parameters, however, usu-
ally requires a large number of training samples. We
introduce a reinforcement learning method for sample-
efficient policy search that exploits correlations between
control variables. Such correlations are particularly fre-
quent in motor skill learning tasks. The introduced
method uses Variational Inference to estimate policy
parameters, while at the same time uncovering a low-
dimensional latent space of controls. Prior knowledge
about the task and the structure of the learning agent
can be provided by specifying groups of potentially
correlated parameters. This information is then used to
impose sparsity constraints on the mapping between
the high-dimensional space of controls and a lower-
dimensional latent space. In experiments with a simu-
lated bi-manual manipulator, the new approach effec-
tively identifies synergies between joints, performs ef-
ficient low-dimensional policy search, and outperforms
state-of-the-art policy search methods.

Introduction
Reinforcement learning (RL) is a promising approach to au-
tomated motor skill acquisition (Peters et al. 2011). Instead
of a human hand-coding specific controllers, an agent au-
tonomously explores the task at hand through trial-and-error
and learns necessary movements. Yet, reinforcement learn-
ing of motor skills is also considered to be a challenging
problem, since it requires sample-efficient learning in high-
dimensional state and action spaces. A possible strategy to
address this challenge can be found in the human motor
control literature (Bernstein 1967). Research on human mo-
tor control provides evidence for motor synergies; joint co-
activations of a set of muscles from a smaller number of neu-
ral commands. The reduction in involved parameters results
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in a lower-dimensional latent space for control which, in
turn, reduces cognitive effort and training time during skill
acquisition. The existence of synergies has been reported
in a variety of human motor tasks, e.g., grasping (Santello,
Flanders, and Soechting 1998), walking (Wang, O’Dwyer,
and Halaki 2013), or balancing (Torres-Oviedo and Ting
2010).

Recently, various synergy-inspired strategies have been
put forward to improve the efficiency of RL for motor
skill acquisition (Bitzer, Howard, and Vijayakumar 2010;
Kolter and Ng 2007). Typically, these approaches use di-
mensionality reduction as a pre-processing step in order to
extract a lower-dimensional latent space of control variables.
However, extracting the latent space using standard dimen-
sionality reduction techniques requires a significantly large
training set of (approximate) solutions, prior simulations,
or human demonstrations. Even if such data exists, it may
drastically bias the search by limiting it to the subspace of
initially provided solutions. In our previous work, we in-
troduced an alternative approach called latent space policy
search that tightly integrates RL and dimensionality reduc-
tion (Luck et al. 2014). Using an expectation-maximization
(EM) framework (Dempster, Laird, and Rubin 1977) we
presented a latent space policy search algorithm that itera-
tively refines both the estimates of the low-dimensional la-
tent space, as well as the policy parameters. Only samples
produced during the search process were used.

In this paper, we propose a different kind of latent space
policy search approach, which similarly to our previous
work combines RL and dimensionality reduction, but which
also allows for prior structural knowledge to be included.
Our method is based on the Variational Bayes (VB) (Neu-
mann 2011; van de Meent et al. 2015) framework. Varia-
tional Bayes is a Bayesian generalization of the expectation-
maximization algorithm, which returns a distribution over
optimal parameters instead of a single point estimate. It is a
powerful framework for approximating integrals that would
otherwise be intractable. Our RL algorithm exploits these
properties in order to (1) perform efficient policy search,
(2) infer the low-dimensional latent space of the task, and
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Figure 1: The main idea of Group Factor Policy Search: A number of variables, for example the joints of an arm or leg of
a NAO robot, form one group. Given several of such groups for the action vector (left matrix) the transformation matrix W
can be divided in several submatrices corresponding to those groups. Subsequently each factor, given by a column in W,
encodes information for all groups, e.g. four in the example given above. Factors may be non-zero for all groups, for a subset
of groups, for exactly one group or zero for all groups. In the figure, grey areas correspond to non-zero values and white areas
to zero values in the sparse transformation matrix. The transformation matrix is multiplied by the latent variables given by
Z̃ = (z̃1, · · · , z̃t, · · · , z̃T ) distributed by z̃t ∼ N (0, trace(φ(st, t)φ(st, t)

T)I).

(3) incorporate prior structural information. Prior knowl-
edge about locality of synergies can be included by spec-
ifying distinct groups of correlated sub-components. Often
such prior knowledge about groups of variables, e.g. co-
activated joints and limbs, is readily available from the me-
chanical structure of a system. Structural prior knowledge
is also common in other application domains. For example,
in a wireless network the network topology defines receiver
groups (Sagduyu and Ephremides 2004).

Our approach draws inspiration and incorporates ideas
from Factor Analysis, in particular Group Factor Analy-
sis (Klami et al. 2015), as can be seen in Fig. 1. Groups
of variables, e.g., robot joints grouped into arms and legs,
are provided as prior structural knowledge by a user. A fac-
torized control policy is then learned through RL, which in-
cludes a transformation matrix W. The transformation ma-
trix holds factors that describe dependencies between either
all of the groups or a subset of them. The individual factors
can be regarded as synergies among the joints of the robot.

We will show that the resulting algorithm effectively ties
together prior structural knowledge, latent space identifica-
tion, and policy search in a coherent way.

Policy Search
Policy search methods try to find an optimal policy for an
agent which acts in an uncertain world with an unknown
world model. At each time step t the agent executes an ac-
tion at in state st and moves to the next state st+1 with prob-
ability p(st+1|st,at). After executing a certain number of
actions, the agent receives a reward feedback given by an
unknown reward function based on the performed execution
trace (or trajectory/history) τ = (s1,a1, . . . , sT ,aT , sT+1).
The overall objective in policy search is to maximize the ex-
pected reward over trajectories and policy parameters θ. For
bounded rewards, maximizing expected reward is equivalent
to maximizing the probability of a binary reward r (Tous-
saint and Storkey 2006):

Eτ [r = 1] =

∫∫
p(τ,θ)p(r = 1|τ)dθdτ, (1)

where the probability of the trajectory p(τ,θ) contains the
(stochastic) policy, r is a binary variable indicating maxi-
mum reward, and p(r = 1|τ) ∝ exp {−c (τ)} (Toussaint
2009) is the conditional probability of receiving maximum
expected reward given a cost function.

Assuming the Markov property and the independence of
actions, the probability of a trajectory can be written as

p(τ,θ) = p(θ)p(s1)

T∏
t=1

p(st+1|st,at)π(at|st,θ). (2)

The stochastic policy π(at|st,θ) depends on the parame-
ters θ for which we additionally introduce prior distributions
p(θ). This formulation will subsequently be used for struc-
turing the policy model. The prior distributions may also de-
pend on hyperparameters – for reasons of clarity, however,
we will omit any such parameters below. Furthermore, we
assume that the initial state distribution p(s1) and transition
dynamics p(st+1|st,at) are unknown but fixed. Thus, they
will cancel out as constant values.

Group Factor Policy Search
We will now introduce a new policy search method, called
Group Factor Policy Search (GrouPS ), that uncovers the la-
tent space on-the-fly based on prior structural information.
In this section, we discuss how to incrementally improve the
policy and the actual form of the new policy model. We pa-
rameterize the policy using Group Factor Analysis (Klami
et al. 2015) in order to utilize prior information about the
parameters and their correlations. Since our policy is a lin-
ear stochastic model with prior distributions, we first present
a novel general Variational Inference framework for pol-
icy search that takes priors into account. Subsequently, we
discuss how the policy is parameterized, and finally show
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the policy model update equations for Group Factor Policy
Search which we derive using the introduced Variational In-
ference method.

Variational Inference for Policy Search
In each iteration our new policy search method samples a
distribution over trajectories pold(τ) using the current policy,
and based on pold(τ) finds a new policy which maximizes a
lower bound on the expected reward. This is repeated until
convergence.

In order to find a new policy based on samples from the
old one, we introduce the sampling distribution pold(τ) and
the approximated parameter distribution q(θ) (defined later)
into Equation 1. By applying the log-function and using
Jensen’s inequality (Kober and Peters 2009; Bishop 2006,
Eq. (1.115)) we derive the lower bound

log

∫∫
pold(τ)q(θ)

p(τ,θ)

pold(τ)q(θ)
p(r = 1|τ)dθdτ

≥
∫∫

pold(τ)q(θ) log

(
p(τ,θ)

pold(τ)q(θ)

)
p(r = 1|τ)dθdτ.

(3)

Since pold(τ) was generated using the old policy it does not
depend on θ and we can simplify the lower bound to∫∫

pold(τ)q(θ) log

(
p(τ,θ)

pold(τ)q(θ)

)
p(r = 1|τ)dθdτ

= const+

∫∫
pold(τ)q(θ)

· log

p (θ)
T∏
t=1

π(at|θ, st)

q(θ)

 p(r = 1|τ)dθdτ,

(4)

where the constant term can be ignored for the maximization
of this term. By assuming the factorization q(θ) =

∏
qi(θi)

for the parameters and applying the Variational Bayes ap-
proach, we get the approximated distributions of the param-
eters:

log qj(θj) = const+

∫
θ−j

∏
i 6=j

qi(θi)

∫
pold(τ) log

T∏
t=1

π(at,θ|st)
p(r = 1|τ)

R̂
dτdθ−j ,

(5)

where the parameter vector θ−j contains all parameters ex-
cept θj . The normalization constant R̂ is given by the inte-
gral

R̂ =

∫
pold(τ)p(r = 1|τ)dτ. (6)

Formulation of Group Factor Policy Search
In order to identify sets of correlated variables during policy
search, we use a linear stochastic policy of a form similar
to the model used in Group Factor Analysis (GFA) (Klami

Input: Reward function R (·) and initializations of
parameters. Choose number of latent
dimension n. Set fixed hyper-parameters
aτ̃ , bτ̃ , aα, bα, σ2 and define groupings.

1
2 while reward not converged do
3 for h=1:H do # Sample H rollouts
4 for t=1:T do
5 at = WiZφ + Mφ + Eφ
6 with Z ∼ N (0, I) and E ∼ N (0, τ̃ ),

where τ̃ (m) = τ̃mI
7 Execute action at

8 Observe and store reward R (τ)

9 Initialization of q-distribution
10 while not converged do
11 Update q (M) with Eq. (16)
12 Update q (W) with Eq. (19)

13 Update q
(
Z̃
)

with Eq. (22)

14 Update q (α) with Eq. (12)
15 Update q (τ̃ ) with Eq. (25)
16 M = Eq(M) [M]
17 W = Eq(W) [W]
18 α = Eq(α) [α]
19 τ̃ = Eq(τ̃ ) [τ̃ ]

20
Result: Linear weights M for the feature vector φ,

representing the final policy. The columns
of W represents the factors of the latent
space.

Algorithm 1: Outline of the Group Factor Policy
Search (GrouPS) algorithm.

et al. 2015). The main idea of GFA is to introduce prior
distributions for the parameters, in particular a prior for
a structured transformation matrix W. The transformation
matrix, responsible for mapping between a low-dimensional
subspace and the original high-dimensional space, is forced
to be sparse and constructed using prior knowledge about
grouping of the dimensions, that is, W is a concatenation of
transform matrices W(m) for each group m. For example,
if the dimensions of a vector represent the joints of a legged
robot, we can group joints belonging to the same leg into the
same group (see e.g. Fig. 1).

Applying the idea of Group Factor Analysis for directed
sampling leads to a linear model, i.e. a stochastic policy

a
(m)
t =

(
W(m)Zt + M(m) + E

(m)
t

)
φ (st, t) , (7)

where, for group m, the action a
(m)
t ∈ RDm×1 is a linear

projection of a feature vector φ (st, t) ∈ Rp×1. Each di-
mension of the feature vector is given by a basis function,
which may depend on the current state and/or time. In the
remainder of the paper, we will write φ instead of φ (s, t)
for simplicity, even though there is an implicit dependency
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of φ on the current state of a trajectory. W(m) ∈ RDm×l

is a transformation matrix mapping from the l-dimensional
subspace to the original space. Each entry of the latent ma-
trix Zt ∈ Rl×p is distributed according to a standard normal
distribution where N (0, 1), M(m) ∈ RDm×p is the mean
matrix, and the entries of the noise matrix E

(m)
t ∈ RDm×p

are distributed by N (0, τ̃−1m ).
We can derive a stochastic policy from the model defined

in Equation 7. Since

Ztφ ∼ N (0, trace(φφT)I) (8)

holds (see e.g. (Luck et al. 2014)), we can substitute Ztφ by
the random variable z̃t ∈ Rl×1 resulting in the policy

π(at|θ, st) =

M∏
m=1

N

a
(m)
t

∣∣∣∣∣∣W(m)z̃t + M(m)φ,
Tr
(
φφT

)
τ̃m

I

 .
(9)

If we take a closer look at the latent space given by Wz̃t
we first find that the length of each factor is determined by
‖φ(st, t)‖22. Secondly, a factor may be non-zero only for
one or a subset of groups as can be seen in Fig. 1. This leads
to a sparse transformation matrix and specialized factors and
dimensions.

As mentioned before, the form of our linear model in
Equation 7 above is based on Group Factor Analysis. While
GFA typically maps a vector from the latent space to the
high-dimensional space, we map here a matrix from the la-
tent space to the original space and then use this matrix as
a linear policy on the feature vectors. GFA does not apply
factor analysis (see e.g. (Harman 1976)) on each group of
variables separately, but instead introduces a sparsity prior
on the transformation matrix W thereby forcing correlations
between groups:

p (W|α) =

M∏
m=1

K∏
k=1

Dm∏
d=1

N
(
w

(m)
d,k

∣∣∣0, α−1m,k) , (10)

with M being number of groups, Dm the number of dimen-
sions of the m-th group and K the number of factors, i.e.
number of columns of W. The precision α is given by a
log-linear model with

logα = UVT + µu1
T + 1µT

v , (11)

where U ∈ RM×R, V ∈ RK×R and µu ∈ RM as well as
µv ∈ RK model the mean profile.R defines the rank of the
linear model and is chosenR � min (M,K). However, for
the special case of R = min (M,K) the precision is given
by a simple gamma distribution (Klami et al. 2015)

q (αm,k) = G
(
aαm, b

α
m,k

)
(12)

with parameters

aαm = aα +
Dm

2
, (13)

bαm,k = bα +
1

2
Eq(W)

[
w

(m)
k

T
w

(m)
k

]
. (14)

Figure 2: Graphical model in Plate notation for Group Fac-
tor Policy Search. The basis functions φ(st, t) as well as the
action vector a

(m)
t are observed. Equation 9 shows the de-

pendencies for a
(m)
t . The latent variables z̃t depend on the

feature vector as stated in Equation (8) . The parameter αm
might either be given by a Gamma distribution as stated in
Equation (12) or by a log-linear model with dependencies
on parameters U and V.

The hyper-parameters aα and bα are fixed and set to a small
positive value. The prior distributions given above will lead
to three kind of factors: (1) factors which are nonzero for
only one group, (2) factors which are nonzero for several
groups or (3) factors which are zero. In addition to the stan-
dard GFA prior distributions above, we introduce further
prior distributions for M and z̃ such that all prior distribu-
tions are given with

M ∼ N
(
Mold, σ

2I
)
, z̃ ∼ N

(
0,Tr

(
φφT

)
I
)
,

αm,k ∼ G (aα, bα) , τ̃m ∼ G
(
aτ̃ , bτ̃

)
.

Fig. 2 shows a graphical model of Group Factor Policy
Search, given by the distributions stated above. Instead of
Z the latent variable z̃t is used, which depends on φ(st, t)
given a state and a point in time.

Derivation of Update Equations
We assume fixed hyper-parameters aα, bα, aτ̃ and bτ̃ for
the distributions which we determine using the Variational
Inference method presented earlier, assuming a factorization
of the q-distributions

q (θ) = q(Z̃)q (W) q (τ̃ ) q (M) q (α) (15)

and additionally the assumption q(Z̃) =
T∏
q(z̃t) with

Z̃:,t = z̃t.
By using the factorization given above and the Varia-

tional Inference rule for deriving the parameter distribution
in Equation (5), we can derive the approximated parameter
distributions, which maximize the expected reward.

The approximated distribution for the mean matrix is
given by a multiplicative normal distribution

qM (M) =

M∏
m=1

Dm∏
j=1

N
(

m
(m)
j,:

T
∣∣∣∣µM
mj ,Σ

M
j

)
(16)



where the mean and covariance parameters in dependency
of the group and dimension are given by

ΣM
j =

(
σ−2I+

Ep(τ)

p(r = 1|τ)

R̂

 T∑
t=1

φφT

Tr
(
φφT

)Eτ̃ [τ̃m]

−1
(17)

and

µM
mj = ΣM

j ·
moldj,:

T

σ2
+ ΣM

j ·

Ep(τ)

p(r = 1|τ)

R̂

T∑
t=1

φ
(
a
(m)
t,j − Ew

[
w

(m)
j,:

]
Ez̃ [z̃t]

)
Tr
(
φφT

)
Eτ̃ [τ̃m]

−1


(18)

with mj,: given by the j-th row of M.
The q-distribution for the transformation matrix is simi-

larly given by

qW (W) =

M∏
m=1

Dm∏
j=1

N
(

w
(m)
j,:

T
|µW
mj ,Σ

W
m

)
(19)

with the mean and covariance parameters

ΣW
m =

(
Ep(τ)

[
p(r = 1|τ)

R̂ T∑
t=1

Ez̃

[
z̃tz̃

T
t

]
Tr
(
φφT

)
Eτ̃ [τ̃m]

−1
+ ¯̄αm,K

−1 , (20)

and

µW
mj = ΣW

m · Ep(τ)

[
p(r = 1|τ)

R̂

T∑
t=1

(
a
(m)
t,j − EM

[
m

(m)
j,:

]
φ
)
Ez̃ [z̃t]

T

Tr
(
φφT

)
Eτ̃ [τ̃m]

−1

]
.

(21)

The diagonal matrix ¯̄αm,K is given by diag (¯̄αm,K) =
(αm,1, αm,2, · · · , αm,K). The distribution for the latent
variables Z̃ depends on the trajectory and time. Hence the
reward can be seen as a probabilistic weight R̃ of a multi-
plicative normal distribution. However, since we assume in-
dependent latent variables z̃ht we can ignore the reward and
get

qZ̃

(
Z̃
)

=

H∏
R̃

T∏
t=1

N
(
z̃ht |µZ̃

t ,Σ
Z̃
t

)
, (22)

with time-dependent parameters

ΣZ̃
t =

(
Tr
(
φφT

)−1
I+

M∑
m=1

EW

[
W(m)TW(m)

]
Tr
(
φφT

)
Eτ̃m

[
τ̃−1m

]
−1 , (23)

and

µZ̃
t = ΣZ̃

t · M∑
m=1

EW

[
W(m)

]T (
a
(m)
t −M(m)φ

)
Tr
(
φφT

)
Eτ̃ [τ̃m]

−1

 .
(24)

Unlike the other distributions, the precision is given by a
multiplicative gamma distribution

qτ̃ (τ̃) =

M∏
m=1

G
(
τ̃m|aτ̃ +

1

2
DmT, b

τ̃ +
1

2
bτ̃m
′
)

(25)

with one fixed parameter and one variable parameter. Esti-
mation of the parameter bτ̃m

′ is the most complex and com-
putationally expensive operation given by

bτ̃m
′

= Ep(τ)

[
p(r = 1|τ)

R̂

T∑
t=1

Tr
(
φφT

)−1(
a
(m)
t

T
a
(m)
t

− 2a
(m)
t

T
EM

[
M(m)

]
φ

+ 2Ez̃ [z̃t]
T
EW

[
W(m)

]T
EM

[
M(m)

]
φ

− 2a
(m)
t

T
EW

[
W(m)

]
Ez̃ [z̃t]

+ φTEM

[
M(m)TM(m)

]
φ

+ Tr
(
EW

[
W(m)TW(m)

]
Covz̃ [z̃t]

)
+Ez̃ [z̃t]

T
EW

[
W(m)TW(m)

]
Ez̃ [z̃t]

)]
.

(26)

Algorithm
Algorithm 1 summarizes all update steps for performing
Group Factor Policy Search. The reward function R (·),
number n of latent dimensions, and a set of hyperparame-
ters need to be provided by the user.

Evaluation
For evaluations and experiments the expectation Ep(τ)[·]
used above in Eq.(16-20,25) was approximated by a sample
mean,

Ep(τ)[f(τ)] ≈ 1

H

H∑
i=1

f(τi) (27)

as proposed in (Kober and Peters 2009), where τi is the i-
th of the H realized trajectories and f(τ) a function value,
vector or matrix for τi and will be replaced by the parameter
approximations given above.

Setup of the Evaluation
For the comparison between the above presented GrouPS al-
gorithm and previous policy search algorithms, a simulated
task of a bi-manual robot operating in a planar task space
was used. Each of the two arms (see Fig. 3) has six degrees-
of-freedom and the same base for the first joint. The initial



Figure 3: Two simulated arms with six degrees-of-freedom
and the same base in their initial position. Each end effector
has a desired position for each time step, s shown by the
green and red dots. The final position at time step 25 is given
by the coordinate (0, 4). The numbers represent the joints
with l for left and r for right.
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Figure 4: Comparison between PePPEr, PoWER, Natural
Actor-Critic and three instances of the GrouPS algorithm on
the presented simulated task. Values correspond to the sum-
marized distances between each end effector and its desired
position given the current policy for the iteration. The mean
value as well as the standard deviations are shown.

configuration of the arms is presented in Fig. 3 as well as
the desired positions for each end effector (tip of an arm).
At each of the 25 time steps we give a different goal posi-
tion for each arm’s end effector, starting from the left for the
left arm and starting from the right for the right arm, with
the same final position at (0, 4) for both arms. In this task,
the 12 dimensions of the action vector a represent the joint
angles for each arm. For the basis functions eleven isotropic
Gaussian distributions were used with φi(t) = N (t|µφ

i , 3)
for t ∈ {1, 2, . . . , 24, 25}. In total, 132 parameters have to
be estimated given M ∈ R12×11.

As reference algorithms PoWER (Kober and Peters
2009), Natural Actor-Critic (NAC) (Peters and Schaal 2008)
and PePPEr (Luck et al. 2014) were chosen: NAC is a policy
gradient method while PoWER is an efficient policy search
method based on expectation maximization (EM). PoWER
has been experimentally validated in both simulated and

physical robotic experiments (Kober and Peters 2011). PeP-
PEr is also based on EM and incorporates policy search and
dimensionality reduction, but without priors and thus with-
out a structured transformation matrix. For comparison with
PePPEr and PoWER the GrouPS algorithm was evaluated in
three different configurations: (1) One group which contains
all joints of both arms, (2) two groups, where each group
contains the joints of one arm and (3) four groups with two
groups per arm and joints 1-4 in one and joints 5-6 in the
second group. The hyper-parameters of GrouPS were set to
aτ̃ = bτ̃ = 1000, aα = bα = 1 and σ2 = 100. No optimiza-
tions of the hyper-parameters were performed. Furthermore,
to prevent early convergence and collapsing of the distribu-
tions due to small sample sizes the parameter W and τ̃ are
resized after each iteration by a factor of 1.5. The same is
done after each iteration for PePPEr. However, the factor
was set to

√
1.09 since higher numbers lead to divergence

in the parameters of the algorithm with unstable and diver-
gent results. PePPEr was implemented as presented in (Luck
et al. 2014) and in each iteration 20 inner iterations for the
optimizations of the parameters were used. The same setup
was used for GrouPS and for both algorithms the number
of latent dimensions were set to six. The static variance pa-
rameter for PoWER as presented in (Kober and Peters 2009)
and the initial variance of the other algorithms were all set
to 101.5, also for NAC with learning parameter set to 0.5. In
each iteration, we sampled 30 trajectories and evaluated the
trajectories based on the reward function

R(τ) =

25∑
t=1

exp (− ‖ effl(at)− posl(t) ‖2)

· exp (− ‖ effr(at)− posr(t) ‖2) ,

(28)

where the function effl(at) returns the position of the left
end effector given the action vector and posl(t) the corre-
sponding desired goal position for time point t. effr(at) and
posr(t) return the actual and desired positions, respectively,
for the right end effector. Then the 15 best trajectories are
chosen for the computation of the parameters for each algo-
rithm as described in (Kober and Peters 2009).

Results
Fig. 4 depicts the results of the explained experiment. For
each algorithm ten different runs were executed and both
mean and standard deviation computed. As can be seen in
the figure, PePPEr outperforms both PoWER and NAC, as
well as our method in case only one group spanning all
variables is used. However, using two groups (one for each
arm) already leads to comparable performance. Finally, the
GrouPS algorithm with 4 different groups significantly out-
performs the comparison methods.

Importance of the Choice of Groups
In order to investigate the effect of choosing joint groups
we conducted an additional experiment. Our working hy-
pothesis throughout the paper is that structural informa-
tion about inherent groups of correlated variables will im-
prove the search. Conversely, if we provide wrong in-
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Figure 5: Comparison between the original chosen four
groups and three permutations of the Groups. Values corre-
spond to the summarized distance between each end effector
and its desired position for each time step given the current
policy for the iteration.
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Figure 6: Comparison between the original grouping and
two other variants with a different splitting point. Again, the
values represent the summarized distances and shaded ares
corresponds to the standard deviation given ten executions.

formation about groupings the performance of the al-
gorithm should deteriorate. To evaluate this hypothesis,
we took the original partitioning of the joints into four
groups and swapped two, later three pairs of joints ran-
domly. As described above, the original group partitioning
is {(1l, 2l, 3l, 4l), (5l, 6l), (1r, 2r, 3r, 4r), (5r, 6r)}.
Performing two random swaps between the left and
right side results in {(1l, 2l, 2r, 4l), (5l, 5r), (1r, 3l, 3r, 4r)
, (6l, 6r)} (Fig. 6, Swap4). For three swaps the resulting par-
tition is {(1l, 6r, 2r, 4l), (3r, 6l), (1r, 3l, 5l, 4r), (5r, 2l)}
(Fig. 6, Swap5). Furthermore, three other groupings with
different splitting points were evaluated: {(1l, 2l),
(3l, 4l, 5l, 6l), (1r, 2r), (3r, 4r, 5r, 6r)} (Fig. 5, Swap1),
{(1l, 2l), (3l, 4l), (5l, 6l), (1r, 2r), (3r, 4r), (5r, 6r)} (Fig.
5, Swap2) and {(1l, 2l, 3l), (4l, 5l, 6l), (1r, 2r, 3r),
(4r, 5r, 6r)} (Fig. 5, Swap3). The result of executing
GrouPS with these groupings can be seen in Fig. 5 and
Fig. 6. All new groupings (resulting from above swaps)
are clearly outperformed by the original partition. This re-

Figure 7: Final policy found by the GrouPS algorithm after
100 iterations. A high reward is given if the head as well as
the left foot of the robot are high above the ground.

sult corroborates our assumption that a proper selection of
groups can ameliorate the performance of the policy search
algorithm.

Experiment: Lifting a Leg
To test the GrouPS algorithm in experiments following the
real world closely, we reproduced the experiment stated in
(Luck et al. 2014): We simulate a NAO robot (Gouaillier
et al. 2008) using the V-REP framework (Rohmer, Singh,
and Freese 2013) in the task of lifting its left leg without
falling. The same reward function was used as presented in
(Luck et al. 2014, Eq. (22)) with parameters α = 5, β = 10,
γ = 10 and λmax = 6. The V-REP framework (Rohmer,
Singh, and Freese 2013) allows for simulations with high
physical accuracy by utilizing the bullet physics library. In
this experiment, the actions represent the 26 joint velocities
for each of the 15 points in time. Again, for feature functions
Gaussian distributions were used and the same parameters
for GrouPS were chosen like given in the evaluation above.

We ran GrouPS for 100 iterations. In each iteration, we
used a set of 20 samples, of which ten were randomly se-
lected from the set of 20 in the previous iteration and ten
generated by the current policy. We used ten best samples
out of this set of 20 for computing the new policy parame-
ters. The groups were created in such a manner that the joints
of each arm or leg form a single group as well as the joints of
the head. The results are given in Fig. 7, where we find that
the GrouPS algorithm is able to find a satisfactory solution
even with a relatively small number of samples: the head and
left leg of the NAO robot are at high positions corresponding
to a high reward.

Conclusion and Future Work
In this paper, we introduced a novel algorithm for rein-
forcement learning in low-dimensional latent spaces. To this
end, we derived a Variational Inference framework for pol-
icy search that takes prior structural information into ac-
count. The resulting policy search algorithm can efficiently
learn new policy parameters, while also uncovering the un-
derlying latent space of solutions, and incorporating prior
knowledge about groups of correlated parameters. In exper-
iments using motor skill learning tasks, we showed that the
introduced GrouPS algorithm efficiently learns new motor
skills. It significantly outperformed state-of-the-art policy



search methods, whenever prior information about structural
groups was provided.

So far, the dimensionality of the latent space needs to be
provided as a parameter to the reinforcement learning algo-
rithm. We plan to investigate automatic adjustments of the
dimensionality using current rewards. In this paper, we fo-
cused on intra-group correlations. In future work, we plan to
investigate correlations among extracted group factors, e.g.,
correlations between arms and legs.

Acknowledgments
J.Pajarinen and V.Kyrki were supported by the Academy of
Finland, decision 271394.

References
Bernstein, N. A. 1967. The co-ordination and regulation of
movements. Pergamon Press.
Bishop, C. M. 2006. Pattern recognition and machine learn-
ing. Springer.
Bitzer, S.; Howard, M.; and Vijayakumar, S. 2010. Using
dimensionality reduction to exploit constraints in reinforce-
ment learning. In Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
3219–3225. IEEE.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum Likelihood from Incomplete Data via the EM Al-
gorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1):1–38.
Gouaillier, D.; Hugel, V.; Blazevic, P.; Kilner, C.; Mon-
ceaux, J.; Lafourcade, P.; Marnier, B.; Serre, J.; and Maison-
nier, B. 2008. The nao humanoid: a combination of perfor-
mance and affordability. arXiv preprint arXiv:0807.3223.
Harman, H. H. 1976. Modern factor analysis. University of
Chicago Press.
Klami, A.; Virtanen, S.; Leppaaho, E.; and Kaski, S. 2015.
Group factor analysis. IEEE Transactions on Neural Net-
works and Learning Systems 26(9):2136–2147.
Kober, J., and Peters, J. 2009. Policy search for motor prim-
itives in robotics. In Advances in Neural Information Pro-
cessing Systems (NIPS), 849–856.
Kober, J., and Peters, J. 2011. Policy search for motor prim-
itives in robotics. Machine Learning 84(1):171–203.
Kolter, J. Z., and Ng, A. Y. 2007. Learning omnidirectional
path following using dimensionality reduction. In Proceed-
ings of the Robotics: Science and Systems (R:SS) confer-
ence. The MIT Press.
Luck, K. S.; Neumann, G.; Berger, E.; Peters, J.; and
Ben Amor, H. 2014. Latent space policy search for
robotics. In Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), 1434–
1440. IEEE.
Neumann, G. 2011. Variational inference for policy search
in changing situations. In Proceedings of the 28th Interna-
tional Conference on Machine Learning (ICML), 817–824.
Peters, J., and Schaal, S. 2008. Natural actor-critic. Neuro-
computing 71(7):1180–1190.
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