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Abstract. Traditional industrial applications involve robots with limited mobili-
ty. Consequently, interaction (e.g. manipulation) was treated separately from 
whole-body posture (e.g. balancing), assuming the robot firmly connected to the 
ground. Foreseen applications involve robots with augmented autonomy and 
physical mobility. Within this novel context, physical interaction influences 
stability and balance. To allow robots to surpass barriers between interaction 
and posture control, forthcoming robotic research needs to investigate the prin-
ciples governing whole-body motion and coordination with contact dynamics. 
There is a need to investigate the principles of motion and coordination of phys-
ical interaction, including the aspects related to unpredictability. Recent devel-
opments in compliant actuation and touch sensing allow safe and robust physi-
cal interaction from unexpected contact including humans. The next advance-
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ment for cognitive robots, however, is the ability not only to cope with unpre-
dictable contact, but also to exploit predictable contact in ways that will assist 
in goal achievement. Last but not least, theoretical results needs to be validated 
in real-world scenarios with humanoid robots engaged in whole-body goal-
directed tasks. Robots should be capable of exploiting rigid supportive contacts, 
learning to compensate for compliant contacts, and utilizing assistive physical 
interaction from humans. 

Keywords—whole-body, control, free floating, interaction, contacts, compli-
ance. 

1 Introduction 

For cognitive agents, such as humanoid robots, to persist and act in natural human 
environments, contact and physical interaction become necessary and unavoidable. 
Everyday tasks involve making and breaking contact, among all areas of the body, 
whether the contacts are accidental disturbances or intentional support for dynamic 
movement. Critically, robots should be robust enough to cope with unpredictable 
contact, via safe control mechanisms and compliance.  Moreover, cognitive goal di-
rected robots need the ability to exploit predictable contact, to aid in goal achieve-
ment, as well as learn dynamics of contact in order to generalize to novel tasks and 
domains. 

Physical interaction has been studied in robotics, extensively under the umbrella of 
manipulation. For historical reasons, these studies have assumed a fixed-base as cur-
rent industrial applications do not necessitate extended mobility. Foreseen robotic 
applications will demand an increasing level of autonomy, including physical mobili-
ty. These applications call for extending studies on interaction to cases where the 
robot has a mobile-base. Remarkably and differently from the fixed-base case, inter-
action in these situations may compromise system balance, and goal directed actions 
require proper whole-body coordination and use of contact. However, the principles 
governing whole-body coordination in humans are far from being understood and 
implementations on complex systems, such as humanoids, are missing, especially 
besides walking. 

Within this context one of the major challenges of robotic research is to advance 
the current control and cognitive understanding about robust, goal-directed whole-
body motion execution with multiple contacts. Remarkably, focus should be posed on 
complex systems, such as humans and humanoids. In a crescendo of complexity, as 
illustrated in the following figure, current state of the art (state-of-art 1 and 2) should 
be advanced to address more complex scenarios (challenges 1 and 2). 

State-of-art 1: balancing with multiple rigid contacts. The robot is standing and 
balancing with its hands supported by a rigid table in front of its body. However, the 
table is too fragile, and unexpectedly breaks. A contact state change is sensed, and the 
robot’s control architecture automatically adjusts posture control parameters to main-
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tain balance in light of the reduced support. The unexpected breaking of contact 
makes it more challenging. 

State-of-art 2: goal directed actions involving contacts. The robot is standing 
with its hands at its side, and intends to reach for an object on a table in front.  The 
robot recognizes that the distance is sufficiently far away, and the task cannot be 
achieved without compromising balance.  The robot decides to initiate a new contact 
with its left hand on the table, providing sufficient support for reaching the object 
with its right hand. 

Challenge 1: learning non-rigid contacts. The robot sits down on a chair with a 
soft cushion, however the cushion has a particular stiffness quality not experienced 
before. The robot tries to reach for an object on a table, but it fails as it did not ade-
quately compensate for the unexpected dynamics of the soft cushion.  After a few 
attempts, the robot adapts its model of the contact interaction, and is able to infer new 
control action to successfully reach the goal. 

Challenge 2: human assistive contacts. The robot is seated in a chair, and a per-
son comes to assist the robot to stand. He/she grabs both hands of the robot and starts 
pulling upwards.  The robot senses the new contact, and recognizing from the interac-
tion force that it is an external agent, allows its arms to be compliant.  When the force 
becomes sufficient to enable standing, the robot recognizes the intended action and 
stiffens its arms while pushing its legs to rise from the chair. Finally once standing, 
but still in contact with the human, the robot returns compliance to its arms to allow 
for safe interaction while retaining overall control of its posture. 

 
Present day robots are still far from the human capabilities in exploiting predictable 
events and in coping with uncertainty. The gap between humans and robots is particu-
larly apparent when in tasks involving unstructured physical interaction with the envi-
ronment or other agents. Recent behavioural experiments yielded a new perspective 
on modelling the way humans deal with both predictable and unpredictable motor 
control tasks. In early experiments, it has been shown [55] that humans learn and 
adapt internal dynamical models of their own arm in interaction with the environment. 
Such internal models appear to be crucial in predicting how muscle activations pro-
duce hand movements and therefore may play an essential predictive role in move-
ment planning. However, Burdet et al. [8] have shown that when prediction is not a 
viable strategy, humans can rely on arm compliance regulation (by means of muscle 

    
State-of-art 1. 

Balancing with mul-
tiple rigid contacts. 

State-of-art 2. 
Contacts for goal 

directed actions. 

Challenge 1. 
Learning nonrig-

id contacts. 

Challenge 2. 
Human assistive 

contacts. 
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Figure 1 classification of whole-body tasks based on external-compliance. The complexity 
increases from top to bottom, i.e., with the need of exploiting the compliance of the contacts. 
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regulation or low levels of compliance are shown at the bottom4; tasks involving wide self-compliance 
regulation ranges including high compliance levels are at the top. The grey-colour-valued function shown in 
the space defined by these two axes is a qualitative evaluation of progress beyond the state of the art: dark 
grey is the state-of-the-art, increasing levels of blue represent step-by-step progress beyond state of the 
art. Inspired by how self and external-compliance influence the overall contact-compliance, we stress on 
the fact that progress in handling whole body contacts can be achieved only by simultaneously increasing 
the external and the self-compliance levels. Conversely, little advances are achieved when increasing the 
environmental compliance but reducing the active compliance component. Vice versa, a dual way to 
achieve little progress beyond the state of the art corresponds to scenarios that involve a strong self-
compliance regulation but reduced external compliance. 

• Project-specific evaluation metrics. As anticipated in Section “1.1.3 Metrics”, we therefore define a 
project-specific evaluation metric, which takes into account the nature (and associated complexity) 
of the contacts. In particular, we propose the bi-dimensional space in Table 4 as an additional 
qualitative and project-specific metric to evaluate the quality and complexity of proposed and 
implemented scenarios. In this view, scenarios do not qualitatively differ if they involve the same 
contact-compliance. State-of-the-art is at the bottom left corner of Table 4, given that it typically 
involves minimally compliant (i.e. position controlled) robots, minimal self-compliance regulation 
and rigid external contacts. The four proposed scenarios, to be implemented in a dedicated work 
package, follow a step-wise progress beyond state-of-the-art. 

Table 2 presents a classification of scenarios on external-compliance. The complexity increases from top to bottom, i.e., with the need 
of exploiting the compliance of the contacts. 

Exploiting non-compliant (rigid) contacts 

 

Tasks explored in CoDyCo 

• Balancing with rigid contacts. 
• Goal directed tasks with rigid contacts 

(e.g. balancing and manipulating) 
• Providing a library for online computing 

dynamics with multiple contacts. 
• Learning task space dynamics with rigid 

contacts. 

 Tasks explored in CoDyCo 
Exploiting compliant contacts 

 

• Modelling human control strategies 
with compliant contacts. 

• Balancing with compliant contacts. 
• Online estimation of compliant 

contacts stiffness. 
• Goal directed tasks with compliant 

contacts. 
• Learning task space dynamics with 

compliant contacts. 

Exploiting human contacts 
 

 

Tasks explored in CoDyCo 

• Models for human-human compliant 
interaction. 

• Models for human assistance in 
balancing tasks. 

• Learning task space dynamics with the 
help of a caregiver. 

                                                             
4 An extreme example, not shown in Table 4, is represented by a human (the other) moving a completely passive 

robot (the self). In this case, the robot compliance level is high but the compliance regulation is absent. Therefore such 
a scenario would be at the very bottom of the vertical axis in Table 4. 

co-activation) to cope with the unpredictability that naturally arises from feedback 
delays when performing arm-reaching movements in unstable environments. Basic 
research and robotics technology are ready to extend such insights from single limb 
movements to whole-body interaction and the validation of these models appears 
feasible. In contrast to manipulation scenarios with static base robot systems dynamic 
whole-body interaction concerns the analysis of phenomena at a higher scale (bigger 
interaction forces, bigger muscle activations, etc.). whole-body compliance regulation 
with force/impedance control is not only favoured by current theoretical progress and 
available technologies, but may actually be ready for wide-spread use instead of being 
limited to just a few prototypes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Roadmap beyond state-of-the-art 
With reference to Figure 1 and following, we propose a classification that relies on 

the well-known concept of compliance (or the inverse concept of stiffness), to be 
understood as the force-displacement characteristic of a contact. Interaction scenarios 
can be classified by quantitatively measuring two essential components of contacts: 
external and internal compliance (internal here refers to the agent or “the self”). The 
first scenarios classification (Figure 1) is based on the external-compliance; it in-
cludes scenarios that involve non-compliant (rigid) external contacts and scenarios 
with compliant external contacts. This second category is extremely wide in consider-
ation of the multitude of possible compliant behaviours that can be experienced: from 
the linear force-displacement characteristic of a linear spring to the complex non-
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linear characteristic of a pillow. Scenarios within this category practically overlap 
with the first category but rigid contacts are replaced by non-rigid contacts. In these 
two categories the agent (or “the self”, represented with a human silhouette) is always 
interacting with inanimate objects (the external contacts: a chair, a sofa, the floor, 
etc.). In the last category, “the self” and “the other” are both humans. In these scenar-
ios the external-compliance is not a well-defined relationship between force and dis-
placement but depends on the active intention of “the other”. 

External-compliance is only one side of the interaction, and the agent has limited 
control over it. The other side of the interaction is what we call the “self” (internal) 
compliance, which is instead fully under control of the cognitive agent. Self-
compliance needs to be adapted to the environment compliance and the ability to 
actively regulate the internal compliance has been only recently implemented on mul-
ti-degrees-of-freedom robots. The self-compliance regulation represents the pro-
active and cognitive component of the interaction and therefore gives the robot an 
enhanced degree of autonomy to be exploited in handling situations not anticipated at 
design time. In this sense, the self-compliance level and actuation range can be used 
to classify different scenarios as shown by Figure 2. At the very first level of this 
classification we consider scenarios that do not require significant self-compliance 
regulation as they typically involve dynamically stable situations. Such situations 
involve for example dynamically stable tasks, which substantially require direct con-
trol of stable postures. The second level of the classification includes tasks that re-
quire a certain level of active compliance either to stabilize unstable systems (e.g. 
balancing) or to compensate for unpredictable interaction characteristics (e.g. standing 
hand in hand with another agent). Finally at the highest level of this classification we 
consider highly complex tasks characterized by strong requirements in terms of 
“self”-compliance planning and regulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 classification of whole-body tasks according to an increasing self-compliance 
level and actuation range. 
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Table 3 presents a classification of scenarios according to an increasing self-compliance level and actuation range. The proposed 
classification starts with situations of limited self-compliance while increasing the level of pro-activity up to complex active parts. 

Exploiting contacts in statically stable tasks 

 

Tasks explored in CoDyCo 

• Optimizing posture and compliance for stability 
and energy efficiency. 

• Measuring and estimating contact forces and 
compliance. 

• Learning body convenient postures for resting 
configurations. 

• Investigating the dual role of postural and 
active compliance. 

 Tasks explored in CoDyCo Exploiting contacts in unstable tasks

 

• Optimizing whole-body 
posture and actuators 
compliance for stability. 

• Role of active compliance in 
compensating for postural 
instability, 

• Integrating multiple sensors 
(i.e. haptic, vestibular, etc.) 

Exploiting contacts in tasks superposition 

 

Tasks explored in CoDyCo 

• Optimizing and coordinating whole-body 
posture and actuators compliance for goal 
achievement. 

• Decomposing the global goal in sequences of 
sub-movements. 

• Planning how to sequence individual sub-
movements for global task achievement. 
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Figure 3 the metric space to evaluate 
the progress work beyond the current 
state-of-the-art. Interaction is the inter-
twined combination of two components, 
external and self-compliance, both 
contributing to the concept of contact-
compliance. Whole-body scenarios 
should be evaluated in a metric space 
that takes into account how self and 
external-compliance contribute to 
contact-compliance. Contact-
compliance is the sum of self and ex-
ternal-compliance. Remarkably the 
major advances can be obtained by 
simultaneously advancing the external 
and the self-compliance requirements. 
The vertical axis represents both self-
compliance levels and actuation ranges 
in consideration of the fact we are 
mainly interested in self-compliance 
regulation, actuation and control. The 
four proposed scenarios have increas-
ing complexity with respect to current 
state-of-the-art.  

External and self-compliance are two fundamental aspects of any interaction. It is 
therefore crucial to understand how these two concepts become intertwined once con-
tacts are established. We will introduce the concept of contact-compliance, which 
corresponds to the overall compliance obtained once the external and the self-
compliance become coupled with the contact establishment. A contact can be seen as 
the serial connection of two compliances, one representing the external-compliance, 
the other representing the self-compliance. The compliance of a serial interconnection 
is simply the linear sum of the individual compliances. Roughly speaking, the con-
tact-compliance does not significantly change when the external and self-compliance 
are changed simultaneously by an equal and opposite quantity. No advancement can 
be associated to situations which correspond to augmenting the self-compliance at the 
cost of diminishing the external-compliance or vice versa, as in these situations the 
overall contact-compliance does not change. This fundamental procedural principle is 
well sketched in Figure 3. The horizontal axis sorts possible scenarios according to a 
progressively increasing external-compliance level. The vertical axis instead orders 
the same scenarios by means of increasing self-compliance levels and actuation rang-
es: tasks involving minimal self-compliance regulation or low levels of compliance 
are shown at the bottom; tasks involving wide self-compliance regulation ranges in-
cluding high compliance levels are at the top. The grey-colour-valued function shown 
in the space defined by these two axes is a qualitative evaluation of progress beyond 
the state of the art: dark grey is the state-of-the-art, increasing levels of blue represent 
step-by-step progress beyond state of the art. Progress in handling whole body con-
tacts can be achieved only by simultaneously increasing the external and the self-
compliance levels. Conversely, little advances are achieved when increasing the envi-
ronmental compliance but reducing the active compliance component. Vice versa, a 
dual way to achieve little progress beyond the state of the art corresponds to scenarios 
that involve a strong self-compliance regulation but reduced external compliance.   
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Table 4 presents a visualization of the metric space to be used in order to evaluate the progress of the project beyond the current 
state-of-the-art (to be integrated with classical metrics such as success rate, metric accuracy, etc.). Interaction is always the 
intertwined combination of two components, external and self-compliance, both contributing to the concept of contact-compliance 
(see “1.2.2 Scenarios classification and Metrics to evaluate progress with respect to the state-of-the-art”). Whole-body scenarios 
proposed in this project will be evaluated in a metric space that takes into account how self and external-compliance contribute to 
contact-compliance. The visualization below shows this metric space, according to the simple rule that contact-compliance is the sum 
of self and external-compliance. Remarkably the major advances can be obtained by simultaneously advancing the external and the 
self-compliance requirements. Conversely, little advances correspond to scenarios with bigger external-compliance but require less 
self-compliance regulation capabilities. It is worth noting that the vertical axis represents both self-compliance levels and actuation 
ranges in consideration of the fact that in this project we are mainly interested in self-compliance regulation, actuation and control. 
The four proposed scenarios have increasing complexity with respect to current state-of-the-art. The blue-scale qualitatively shows 
progress beyond the state-of-the-art: dark grey is the state-of-the-art. Increasing levels of blue correspond to progress beyond state of 
the art. 

 

 

 

 

1.2.3 TECHNOLOGY: STATE-OF-THE-ART AND CONSORTIUM BASELINE 

As it was previously pointed out, there are two major technological prerequisites for achieving the 
objectives of the current project proposal: whole-body distributed force sensing and touch sensing. Both 
technologies have been only recently integrated and used in (humanoid) robots, including the iCub. 
Therefore, CoDyCo consortium is not expected to produce major technological advances in the sensing 
technology, whereas major advances are expected in the way these technologies are exploited, controlled 
and learnt. 
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2 State-of-the-art 

Technological state of the art. Among the recent achievements in the field of ro-
botics, there are two major technological prerequisites that will play a fundamental 
role in enhancing whole-body motion capabilities: distributed force and touch sens-
ing. Both technologies have been only recently integrated and used in (humanoid) 
robots, including the iCub [35] . 

Force control is a fundamental property for any autonomous agent in interaction 
with the environment. First attempts to regulate interaction forces relied on active 
force and compliance control schemes, typically coupled with custom mechanical 
designs such as the ones proposed in [50] and [18] , which were eventually imple-
mented on successful commercial manipulators. Similar solutions have been eventual-
ly implemented on some humanoid platforms [9] [14], including the iCub [21] . Re-
cent theoretical and technological advances have revealed the importance of inten-
tionally introducing mechanical compliance in the design [46] and (even more recent-
ly) the necessity of actively regulating the actuator passive compliance [28] [58] [36] . 
It is to be expected that within the next years robots such as iCub will be equipped 
with variably compliant actuation technologies at some (if not all) of the main joints 
[59] [60] . 

Touch is another fundamental sensing capability for autonomous agents willing to 
interact with an unstructured environment or humans [5] . Whole-body distributed 
touch sensing has been only recently embedded on humanoid robots, but there already 
exist quite a few examples: Robovie-IV [38] , RI-MAN [40] , Macra [18]  and Meka 
[23] , just to cite a few. The iCub already integrates a mature technology [52] cover-
ing the upper body, legs and feet soles.  

Finally, several open-source software libraries have been developed in the last 
years to support research in whole-body dynamics and contact simulation. Several 
dynamics simulators have been developed for robotics (see [22] for a survey). The 
most interesting physics engines for our purposes are the ones with Featherstone-like 
forward dynamics calculation [15] [61] , built-in collision detection and stable numer-
ical contact forces computations [42] . Among the kinematic and dynamic libraries it 
is worth citing HuMAnS1, a toolbox for analysis and control of both human and hu-
manoid motion, and iDyn, a generic software tool, extensively used in iCub to com-
pute whole-body dynamics and reinforce these computations with measurements 
coming from sensors embedded in the robot [21] [17] . 

Human motor control state-of-the-art. Human whole-body motion control has 
been studied within tasks such as reaching on a supporting surface and sit-to-stand. 
These movements involve coordination of multiple joints, significant shift of the cen-
tre of mass, and control of equilibrium, either in static or dynamic conditions. These 
are skills learnt early in human childhood but also studied extensively in the context 
of motor disability, e.g. after neurological insults like stroke, or in the elderly with 
reduced muscle power, joint flexibility and sensory loss. However, almost nothing is 
yet known about when healthy subjects choose to make use of contacts with support 

                                                             
1 http://www.inrialpes.fr/bipop/software/humans/index.html 
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surfaces. It has been shown that in standing posture, this contact provides augmented 
sensory information reducing sway [25] , and how in some circumstances, non-weight 
bearing but informative “light-touch” between two standing subjects can cause cou-
pling that leads to increased sway, emphasising that knowledge about the stability and 
compliance of the contact surface is vital. 

Reach using supports. Human reaching with arm support has not been extensively 
studied. There is almost no literature on the issue of how humans use one hand to 
extend their reach space. For example, to lean forwards requires a shift of the trunk 
and a shift of the centre of mass [20] . At some point it becomes advantageous to use 
a supporting surface, allowing a reduction in anticipatory postural adjustments and a 
simplified control strategy [56] . But the decisions about when to implement support 
using one arm, which will depend on the availability, reliability and compliance of a 
support surface are almost unstudied [29] . 

Sit-to-stand. The postural adjustments that contribute to a sit-to-stand action are 
well documented. The action requires a shift of centre of mass, development of mo-
mentum, and precisely timed hip and knee extension, combining with maintaining 
stability with ankle control. As motor ability lessens, e.g. in the elderly, compensatory 
foot placement with increased momentum generation using hip flexion and arm 
movement is often employed [24] . Support from the chair arm or from a cane [33]  
increases stability in the forward axis. Again, decisions about when the support sur-
face would be used, depending on its stability and compliance, are unstudied. The 
effects of unstable foot support in the sit-to-stand action are studied in [20] the au-
thors suggests a clear trade-off between support surface stability and manoeuvrability, 
and argue that adapting to the added uncertainty could help individuals become more 
manoeuvrable. Finally, there is little work on how the sit-to-stand action changes with 
elastic support - this has been studied in locomotion and jumping [4] , but not in inter-
actions with support surfaces. 

Dimensionality reduction. Complex multi-joint movements call for control strate-
gies that simplify and reduce degrees of freedom. There are various competing theo-
ries of how this can be achieved [31] . Perhaps most relevant is the uncontrolled man-
ifold hypothesis [53] that demonstrates that it is highly effective to allow some pa-
rameters to be uncontrolled, if task irrelevant, and to control only a fewer task rele-
vant parameters. In [53] Scholz & Schoner applied this to the sit-to-stand task, and 
show that the centre of mass in the forward axis is well controlled, head and hand 
position are less controlled, and vertical head position appears little controlled. How 
these behaviours change with support is an open question. Equally important is the 
issue of how high dimensionality whole body motion of human models can be re-
duced to extract principles of action applicable to robots with different geometries. 
These are implemented by muscle and joint synergies that reduce the functional de-
grees of freedom during a given action. There has been very effective use of principal 
or independent components analyses to capture such human whole body movement 
and reduce dimensionality (e.g. as in [16] ). Recent developments include extracting 
functional components, which treat joint-kinematics data as functions instead of as a 
series of independent samples, and are comparable across groups of subjects [10] . 
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Robot Motor Control state of the art. In complex scenarios, when the robot and 
the environment are assumed to be perfectly known, planning approaches explore the 
possible states of the robot (e.g. configurations of the robot in its environment) in 
probabilistic graph-like manners [32] to determine the sequence of commands to pro-
vide to the robot to perform a certain action in free space [12] [30] or in complex 
contact situations [6] [7] . Such methods are usually computationally demanding and 
difficult to apply online. Conversely, when the global goal of the robot is relatively 
simple, the high-level planner can be almost disregarded because the goal to be 
achieved can “easily” be described a priori in terms of operational tasks [26] to be 
activated and combined. This falls into “the simultaneous management of multiple 
operational objectives”, a well-known problem in model-based reactive control. The 
most popular method to deal with a set of objectives is a hierarchical framework, 
where operational tasks are typically prioritized in a “stack” [34] , which found sever-
al applications to humanoids [54] [37] . QP solvers have recently gained popularity in 
humanoid robotic as they do not require the explicit inversion of any model of the 
system [2] [11] [14] [48] . This corpus of reactive methods mostly succeeds in over-
coming the "complexity and uncertainty" factor thanks to the use of feedback. How-
ever the proposed solutions are only locally optimal and the overall decision-making 
process cannot be addressed in the most general cases (i.e. without scripted scenari-
os). There is obviously a need for approaches where planning and reactive control are 
combined in a strongly intertwined way. This is not a simple problem: there are very 
few works where such a combination has actually been tested in a non ad hoc manner. 
The work of [3] contributed to describe the necessary control architecture but did not 
propose any general control solution for such a combination to exist in practice. More 
recently [45] introduced an architecture combining a whole body control level and a 
reactive symbolic planning, while [62] focused on dedicated mission-level planning 
methods for humanoids, coupled to task-level controllers. More recently, [48] [49] 
have proposed an architecture where sequences of operational tasks are generated on 
the fly based on a fuzzy-logic, rule-based decision engine. This approach, even 
though efficient in various specific applications, fails to scale-up as the number of 
required rules explodes with the growing complexity of the considered scenarios. 

Learning state-of-the-art. Real-world environments are often hard to capture per-
fectly with physical models. The uncertainty in model predictions is important during 
controlled physical contacts between a (humanoid) robot system and its environment. 
Large errors either in the environmental model or in the task will lead to drastic fail-
ures and therefore need to be limited as much as possible by model adaptation. Hu-
man-inhabited worlds will never allow perfect modelling and instead require that the 
system generalizes the tasks in such a manner that they work in a wide variety of 
different uncertain scenarios where there is contact between robots and either humans 
or physical objects. Machine learning approaches are therefore needed. Particularly in 
whole-body motion they are necessary for the successful implementation of the con-
trol architecture, and its implementation and application to the real-worlds scenarios. 
However, off-the-shelf machine learning methods are concerned with static data sets 
and require massive amount of computations, often rendering real-time learning in-
feasible. To date, a variety of robot learning approaches have been suggested. The 
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most important being model learning, operational space control learning, learning of 
elementary tasks and hierarchical combinations of tasks, which are briefly evaluated 
hereinafter. 

Model learning. High model accuracy and constant model adaptation may be key 
for low torque interaction during contact. Models of the robot dynamics have been 
learned by real-time regression, e.g., locally weighted projection regression [51] and 
local Gaussian process regression [43] . Nevertheless, if any of these approaches 
would be given the data from a robot in contact with the environment, it would fit the 
model to this particular case, as the contact forces would just be treated as an addi-
tional nonlinearity. As a result, the model will not generalize to new contact models 
and instead it would be necessary to learn a new model for each type of contact. 

Operational space control learning. Control in operational space has been ap-
proached both as a direct policy learning problem [44] as well as an indirect learning 
problem via forward models [47] . Here, the problem may be even more drastic as 
changing the contact formulation will alter the problem in its essence. As a result, an 
operational space control law may not transfer at all but rather become highly prob-
lematic under new circumstances.  

Learning of elementary tasks and hierarchical combinations of tasks. While learn-
ing of contact-free elementary tasks by the combination of imitation learning and 
policy search [1] [27] is a well-explored topic, no general approaches to date can tack-
le the exact same problem and allow for different contact combination. Furthermore, 
learning of hierarchical elementary task combinations is still in its infancy. Several 
interesting approaches have been suggested [57] [41] [39] [13] in literature, relying on 
substantially different insights. Further exploration in this area is clearly needed, es-
pecially in unexplored multi-contact scenarios. 

While all of these frameworks are well motivated in their domains, they have two 
major shortcomings from the viewpoint of whole-body motion control: they do not 
explicitly incorporate contact, and they do not leverage on the analytical robotics and 
control knowledge surrounding them. 

3 CONCLUSIONS 

In this paper we report on the current state-of-the-art in whole-body dynamics stud-
ies concerning human movement analysis and robot control. We outline a roadmap of 
experiments and research questions that are currently explored by the consortium of 
the European Project CoDyCo, which will provide significant advances in the under-
standing of the use of contacts both in human motor control and robot control. 
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