
Experiments with Hierarchical Reinforcement
Learning of Multiple Grasping Policies

Takayuki Osa, Jan Peters, and Gerhard Neumann

Technische Universität Darmstadt,
Hochschulstr. 10, 64289 Darmstadt, Germany
{osa,peters,neumann}@ias.tu-darmstadt.de

Abstract. Robotic grasping has attracted considerable interest, but it
still remains a challenging task. The data-driven approach is a promis-
ing solution to the robotic grasping problem; this approach leverages a
grasp dataset and generalizes grasps for various objects. However, these
methods often depend on the quality of the given datasets, which are not
trivial to obtain with sufficient quality. Although reinforcement learning
approaches have been recently used to achieve autonomous collection
of grasp datasets, the existing algorithms are often limited to specific
grasp types. In this paper, we present a framework for hierarchical re-
inforcement learning of grasping policies. In our framework, the lower-
level hierarchy learns multiple grasp types, and the upper-level hierarchy
learns a policy to select from the learned grasp types according to a point
cloud of a new object. Through experiments, we validate that our ap-
proach learns grasping by constructing the grasp dataset autonomously.
The experimental results show that our approach learns multiple grasp-
ing policies and generalizes the learned grasps by using local point cloud
information.

Keywords: Grasping, Reinforcement learning, Point clouds

1 Introduction

Grasping is a crucial aspect in robot manipulation, and many approaches to
achieve robust and adaptive grasping have been proposed in literature [1,2]. De-
spite these efforts, robotic grasping has not achieved human-level performance.
Th data-driven approach yields a promising class of grasping methods [2, 3].
These methods leverage grasp datasets and transfer grasping motions to new tar-
get objects based on geometric information. Recent data-driven methods gener-
alize grasps to various objects based on point clouds or RGB-D image data [4–8].
However, the performance of these data-driven methods is highly dependent on
the quality of the grasp dataset, which is not easy to obtain with sufficient qual-
ity. The manual collection of such a grasp dataset can be avoided if a robotic
system autonomously collects the dataset by trial and error.

One solution to this problem is to use reinforcement learning [9]. A few
methods for autonomous data collection of grasping have been proposed recently

2 Takayuki Osa, Jan Peters, and Gerhard Neumann

[10, 11]. However, these methods are based on convolutaional neural network
(CNN) and limited to 2D image inputs lacking depth information. Consequently,
these methods are limited to simple grasping motions, e.g., vertical pinch grasps.
However, studies in the area of human grasping indicate that multiple grasp types
are necessary in order to achieve dexterous and human-like manipulation [12,13].

In this paper, we present a hierarchical reinforcement learning approach for
learning to plan grasping motions based on point clouds. In our approach, the
lower-level hierarchy learns multiple grasp types, and the upper-level hierarchy
learns a policy to select from the learned grasp types according to the point cloud
of the given object. We empirically validate that our approach learns grasping by
constructing the grasp dataset autonomously. The experimental results demon-
strate that the grasping performance of our approach improves iteratively by
updating the grasping policy and the grasp dataset. In addition, from our ex-
periments, we verify that the learned grasping policies can be generalized for
various objects by leveraging local features of the given point cloud of the ob-
ject.

2 Related Work

Data-driven methods have been very popular in the field of robotic grasping. Re-
cent studies demonstrated that grasp planning based on point clouds or RGB-D
images can be generalized to various objects without solid 3D models [4–8]. How-
ever, the performance of these methods depends significantly on the quality of
the training dataset of grasping motions and objects. In addition, these methods
using RGB-D data are often limited to simple two-finger grippers and specific
approach directions. For example, a method in [4] computes Height Accumulated
Features (HAF) and detects the grasp locations. This method performs well even
in scenarios with multiple objects. However, it requires a training dataset with
thousands of grasps.

Reinforcement learning is a promising approach for autonomous data gener-
ation. The study by Kroemer et al. showed that grasping can be learned and
improved autonomously using such a reinforcement learning approach [14]. How-
ever, the authors did not completely address the problem of generalizing grasps
for new scenes. Recent studies have investigated methods for autonomous large-
scale data collection for grasp learning [10, 11]. The method presented in [10]
showed the feasibility of autonomously collecting a dataset with thousands of
grasps and training a CNN to predict grasp locations. Levine et al. proposed the
learning of hand-eye coordination for grasping by using CNN [11]. However, the
methods in [10,11] are limited to a specific grasp type and 2D image input lack-
ing depth information, although use of depth information and learning multiple
grasp types are essential to achieve dexterous manipulations.

In contrast with previous studies, our approach has three important features:
1) learning multiple grasp types, 2) autonomously constructing the grasp dataset
through trial and error, and 3) planning the grasping motion based on point

Hierarchical Reinforcement Learning of Multiple Grasping Policies 3

Execute the grasp with grasp type k* and location s*

Record the score of the executed grasp

Demonstration

of grasp type 1

Learn grasp score

),(~ 1

1
sR θGP

Learn grasp score

),(~ sR
K

K θGP

Point cloud of a new object

Evaluate the grasp types

and locations

Select the grasp type

and location

RR
βσµ +maxarg

Find potential grasp locations

for each grasp type

},...,...,,...,{ 1

11

1

k

N

k

N
ssssS =

),(),,(ss
k

lR

k

lR
πσπµ

…

Update policy

(θ | s)

Update policy

(θ | s)

Demonstration

of grasp type K
[k*, s*] =

…

Demonstration

of grasp type k

Learn grasp score

),(~ sR
k

k θGP

Update policy

(θ | s)

Create a

contact dataset

Create a

contact dataset

Create a

contact dataset K

l
π

k

l
π

1

l
π

:
u

π

Update the dataset and

the policy for grasp type k*

Learning for

grasp type 1

Learning for

grasp type k

Learning for

grasp type K

Learning for

Grasp selection

Fig. 1. Overview of the algorithm. First, the grasping policy is initialized, and the
dataset of contact information is created based on human demonstration. The individ-
ual lower-level policy πl is learned for each grasp type. The grasp quality R is approx-
imated with Gaussian Processes (GPs). GPs are used to evaluate each combination of
grasp type and location. When the point cloud of a new object is given, potential grasp
locations are estimated using the grasp dataset. Subsequently, the upper-level policy
πu selects the grasp type and location. After every grasp execution, the grasping policy
and the dataset are updated.

clouds. To the best of our knowledge, previous studies have not proposed a
learning method that has includes all these features.

3 Learning Multiple Grasping Policies

In order to make our problem tractable, we devide the problem of learning to
grasp into four steps: 1) find the potential grasp locations, 2) select the grasp type
and location, 3) perform the selected grasp, and 4) update the grasping policy.
Our framework is summarized in Fig. 1. The system learns a policy consisting
of two layers: the upper-level policy πu selects the appropriate grasp types and
grasp locations, and the lower-level policy πl maps the desired grasp location to
the grasping motion with a specific grasp type.

The grasping policy is initialized using human demonstrations. For each
demonstrated grasp, the system stores the contact information of the success-
ful grasp. Simultaneously, the grasping policy, which consists of πu and πl, is
initialized based on the demonstrated motions. When a new point cloud of the
object is given, the system finds multiple local parts similar to the contact parts
in the dataset of the successful grasps. Each grasp candidate is provided to the
upper-level policy πu, which selects one candidate for execution.

Grasping motions for different grasp types are learned as independent policies
πkl by the contextual relative entropy policy search (REPS) algorithm [15–17].
The learned policy πkl generates the motion parameter θ using the local features
of the estimated grasping part s.

The grasp quality R is approximated using Gaussian Processes (GPs) as a
function of motion parameter θ and the feature of the potential grasping part

4 Takayuki Osa, Jan Peters, and Gerhard Neumann

s. Based on the evaluation with the learned GP models, the upper-level policy
πu selects the appropriate set of the grasp type and location. We use the upper
confidence bound (UCB) objective, which is a well-known acquisition function
from Bayesian Optimization (BO) [18–20].

After every grasp execution, the GPs are updated, and the estimation of
the grasp quality improves iteratively. Simultaneously, the executed lower-level
policy πl is updated using REPS. When the grasping is successful, the contact
information is stored in the dataset for the corresponding grasp. Consequently,
the dataset containing the contact information of the grasp is constructed au-
tonomously.

3.1 Learning to Select the Grasp Type and the Grasp Location

In order to select the grasp type and the grasp location from the given candidates,
we need to evaluate the expected grasp quality E[R|πkl , s]. We approximate the
grasp quality of the kth grasp type with a GP as a function of the movement
parameters θ and the grasp location features s, i.e.,

Rk(θ, s) ∼ GP (m (z) , g (z, z′)) (1)

where z = [θ, s]T . We use a squared exponential covariance function

g (zi, zj) = σ2
f exp

(
−‖zi − zj‖

2

2l2

)
+ σ2

nδzizj
, (2)

where l is the bandwidth of the kernel, σ2
f is the function variance and σ2

n is the

noise variance. The hyperparameters of GP models [σ2
f , l, σ

2
n] are updated after

every rollout by maximizing the marginal log likelihood [21]. We assume zero
prior mean, i.e., m(z) = 0; therefore, joint distribution of the quality measure
R1:N of the training set and the quality measure of a query data point R∗ is
Gaussian, i.e., [

Rk
1:N

R∗

]
∼ N

(
0,

[
Gk gk
gTk g(z∗, z∗)

])
(3)

where G is the Gram matrix and Rk
1:N is a column vector that contains rewards

of rollouts with the kth grasp type as Rk
1:N = [Rk1 , · · · , RkN]T . In this framework,

we employ a stochastic policy πkl (θ|s) ∼ N (µk(s),Σk(s)). In order to estimate
E[R|πkl , s] using GPs, we can consider that the inputs of GPs are drawn from
the distribution

z∗ ∼ N (µz∗ ,Σz∗) where µz =

[
µk(s)
s

]
,Σz =

[
Σk(s) 0

0 0

]
. (4)

To estimate the expected reward for grasp type k when given a context s, we
need to compute the integral

p(R∗|µz∗ ,Σz∗) =

∫
p(R∗|z, D)p(z∗)dz∗ (5)

Hierarchical Reinforcement Learning of Multiple Grasping Policies 5

Algorithm 1 Learning Multiple Grasp Types

Input: point cloud of the object P target, the number of locations candidates N ,
the number of grasp types K

Initialization: Initialize policies and GP models based on demonstrations
repeat

for k = 1 : K do
Find grasp location candidates P target 7→ {p1

grasp, . . . ,p
N
grasp}

Compute the features of grasp location candidates Sk = {sk1 , . . . , skN}
for every grasp location candidate sk ∈ Sk do

Compute E[R∗|πkl , sk] and σ(πkl , s
k) using (6) and (7)

end for
end for
Select the grasp type and location using the UCB objective in (10)
Execute grasp with the grasp parameter θ ∼ πk

∗
(θ|s∗)

Update the GP model for the k∗th grasp type
Update the policy for the k∗th grasp type with a policy search method

until grasping learned

where D represents the dataset of motion parameters, contexts, and resulting
rewards. The studies in [22,23] showed that the mean and the covariance of this
distribution are given by

µR = E[R∗|πkl , sk] = qTβ (6)

σR = gk (z∗, z∗)− gTkG
−1
k gk + Tr

[
G−1k (gkg

T
k −Q)

]
+ Tr

[
ββT (Q− qqT)

]
(7)

where β = G−1k R
k, and the vector q and the matrix Q are given by

qj =
exp

(
− 1

2
(µz∗ − zj)T (Λ+Σz∗)

−1(µz∗ − zj)
)

|2ΛΣz∗ + I|1/2
, (8)

Qij =
exp

(
− 1

2

[
(µz∗ − zd)T (Λ2 +Σz∗)

−1(µz∗ − zd) + (zi − zj)T (2Λ)(zi − zj)
])

|2ΛΣz∗ + I|1/2
, (9)

where zd = 1
2 (zi + zj), and Λ is a diagonal matrix with Λ = l2I.

These GP models are used to evaluate the grasp locations found for each
grasp type. For grasp selection, we must consider the exploration-exploitation
trade-off between gaining more information and maximizing the expected quality
of the grasp. Such an exploration-exploitation trade-off is considered by many
acquisition functions used in BO. We use the UCB [18] acquisition function,
which has been shown to perform well in practice. The learner selects the grasp
type and location by maximizing the acquisition function

u(πkl , s
k) = E[R∗|πkl , sk] + βσR(πkl , s

k), (10)

where β is a positive constant that controls the exploration-exploitation trade-
off. The algorithm to select the grasp types and locations is summarized in
Algorithm 1.

6 Takayuki Osa, Jan Peters, and Gerhard Neumann

3.2 Finding Potential Grasp Locations

(a) (b) (c)

Fig. 2. (a) and (b):Point cloud of object
with contact points. Blue points represent
the point cloud of the object P . Red points
represent contact points. Green points rep-
resent the neighbors of the contact points
C. (c)Example of the result of ICP. Blue,
green, red, and yellow points represent a
partial point cloud pi of a given object,
the contact part Cj from the dataset of
successful grasps, the result of ICP algo-
rithm Hj

icpCj , and the estimated grasp part
pgrasp, respectively.

In order to estimate the potential
grasp location from a given point
cloud, the system searches for local
parts that are similar to the point
clouds of the contact parts in the li-
brary of the successful grasps Dcontact.
In this process, we use the Iterative
Closest Points (ICP) algorithm [24],
which finds a homogeneous transfor-
mation Hicp that minimizes the dis-
tance between two point clouds.

When the point cloud of the tar-
get object P target is given, the sys-
tem randomly samples a subset of the
point cloud of the new object pi ⊂
P target. Subsequently, ICP is per-
formed between pi and each contact
parts in our dataset Cj ∈ Dcontact.
ICP returns the residual distance dicp
between pi and Cj ; therefore, we can
determine the successful grasp that is
the most similar to the sampled part pi from the dataset. Using the result of ICP
with the smallest residual distance d∗icp, we can find the point cloud part that is
similar to the grasp part in the dataset. The potential grasp part pgrasp can be

estimated as a point cloud in the neighborhood of Hj∗

icpCj∗ from P target. Fig. 2
shows examples of the contact parts in the dataset and the behavior of ICP. By
repeating this local search for different subsets of P target, we can find multiple
potential grasp locations. The process to obtain the grasp locations is summa-
rized in the Algorithm 2. Separate datasets of successful grasps are maintained
for different grasp types, and this process is performed for each grasp type.

This method does not require the entire point cloud of the target object
because it searches for local features of the point cloud. This feature is useful in
the planning of grasps in real systems in which complete point clouds of objects
are not available.

In order to obtain a concise description of the local point cloud pgrasp at the
estimated grasp location, we compute the center of the contact points and the
normal vector at the center of the contact points for each finger as

s = [x1
center,n

1
center, . . . ,x

f
center,n

f
center], (11)

where xicenter is the center of the contact part of the ith finger, nicenter is the
normal vector at the center of the contact part of the ith finger, and f is the
number of fingers of the hand. This local description of contact points s is used
as a context in the contextual policy search of the lower-level policies πkl .

Hierarchical Reinforcement Learning of Multiple Grasping Policies 7

Algorithm 2 Finding potential grasp locations

Initialization: Store contact parts in M successful grasps Dcontact = {C1, . . . ,CM}
Input: the number of the outputs N , the point cloud of the target object P target

for i = 1 : N do
Randomly choose a subset of the point cloud of the new object pi ⊂ P target

for j = 1 : M do
Perform ICP algorithm between pi and Cj ∈ Dcontact.
[djicp, H

j
icp] = ICP (pi,Cj)

end for
Compute j∗ = argminj d

j
icp

Find a point cloud pigrasp in the neighborhood of Hj∗

icpCj∗ from P target

Compute the features of the estimated grasp part, pigrasp 7→ si
end for

3.3 Learning the Policy for the Desired Grasp Type

We use the contextual REPS algorithm [15, 17] to learn the lower-level policies
πkl (θ|s) that estimate the parameters θ of the grasping motions with the given
contexts for each grasp type. In policy search, the policy must be updated in
order to maximize the expected reward. For stable exploration, the “difference”
between the old and new policies is bounded in the policy update of REPS.
Therefore, the resulting policy will remain close to the initial policy even if
the reward function is multi-modal. In our framework, each lower-level policy is
initialized by human demonstrations, and REPS finds a locally optimal policy
that is associated with the grasp type indicated by human demonstrations.

REPS uses the KL divergence between the sample distribution q(s,θ) and the
updated distribution π(θ|s)µs(s) as a similarity measure in the policy update.
µs is the distribution of the context. The policy update using contextual REPS
is formulated as a constraint optimization problem,

max
π

∫
µs(s)

∫
π(θ|s)R(θ, s)dθds (12)

s.t. ε ≥
∫
µs(s)KL (π(θ|s)||q(θ|s)) ds, 1 =

∫
π(θ|s)ds (13)

For details, please refer to the original study and its extensions [15,16]. Contex-
tual REPS models the policy as a Gaussian policy

π(θ|s) = N (φ(s)Tw,Σθ)

with a mean vector µθ = φ(s)Tw that is linear in the context features φ(s). We
require a policy that is non-linear in the original context s because grasping is a
complex task. Therefore, we use a squared exponential feature where we select
M random samples s from our dataset, i.e., the ith dimension of φ is given by

φi(s) = exp

(
−1

2
(si − s)T Λφ (si − s)

)
, (14)

where Λφ is a diagonal matrix that defines the bandwidth for each element of
the context vector s.

8 Takayuki Osa, Jan Peters, and Gerhard Neumann

4 Experimental Results

4.1 Simulations

1 2 3 4 5 6

Fig. 3. Objects used to learn multiple grasp
types: objects 1 and 2 were used for preci-
sion grasp, objects 3 and 4 were used for
power grasp, and objects 5 and 6 were used
for medium-wrap grasp.

In the simulation experiments, the
system learned three grasp types:
precision grasp, power grasp, and
medium wrap [13]. In order to initial-
ize the grasping policy, a human oper-
ator specified the control parameters
to demonstrate each type of grasping.
For each grasp type, 12 demonstra-
tions were given to the system. Then,
the grasping policy was initialized, and the system learned to generalize the
control parameters for given objects in different positions. During the learning
phase, point clouds of objects were provided to the system, and the system au-
tonomously chose the grasp type and location and executed the grasp using the
motion parameters θ. The grasping policy was updated after every grasp execu-
tion. We used the model of KUKA Light Weight Robot and DLR/HIT II Hand
as a robotic manipulator in the simulation.

In the simulation, the motion parameter θ of the lower-level policies was
given as

θ = [xgrasp,xvia, qgrasp], (15)

where xgrasp is the grasp position of the end-effector in Cartesian space, xvia is
the via point of the end-effector in Cartesian space, and qgrasp is a quaternion
that represents the orientation of the end-effector in the grasp position. The
finger configuration was initialized using the human demonstration, and was not
included in the motion parameter for the learning phase. We used the contact
information of the thumb and index finger of the hand as a context s. Therefore,
the context vector s had 12 dimensions.

The grasp quality R for each rollout is computed based on the force-closure
condition and L1 grasp quality measure [25–27] as

R = c1Q+ c2δFC, (16)

where Q is the L1 grasp quality measure, and δFC is equal to 1 when the grasp is
force-closure and is equal to zero otherwise. The variables c1 and c2 are positive
constants.

We compared two policy search methods in the proposed framework. Al-
though we use REPS for the lower policies to learn multiple grasp types in this
study, other policy search methods can be used in the proposed framework.
We compared Reward-Weighted-Regression (RWR) algorithm with REPS [28].
RWR is a policy search method that performs well for real robot tasks, how-
ever, it does not constrain the KL divergence in the policy update. Therefore,
a comparison between REPS and RWR indicates the manner in which the KL
bound in the policy update influences the proposed framework. With regard

Hierarchical Reinforcement Learning of Multiple Grasping Policies 9

(a)

Number of rollouts

G
ra

sp
 s

u
cc

es
s

ra
te

[%
]

REPS+UCB

REPS+EPS

RWR+UCB

RWR+EPS

100

75

50

25

0
200 400

(b)

Number of rollouts

E
rr

o
r

in
 r

e
w

a
rd

 e
s
ti

m
a
ti

o
n 5

4

3

2

0

200 400

1

-1

(c)

Fig. 4. Performance in simulation. (a) Grasps performed in simulation. (b) Improve-
ment in grasp success rate. (c) Improvement in grasp quality estimation.

to the upper-level policy, we compared ε-greedy policy with UCB [9]. In this
simulation, We set ε = 0.05.

As shown in Fig. 3, we used six objects. Objects 1 and 2 were used to demon-
strate precision grasps, objects 3 and 4 were used to demonstrate power grasps,
and objects 5 and 6 were used to demonstrate medium-wrap grasps. In the
learning phase, test objects were randomly chosen from these objects.

Grasps performed in the simulation are shown in Fig. 4(a). The grasp success
rate improved through trials from 67.5% at the beginning to 94.1% after 400
trials of grasping (Fig. 4(b)). In addition, the estimation of the grasp quality
with GPs improved through trials as shown in Fig. 4(c).

The comparison between REPS and RWR shows that the KL bound in the
policy update enables efficient exploration in the search space. The differences be-
tween REPS+UCB and RWR+UCB and between REPS+EPS and RWR+EPS
are statistically significant at the 5% level. The comparison between UCB and
the ε-greedy implied that UCB can deal with the exploration-exploitation trade-
off better than the ε-greedy policy in the proposed framework, although the
differences between RWR+UCB and RWR+EPS and between REPS+UCB and
REPS+EPS were not statistically significant.

4.2 Experiments with a Real Robot

We tested whether our learned model can be transferred to a real robotic system.
The grasping policy was learned through 400 grasp executions in the simulation
described in Section 4.1. We used 10 objects as shown in Fig. 6. For each object,
grasps were tested five times by changing the object position and orientation.
KUKA Light Weight Robot and DLR/HIT II Hand were used for this exper-
iment. The arm and fingers of the robot were controlled by using impedance
control.

The results of the experiment are summarized in Table 1. The success rate
was 90%, and the performed grasps are shown in Fig. 7. Fig. 5 shows the steps
in the ICP process to find potential grasping parts. Our approach using ICP
performed well with partial point clouds obtained from real scenes using the
Kinect.

10 Takayuki Osa, Jan Peters, and Gerhard Neumann

1 2 3 4 5 6 7 8 9 10

Fig. 6. Objects used in the experiment.

1 2 3 4 5 6 7 8 9 10

Fig. 7. Grasps performed in the experiment. The robot chose the appropriate grasp
types and successfully executed the grasps using the given point clouds.

Perform ICP with contact parts in

a successful grasp in the dataset

Estimate a potential

grasping part
Point clouds from Kinect

Fig. 5. Examples of the process using ICP
to find local features that are similar to
stored successful grasps. In the middle fig-
ures, the green dots represent the contact
part in the dataset of successful grasps, and
the red dots represent the result of ICP. In
the right figures, the green dots represent
the estimated contact part of the thumb,
and the orange dots represent the estimated
contact part of the index finger.

The shapes of the objects are dif-
ferent from the shapes of the object
models used in simulations. Hence,
these results show that the learned
policy can be used for objects with un-
seen shapes. In addition, the results
demonstrate that the learned policy
can successfully plan the grasping mo-
tion by using only the partial point
clouds of objects.

5 Discussion

In hierarchical policy search, typ-
ically, the process of learning the
upper-level and lower-level policies si-
multaneously is not trivial because
the behaviors of policies in differ-
ent layers often influence each other.
However, we did not observe unde-
sired behavior in the system. In our
framework, R(θ, s) is stationary. Therefore, the estimation using GPs improves
as the system performs more rollouts and increases the number of data sam-
ples. After the upper-level policy selects the grasp type for the given context,
the rest of the process is a standard policy search problem because each lower-
level policy is learned independently in our framework. Thus, the behaviors of
the lower-level policies are expected to be stable. Although the independence of
lower-level policies simplifies the problem, in future work, transferring the poli-
cies between different grasp types may lead to a more efficient learning method.

Although we used the method described in Section 3.2 to find potential grasp
parts in point clouds, our framework is not limited to specific methods for finding
grasp affordances. Therefore, the existing methods such as [7] can be also used
to find grasp affordances in our framework.

Hierarchical Reinforcement Learning of Multiple Grasping Policies 11

Table 1. Grasp performance in a real robotic system. The object numbers correspond
to the numbers in Fig. 7.

Obj. No. 1 2 3 4 5 6 7 8 9 10 Avg.

Success rate 5/5 4/5 5/5 5/5 5/5 5/5 4/5 5/5 4/5 3/5 90.0 %

Experimental results shows that our framework learns multiple grasp types
and a policy to select them according to the given objects. However, the grasp
types and locations should be selected on the basis on additional factors, such as
human preferences and the tasks planned to be performed after grasping. Our
framework selects grasps based on only the grasp stability. Therefore, in future
work, the selection of grasp types and locations should consider the additional
factors.

6 Conclusion

In this paper, we presented a framework for hierarchical reinforcement learn-
ing of grasping policies. Our approach autonomously constructs the dataset of
grasping motions and point clouds of objects through trial and error. The pro-
posed framework learns multiple grasp types and a policy to select from the
learned grasp types for the given objects. In contrast with previous studies, our
approach is not limited to specific grasp types and leverages local features of
point clouds of objects instead of 2D images. We performed experiments with
simulations and with a real robot to test the performance of our approach in
learning to grasp with a five-finger hand. The experimental results indicate that
our approach learns appropriate grasps by autonomously updating the grasping
policy and the grasp dataset. In future work, the selection of grasp candidates
based on human preferences and other factors must be investigated.

References

1. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: IEEE Interna-
tional Conference on Robotics and Automation (ICRA). (2000) 348–353

2. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis- a survey.
IEEE Transactions on Robotics 30(2) (April 2014) 289–309

3. Goldfeder, C., Allen, P.K.: Data-driven grasping. Autonomous Robots 31 (2011)
1–20

4. Fischinger, D., Weiss, A., Vincze, M.: Learning grasps with topographic features.
International Journal of Robotics Research (2015)

5. Kopicki, M., Detry, R., Adjigble, M., Stolkin, R., Leonardis, A., Wyatt, J.L.: One-
shot learning and generation of dexterous grasps for novel objects. International
Journal of Robotics Research (2015)

6. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Interna-
tional Journal of Robotics Research (2015)

7. Ten Pas, A., Platt, R.: Localizing handle-like grasp affordances in 3d point clouds.
In: Int’l Symposium on Experimental Robotics (ISER). (2014)

8. Gualtieri, M., Ten Pas, A., Saenko, K., Platt, R.: Using geometry to detect grasp
poses in 3d point clouds. In: Int’l Symposium on Robotics Research (ISRR). (2015)

12 Takayuki Osa, Jan Peters, and Gerhard Neumann

9. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press
(1998)

10. Pinto, L., Gupta, A.: Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours. In: IEEE International Conference on Robotics and
Automation (ICRA). (2016)

11. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination
for robotic grasping with deep learning and large-scale data collection. CoRR
abs/1603.02199 (2016)

12. Napier, J.R.: The prehensile movements of the human hand. Journal of Bone and
Joint Surgery 38-B(4) (1956) 902–13

13. Cutkosky, M.R., Howe, R.D.: Human grasp choice and robotic grasp analysis.
In Venkataraman, S.T., Iberall, T., eds.: Dextrous Robot Hands. Springer-Verlag
New York, Inc. (1990) 5–31

14. Kroemer, O., Detry, R., Piater, J., Peters, J.: Combining active learning and
reactive control for robot grasping. Robotics and Autonomous Systems (9) (2010)
1105–1116

15. Peters, J., Muelling, K., Altun, Y.: Relative entropy policy search. In: AAAI
Conference on Artificial Intelligence (AAAI). (2010)

16. Kupcsik, A., Deisenroth, M.P., Peters, J., Loh, A.P., Vadakkepat, P., Neumann,
G.: Model-based contextual policy search for data-efficient generalization of robot
skills. Artificial Intelligence (2014)

17. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics.
Foundations and Trends in Robotics (2013) 388–403

18. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3 (March 2003) 397–422

19. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret
bounds for gaussian process optimization in the bandit setting. IEEE Transac-
tions on Information Theory 58(5) (May 2012) 3250–3265

20. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian optimization for
learning gaits under uncertainty. Annals of Mathematics and Artificial Intelligence
76(1) (2016) 5–23

21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning). The MIT Press (2005)

22. Girard, A., Rasmussen, C.E., Candela, J.Q., Murray-Smith, R.: Gaussian pro-
cess priors with uncertain inputs – application to multiple-step ahead time series
forecasting. In: Advances in Neural Information Processing Systems. (2002)

23. Candela, J.Q., Girard, A.: Prediction at an uncertain input for gaussian processes
and relevance vector machines – application to multiple-step ahead time-series
forecast- ing. Technical report, Danish Technical University (2002)

24. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 14(2) (Feb 1992) 239–256

25. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic
Manipulation. 1st edn. CRC Press, Inc., Boca Raton, FL, USA (1994)

26. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference
on Robotics and Automation (ICRA). (May 1992) 2290–2295 vol.3

27. Pokorny, F., Kragic, D.: Classical grasp quality evaluation: New algorithms and
theory. In: IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). (Nov 2013) 3493–3500

28. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for op-
erational space control. In: International Conference on Machine Learning (ICML).
(2007)

