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Abstract—Opportunistic spectrum access, where cognitive ra-
dio devices detect available unused radio channels and exploit
them for communication, avoiding collisions with existing users
of the channels, is a central topic of research for future wireless
communication. When each device has limited resources to sense
which channels are available, the task becomes a reinforcement
learning problem that has been studied with partially observ-
able Markov decision processes (POMDPs). However, current
POMDP solutions are based on simplistic representations where
channels are simply on/off (transmitting or idle). We show that
more complicated Markov models where on/off states are part of
complicated behavior of the channel owner (primary user) yield
better POMDPs achieving more successful transmissions and less
collisions.

I. INTRODUCTION

Wireless communication is growing: ever more devices

communicate over wireless connections, and the data transmit-

ted per device grows due to e.g. increasing wireless transmis-

sion of video. Furthermore, public infrastructure will gradually

include for instance wireless backhaul over mesh network [1],

and sensors for traffic, weather etc. will likely send increasing

amounts of traffic over wireless networks.

As there is a limited amount of radio spectrum, more

efficient use of the spectrum is important to avoid congestion.

Congestion is partly due to rigid resource allocation in many

wireless systems. Cognitive radio systems [2], [3], [4] aim to

increase spectrum efficiency by opportunistic spectrum use:

they adapt to the radio environment and learn to exploit under-

utilized radio channels for their own communication while

protecting primary users (existing devices on the channels).

Current opportunistic spectrum access methods are often

based on a potentially powerful probabilistic approach called

partially observable Markov decision processes (POMDPs).

However, current methods use only simple POMDPs where

each radio channel is modeled with two states: “primary user

is transmitting” or “channel idle”. Such limited channel models

neglect latent behavior of the primary user (PU) which is

not directly measurable by immediate sensing of the channel:
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in particular they neglect complicated dynamics (evolution

through time) of the PU behavior, and also neglect that the

PU can react to collisions with cognitive radio transmissions.

We introduce a novel POMDP solution to opportunistic

spectrum access, based on a more complicated Markov model

which can represent dynamic behavior of each channel and can

represent the way in which PUs listen and act on the channel.

Experiments on data of WLAN channels with Voice over IP

(VOIP) and web traffic show that our approach produces better

access policies than the two-state approach.

II. BACKGROUND

A cognitive radio (CR) system is a radio system that adapts

to its environment and acts intelligently in it. In an early exam-

ple of benefits of cognitive radio, local residential connections

reused cellular channels opportunistically using interference

avoidance [5]. Recently cognitive radio methods have emerged

that sense the radio environment and learn to detect or predict

when a given channel will be free of traffic [6]; such free “time

slots” could then be used by the device for communication.

Such opportunistic spectrum access would overall result in

more efficient usage of the spectrum by several devices.

In opportunistic spectrum access, radio channels can contain

existing communicating devices called primary users (PUs)

that own the right to use that part of the spectrum. A CR device

listening to the radio environment, called a secondary user

(SU), could be allowed to use the remaining spectrum with a

lower price if it does not harmfully disturb PU communication.

The SU usually cannot spend enough power to sense all

potentially idle channels, and must choose at each moment

which channels to sense; also, often the SU cannot be certain

the PU will not start to transmit at the same time as the SU;

then the SU cannot achieve interference-free communication

and must simply minimize the risk of interference.

This scenario can be represented as a reinforcement learning

problem: the SU is rewarded for successful transmissions,

penalized for using energy for listening and penalized a lot

for interfering with PUs; the SU must find a behavior (action

policy) maximizing the overall reward. The policy is optimized

based on a probability model telling how channels behave after

each action. Often, Markov models are used for the channels;

then the interaction of SU actions, channel behavior, and



action rewards is called a partially observable Markov decision

process (POMDP; see [6]). We use the discrete-time approach;

observations and actions are made at fixed time intervals.

III. THE MODEL

In POMDP learning the SU optimizes its action policy based

on a Markov model telling the possible states and transition

probabilities. A Markov model only approximates real channel

behavior; such models are used as a simplification allowing

intuitive and computationally feasible optimization of action

policies. The better the model matches real channel behavior,

the better the optimized policy performs in reality.

Typical POMDP solutions [6], [7], [8] to opportunistic spec-

trum access use simple two-state channel models: a channel

is idle or has a PU transmitting, and transition probabilities

between these two states depend only on the previous state;

an action incurs a penalty if the SU transmits at the same time

as the PU. We will describe why this simple channel model

does not match real channel behavior well.

To get improved POMDP solutions, we now introduce a

novel channel model representing more complicated behavior

than the usual two-state model. In particular, we model two

properties of PU communication on WLAN channels: channel

access patterns are dynamic, varying even over short time

periods, and PUs react to collisions where the SU transmits

on a channel when the PU was listening or transmitting.

A. Basic POMDP setup

Assume there are N channels potentially available for a

secondary user (a cognitive radio device) to transmit on. The

channel access of the secondary user (SU) is divided into

regular time slots. At the end of each time slot t, the SU

chooses an action: what to do during the next time slot t + 1.
The SU can choose to listen to a set of M adjacent channels

where M < N ; during slot t+1 the action is carried out, and

the SU observes for all those M channels whether a primary

user (PU) was transmitting on them during slot t+1 or not. At

time t the SU can also choose to transmit on exactly one of the

M channels being listened to; careless choice of transmission

channel can cause a collision with PU transmissions during

slot t+1. The decisions to listen and transmit on a channel are

made at the same time t; thus avoidance of collisions must be

based on predicting the next channel states from observations

up to time t. We model this task as a POMDP. A discrete

POMDP [9] consists of a finite set of states S, actions A,

observations O, transition probabilities P (s′|s, a), observation
probabilities P (o|s′, a), and rewards R(s, a). We describe

our states in Sections III-B to III-D, transition/observation

probabilities in Section III-E, and rewards in Section III-F.

B. Channel dynamics

We assume a wireless network with multiple WLAN chan-

nels and primary users. A primary user (PU) of some channel

uses an application (VOIP, web, etc.) which sends and receives

data using the computing device network stack, that transmits

packets over a wireless channel. Channel access patterns (i.e.

the pattern of when a PU communicates or not over the

channel) resulting from this sequence can be complicated: user

behavior may be complex, network stacks are complicated and

the wireless environment affects packet transfers.

We argue that the usual two-state probabilistic models of

network traffic (corresponding to exponentially distributed

lengths of idle and transmit periods) do not capture crucial

characteristics of such traffic well: a large change to network

traffic patterns may occur over a small time interval (e.g., a

WLAN user may launch a new web application alongside old

ones); multiple network protocols with different traffic patterns

such as VOIP [10] and HTTP [11] may operate on the same

channel; and changes to traffic intensity may change traffic

patterns [11]. As a similar situation, in [12] it is shown that

simple traffic models are not enough to model ethernet traffic.

We propose the following Markov model solution to channel

dynamics: instead of a single “PU transmitting” state, each

channel has K different transmit states Ti, i = 1, .., K

with different probabilities for continuing the transmission

or ending it; this corresponds to modeling packet bursts of

K different expected lengths. Similarly, each channel has J

different “pause” states Pi where the PU is not transmitting,

which model pauses of J different expected lengths.

When the channel leaves a transmit state, it can move to

any of the J pause states, and when the channel leaves a

pause state, it can move to any of K transmit states.1 Thus

the model can represent longer-term dynamics than a two-state

model. The numbers of states K and J could be chosen by

cross-validation; in practice they can be kept at a small value

to save computational resources (we use K = J = 3).
We assume each channel has an independent PU; then the

actions of the SU on one channel do not affect other channels

and we can model the state of each channel independently.

Note that the SU may sense if a PU is transmitting but

not the transmission type: the difference between the J pause

states or K transmit states is latent information the SU must

infer from recent observations. Intuitively, if the PU has kept

transmitting for a long time, the transmission likely has a long

expected length and the channel will be occupied in the next

time step too, so the SU should not attempt to use that channel.

C. Reacting to secondary user actions

SUs are not controlled by the primary system, they are not

in synchrony with PUs and SU transmissions cannot be fully

coordinated, so collisions occur between PUs and SUs [7]. PUs

may react to collisions. The reaction depends on the channel

access method of PUs; as an illustrative example we assume

PUs use a WLAN protocol such as WLAN 802.11a/b/g. In

these WLAN systems the PUs are required to sense the channel

idle before transmitting, in the spirit of carrier sense multiple

access [13] and 802.11 specifications. For the SU we assume

synchronous time slotted channel access.

If the SU transmits on a channel at the same time as the PU

of the channel (a transmission collision), the primary user acts

1Before the channel begins actually transmitting it will go through a special
“listen” state which we describe in Section III-C.



according to its protocol: it stops transmitting and listens to the

channel until the SU has stopped and the channel is idle again;

only then the PU can try to retransmit any packets corrupted by

the collision and continue further communication. We assume

each packet the PU was transmitting during the collision is

corrupted and must be retransmitted, even if only part of that

packet’s transmission occurred during the collision.

If the SU transmits when the PU was listening to determine

if the channel is idle (a listen collision), the PU notices the

SU transmission and considers the channel non-idle, which

delays the intended packet transmissions of the PU. Thus both

transmit and listen collisions hurt the operation of the PU.

We model the PU listening and collisions situations by

special states: before each packet burst (state Ti) the model

must go through a corresponding, non-transmitting listen state

Li. If the SU starts transmitting just as the model would have

moved to Li, the model enters a listen-collision state LCi

(denoting that the PU notices the collision), where it remains

as long as the SU transmits. The model enters a normal listen

state when the SU stops. From a listen state the model moves

to transmission, unless the SU starts transmitting; then the

model enters a transmission-collision state TCi; the PU then

again tries to listen, entering a listen or listen-collision state.

Transmit-collisions may similarly happen later in a packet

burst if the SU interferes, with similar state transitions.

Our listen and collision states enable explicit modeling

of PU reactions to SU actions. Note that a SU cannot tell

the listening behavior of the PU from a pause by direct

observation, so the SU must anticipate PU behavior to avoid

interference.

D. The resulting state diagram

Figure 1 shows the diagram of states and possible state

transitions on a single channel, as described in the previous

subsections, when the SU does or does not transmit on that

channel. In experiments we use K = J = 3 yielding fifteen

states per channel. The state transitions of multiple channels

occur independently given the SU action.

E. Estimating probabilities

The transition probabilities P (s′|s, a) are probabilities for

the system (the set of channels) to move from a state s (current

state of all channels) to another state s′, when the SU chooses

action a (sensing, transmitting). In our model transitions

depend only on SU transmission actions, not sensing. Since we

assume PUs react deterministically to SU transmission (start

listening to the channel if a collision happens), it is enough to

learn transition probabilities P (s′|s, “no action”) for a chan-

nel under uninterrupted normal operation; other probabilities

P (s′|s, a) are deterministically derived from them.

We estimate probabilities P (s′|s, “no action”) from

recorded network traffic data (packet start and end

timestamps); such data can be captured over the air, taken

from packet dumps, or generated by a network simulator as

in our experiments. We convert timestamps into time slot data

by assuming that if a PU accesses a channel at all during a

time slot, the channel is occupied; such conversion does not

cause underestimation of interference caused to PUs.

From the time slot data we identify bursts, consecutive se-

ries of the same slot type (idle/transmit). We arrange transmit-

bursts into K clusters by length, so cluster 1 gets the shortest

bursts and cluster K the longest, and each cluster (which

may contain several bursts of different lengths) has roughly

the same total of time slots; we then label all transmit time

slots by the cluster label of that slot’s parent burst. We next

label listen states: if an idle slot comes just before a transmit

burst with label Ti, it is labeled as listen state Li. We lastly

group idle-bursts (with listen-slots removed) into J clusters

and label idle slots by the label of their cluster, like we did

with transmit slots. Now the time slot data has been assigned

to latent states. Probabilities are then estimated by standard

means: transition probabilities are estimated by counting the

number of transitions from state s to s′ divided by the number

of occurrences of state s, and stationary probabilities of states

as relative proportions of counted time slots for each state.

Observation probabilities P (o|s′, a) are probabilities for the
SU to observe o, when performing action a and moving to state

s′. The possible observations for the SU are the sensing results

(idle/occupied) for each channel sensed. We simply assume

the SU senses accurately for each listened channel, observing

“occupied” if the PU is transmitting and “idle” otherwise.

More generally, observation probabilities could be estimated

from collected or simulated data without changing our model.

F. Setting rewards and learning the POMDP policy

The reward function R(s, a) in the POMDP specifies the

immediate value to the SU for performing action a in state

s. Regardless of the state, we reward the SU for a transmit

action with reward Rt and slightly penalize it for a sensing

action (because it drains energy) with negative-valued reward

Rs. Lastly, we strongly penalize the SU if s is a listen-collision

or transmit-collision state, with negative reward Rc: this

indirectly penalizes previous actions that led to the collision

state. The Rt, Rs, and Rc could be set by negotiation between

companies representing cognitive radio users and PUs.

The reward function, along with the state model and the

probabilities, completes the definition of the POMDP. We may

then optimize an action policy (which action to take given a

sequence of prior actions and observations) for the SU by

standard POMDP solvers. As usual, the policy is optimized to

maximize an infinite-horizon discounted cost E (
∑

∞

t=0
γtRt)

where γ is a discount factor (we used γ = 0.95), Rt the

reward at t time steps into the future from the action, and the

expectation is over the possible current and future states of

the model given the known prior actions and observations.

To approximately solve the optimal action policy for our

detailed channel models, we use the symbolic Perseus [9]

package which has been used in POMDP problems with large

state spaces [14]. In our model, independence of channels

given the SU action speeds up computation.



(a) Secondary user does not transmit (b) Secondary user transmits

Fig. 1. State transitions for one channel in our model. Transitions depend on whether the secondary user (SU) chooses to transmit on this channel (b) or not
(a). The primary user (PU) can transmit K types of packet bursts and have J types of pauses. In normal operation, each packet burst i starts with a listen
state Li, continues with transmit state Ti for some amount of steps, and then the channel moves to a pause state or to the listen state of another packet burst;
similarly, each pause state Pi lasts for some amount of steps and then the channel moves to a listen state of a packet burst. If the SU starts transmitting
when the PU is about to listen or transmit, the channel moves to listen collision state LCi or transmit collision state TCi respectively. Collision states and
transitions to them are shown with red color and thick lines. After collision, the PU listens until the SU does not transmit, then reattempts normal operation.

TABLE I
SUMMARY OF THE EXPERIMENT ENVIRONMENT

4-6 WLAN channels; VOIP+HTTP traffic; dynamic HTTP traffic level

Quantized channel occupancy times (200µs slots)

1 PU per channel; 1 SU (can sense 3 channels and transmit on 1)

SU-PU collisions delay PU transmissions

SU is rewarded for transmissions, penalized for collisions and sensing

IV. EXPERIMENTS

We simulated a realistic wireless environment with either

4, 5 or 6 independent primary user (PU) channels with

dynamically varying traffic conditions. Voice Over IP (VOIP)

and Hypertext Transfer Protocol (HTTP) were used as network

traffic. Table I summarizes the experiment environment.

We used the NS2 [15] software package and the VOIP

modifications of [10] to generate network traffic. We used

a “one-to-one” VOIP scenario with Weibull distributions to

model talk spurts and packet delays in VOIP traffic. We used

the PackMIME-HTTP [11] traffic generator to simulate HTTP

connections between multiple clients and multiple servers. To

generate dynamic PU behavior, we varied the connection rate

of HTTP traffic in PackMIME-HTTP at three-second intervals,

as the absolute value of an AR(1) process with Gaussian noise.

For testing we generated independently for each PU channel

15min of 802.11WLAN traffic data with 54Mbit/s bandwidth.

The traffic data (packet timestamps) was transformed to time

slot data where each 200µs time slot is occupied if it contains

part of a packet and idle otherwise. We similarly generated

30min of training data to estimate transition probabilities as

discussed in Section III-E. Training data turned out to have

slightly more frequent transmissions than test data, a realistic

scenario where training and test data do not exactly match.

We used a reward of Rc = −10 for listen and transmit

collisions, Rs = −0.01 for sensing a single channel, and

Rt = +1 for a successful transmission by the SU. We ran

tests separately using only the first 4 or 5, or all 6 channels.

As actions, the SU was allowed to sense any three adjacent

channels, to also transmit on one of them, or to do nothing,

yielding 9, 13, and 17 possible combinations of the sensing

and transmit actions for 4, 5, and 6 channels respectively.

We compared our model to comparable policies learned with

two-state channel models. As a baseline we use a simple listen,

then send random policy: if some channels were previously

detected idle, transmit on a random one of them; for sensing,

select 3 channels randomly (but so that they contain the

transmission channel if the method chose to transmit).

To get best two-state comparison results, we ran four

methods; each estimated probabilities from the 30min training

data. We used two representations of collision penalties: Rc

weighted by chance of collision (i.e. expected penalty; we ran

this with the POMDP solver of [9]; we also used the solver

of [16], but its results were usable only for 4 channels), or a

third ‘collision’ state similar to collision states in our model

(equivalent to a two-state model where reward is given based

on the next state instead of the current state). We also used

a hand-coded greedy approximation to an optimal two-state

policy: maintain a belief state for the channels using the two

state Markov model; at each time step, transmit on the channel

with maximal expected one-step reward if it is positive (choose

randomly if there is a tie), and sense the set of 3 channels with

maximal probability to contain at least one idle channel in two

time steps (but so that the transmission channel must be one

of the 3 channels; choose randomly if there is a tie). Out of

the four methods, we report the best result for each evaluation

measure: this ensures that we compare our method against the

highest-quality results of the two-state approach that we could

get.

We learned our model and the comparison models from

the training data, and evaluated on the test data. In testing

we used realistic PU reactions to SU actions, listening (until

the channel is free) in response to listen and transmission

collisions and retransmitting all corrupted packets. We evaluate

results by the total reward NtRt+NsRs+NcRC where Nt, Ns

and Nc are the total amounts of transmissions, sensing actions

and collisions. We also list total rewards without counting

listen-collisions, to see if the comparison methods perform

better when only those collisions they can detect are counted.
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Fig. 2. Tests with dynamic HTTP+VOIP traffic. Total reward and total
reward without listen collision penalties, divided by the maximum reward
possible (4365000) for our proposed model, the best two state models, and
the simple randomized listen-then-send model. Results of the proposed model
on 6 channels are initial results from brief training, which already worked well.

TABLE II
TESTS WITH C = 4, 5, 6 CHANNELS FOR THE PROPOSED MODEL (“OUR”)
AND TWO-STATE METHODS: RANDOM LISTEN-THEN-SEND (“RAND.”),
TWO-STATE POMDP TRAINED WITH EXPECTED PENALTY USING THE

SOLVER OF [9] (“2S EP”), AND HANDCODED GREEDY POLICY (“HAND.”).

SU transmissions Reward

C Policy OK T. Colls. L. Colls. (w/o L. pen.)

4

Rand. 4338539 88181 71325 2608479 (3393054)

2S EP 4312751 56862 120522 2403929 (3729671)

Hand. 4362320 76090 61019 2856230 (3527439)

Our 4355080 19596 46875 3556300 (4071925)

5

Rand. 4359017 73088 66639 2826747 (3559776)

2S EP 4334273 77045 88597 2542853 (3517420)

Hand. 4393982 53441 52420 3200372 (3776992)

Our 4420871 20560 47039 3609891 (4127320)

6

Rand. 4367683 66691 64637 2919403 (3630410)

2S EP 4345373 68763 85738 2665363 (3608481)

Hand. 4406408 44854 48704 3335828 (3871572)

Our 4407858 28169 45783 3533343 (4036956)

Fig. 2 summarizes the results. The baseline method is

naturally worst. Our proposed model is best on 4, 5, and

6 channel tests, regardless of whether listen-collisions are

counted. Table II shows for each method (for the two-state

approach we show two of the four methods for brevity)

successful transmissions (“OK”), transmit (“T. Colls.”) and

listen (“L. Colls.”) collisions, and total reward with and

without (“w/o L. pen.”) listen collision penalty. Our method

has less transmit and listen collisions than other methods, and

better total reward. The majority of collisions in our model are

listen-collisions which is natural since they cannot be directly

detected. Figure 3 shows our method operating on test data.

V. CONCLUSIONS AND DISCUSSION

More efficient and more dynamic spectrum usage is needed

in the future. Opportunistic spectrum access by secondary

users in the presence of primary users (PUs) is crucial for

this. Compared to literature [6], [7], [8], we extended models

0 5 10 15 20 25 30 35 40 45 50

SU 1

PU 1

SU 2

PU 2

SU 3

PU 3

SU 4

PU 4

Step

Fig. 3. Example of our proposed model on 4 channels, each with its own
primary user (PU). One secondary user (SU) operates over the channels. For
the SU and each PU, empty boxes denote sensing; dots denote transmissions;
boxes with horizontal lines are listen collisions; dots with crosses are transmit
collisions. The shown 50 steps were chosen from a test segment with 20 listen
collisions, to show they are harder to avoid than transmit collisions.

of PU behavior from simple transmit/idle state models to

better reflect real wireless traffic. Our models yielded more

successful transmissions and less collisions, and hence larger

communication capacity, than comparison models. Future

work includes tests with more channels and real traffic data.
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