
Efficient Planning in Large POMDPs through

Policy Graph Based Factorized Approximations

Joni Pajarinen1, Jaakko Peltonen1, Ari Hottinen2, and Mikko A. Uusitalo2

1 Aalto University School of Science and Technology,
Department of Information and Computer Science,

P.O. Box 15400, FI-00076 Aalto, Finland
{Joni.Pajarinen,Jaakko.Peltonen}@tkk.fi

2 Nokia Research Center, P.O. Box 407, FI-00045 NOKIA GROUP, Finland
{Ari.Hottinen,Mikko.A.Uusitalo}@nokia.com

Abstract. Partially observable Markov decision processes (POMDPs)
are widely used for planning under uncertainty. In many applications, the
huge size of the POMDP state space makes straightforward optimization
of plans (policies) computationally intractable. To solve this, we intro-
duce an efficient POMDP planning algorithm. Many current methods
store the policy partly through a set of “value vectors” which is updated
at each iteration by planning one step further; the size of such vectors fol-
lows the size of the state space, making computation intractable for large
POMDPs. We store the policy as a graph only, which allows tractable
approximations in each policy update step: for a state space described by
several variables, we approximate beliefs over future states with factor-
ized forms, minimizing Kullback-Leibler divergence to the non-factorized
distributions. Our other speedup approximations include bounding po-
tential rewards. We demonstrate the advantage of our method in several
reinforcement learning problems, compared to four previous methods.

1 Introduction

Planning under uncertainty is a central task in many applications, such as control
of various robots and machines, medical diagnosis, dynamic spectrum access for
cognitive radio, and many others. Such planning can often be described as a
reinforcement learning problem where an agent must decide a behavior (action
policy), and the quality of any policy can be evaluated in terms of a reward
function. Partially observable Markov decision processes (POMDPs) [1] are a
widely used class of models for planning (choosing good action policies) in such
scenarios. In brief, in a POMDP the latent state of the world evolves according to
a Markov model given each action chosen; the state is not directly observable, and
end results of potential actions are not known, but the agent receives observations
that depend on the state, and can plan ahead based on probabilistic beliefs about
current and future states. For a survey of POMDP applications see, e.g., [2].

Policies are optimized in POMDPs by iterative algorithms. A central problem
is that the optimization becomes computationally intractable when the size of the

2 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

underlying state space is large. We consider POMDPs with discrete state spaces;
if the state is described by N variables, the number of states is at worst expo-
nential in N and the number of state transitions is at worst exponential in 2N .
To combat computational intractability, many planning algorithms have been
introduced with various approaches for improving efficiency [3–5]; we describe
several approaches in Section 2.1. Overall, however, computational intractability
remains a large problem which limits current applicability of POMDPs.

We present a novel method for efficient planning with POMDPs. In POMDPs
the state can often be described by several variables whose individual transition
probabilities do not depend on the whole state but only on a subset of variables.
However, this does not yet ensure tractability: POMDP planning requires pos-
terior probabilities of current and future states integrated over a distribution
(belief) about previous states. Such integration is done over values of the whole
previous state, and does not reduce to a computationally tractable form. How-
ever, the result can be approximated by a tractable form: in each such computa-
tion we use a factorized approximation optimized to minimize Kullback-Leibler
divergence to the non-factorized intractable belief. We apply such factorized ap-
proximation in several central parts of the computation, which is organized based
on a policy graph. The approximate computations ensure that beliefs over states
remain in a factorized form, which crucially reduces complexity of evaluating and
optimizing plans. We use a speedup based on computing bounds for potential
policy rewards, to avoid evaluating policy alternatives that cannot compete with
best existing policies; effectiveness of such pruning can be further increased with
suitable ordering of evaluations. We describe our method in Section 3.

We compare the performance of our method to four existing POMDP solu-
tions: two traditional approaches (Perseus [3] and HSVI [4]) and two methods
designed for large problems (Symbolic Perseus [5] and Truncated Krylov Iter-
ation combined with Perseus [5]). We compare the methods on four POMDP
benchmark problems of scalable size, including two new benchmarks introduced
here: the Uncertain RockSample problem, which is a more difficult variant of
the traditional RockSample benchmark, and Spectrum Access which is adapted
from a cognitive radio application and is described further below. Our method
gets better policies than others in the same running time, and can handle large
problems where other methods run out of memory, disk space, or time.

One increasingly important application area of reinforcement learning is op-

portunistic spectrum access, where devices such as cognitive radios detect avail-
able unused radio channels and exploit them for communication, avoiding col-
lisions with existing users of the channels. This task can be formulated as a
POMDP problem, and various POMDP solutions with different levels of model
detail exist [6, 7]. Computational intractability is a problem for POMDP solu-
tions: if the status of each channel (describing ongoing packet trains) is modeled
with a detailed model having several states, like 15 in [6], state space grows ex-
ponentially as 15N with respect to the number of channels N used by the model;
this makes POMDP computation challenging. The simple solution, restricting
policies to few channels only, is not desirable: the more channels one can take

Efficient Policy Graph Based Planning in Large Factorized POMDPs 3

into account, the more efficient will be the use of spectrum and the more benefit
the users will get. We present a new benchmark problem for POMDPs called
Spectrum Access which is directly adapted from our proposal for a cognitive ra-
dio solution [6]. We use spectrum access as one of the benchmark problems in
the experiments, and show that our method yields the best results for it.

In the following, we first describe the basic concepts of POMDPs and review
existing methods for planning in POMDP problems in Section 2; in Section 3 we
present our solution; and in Section 4 we describe the comparison experiments
including the two new benchmark problems. In Section 5 results are discussed.
We give conclusions in Section 6.

2 Partially Observable Markov Decision Processes

A partially observable Markov decision process (POMDP) is defined completely
by (1) a Markov model describing the possible state transitions and observation
probabilities given each action of the agent, and (2) a reward model defining how
much reward is given when performing an action in a certain state. Formally a
POMDP consists of the finite sets of states S, actions A, observations O, and
rewards R : S × A → R. At each time step, the agent performs action a, the
world transitions from its current state s to a new state s′ chosen according to the
transition probabilities P (s′|s, a), and the agent receives observation o according
to the observation probability P (o|s′, a). The reward at each time step is R(s, a).

The goal of the agent is to choose her actions to maximize a cumulative
reward over time. We discuss the typical infinite-horizon discounted objective [1]
E (

∑

∞

t=0
γtRt), where γ is the discount factor, 0 < γ < 1, and Rt is the reward

at time step t. The exact state of the world is not known to the agent, but
a probability distribution, which tells the probability for being in state s can
be maintained. This distribution is the so-called belief b: we denote the whole
distribution by b, and the belief (probability) of being in state s is b(s). The Bayes
formula for updating the belief, after doing action a and getting observation o is

b′(s′|b, a, o) = P (o|s′, a)
∑

s

P (s′|s, a)b(s)/P (o|b, a) , (1)

where b′(s′|b, a, o) is the posterior belief, given o, that after action a the world is in
state s′. The normalization term is the overall observation probability given a and
the belief about the starting state, P (o|b, a) =

∑

s′ P (o|s′, a)
∑

s P (s′|s, a)b(s).
An optimal action a maximizes expected total discounted reward over possible
futures; a precise definition is given later. Choosing a, given belief b over current
states s, entails considering all possible action–observation sequences into the
future. A function choosing an action for each b is called a plan or policy.

A brute force approach to choosing optimal actions would yield exponential
complexity for planning with respect to how many steps ahead it looks. Many
state-of-the-art algorithms exploit the Bellman equation for planning:

V ∗(b) = max
a∈A

[

∑

s∈S

R(s, a)b(s) + γ
∑

o∈O

P (o|b, a)V ∗(b′(s′|b, a, o))

]

, (2)

4 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

where V ∗(b) is the value (total expected discounted reward) that can be attained
when acting optimally if the current state is distributed according to belief b; we
call this the “value of b” for short. Above, differently from our usual notation,
b′(s′|b, a, o) denotes the whole posterior distribution over states s′, rather than
a single value. The action a giving the maximum at right in (2) is optimal for
belief b. State-of-the-art methods use Equation 2 iteratively to optimize policies.

Factored definition of POMDPs. POMDP problems can have millions of states.
It would be computationally intractable to define such problems in a “flat” for-
mat with transitions as |S|×|S| probability tables for each action. Luckily, many
POMDP problems can be defined in factored form [8]. In a factored POMDP
the state s is described as a combination of several variables si; an observation
o is described by several variables oi. There can be millions of states s, and a
large number of observations o, but the POMDP can be defined in terms of the
individual si and oi, which have only few elements each. The transition prob-
abilities of each si and observation probabilities of each oi depend only on a
subset of the state variables: Parents(si) denotes the set of state variables af-
fecting transitions of si, and Parents(oi) is the set of state variables affecting
the observation probabilities of oi. The transition probabilities are then writ-
ten as P (s′|s, a) =

∏

i P (s′i|Parents(s′i), a), and observation probabilities are
P (o|Parents(o), a) =

∏

i P (oi|Parents(oi, a)). The reward functions are defined
as functions over subsets Si of state variables: R(s, a) =

∑

i Ri(Si, a), where Ri

is a reward function operating on subset Si.

2.1 POMDP Methods

Several methods exist for planning in POMDPs. In principle, exact optimal plan-

ning in POMDPs can be done using incremental algorithms based on linear pro-
gramming [9] to cover all possible beliefs. However, such algorithms can handle
only problems with few states. Point based value iteration algorithms do not com-
pute a solution for all beliefs, but either sample a set of beliefs (as in Perseus [3])
before the main algorithm or select beliefs during planning (as in HSVI [4]).
‘Value iteration’ refers to updating the value for a belief using a form of the
Bellman equation (2). Point based value iteration algorithms scale to problems
with thousands of states [4], which can still be insufficient. To cope with large
state spaces, POMDP compression methods [10, 11] reduce the size of the state
space. A linear static compression is computed and used to compress the transi-
tion and observation probabilities and the reward function. These compressions
can then be fed to modified versions of POMDP algorithms like Perseus, to com-
pute policies; this can give good performance [5] despite the (lossy) compression.
In all these methods the value function is stored explicitly in vector form or in
algebraic decision diagram (ADD) form; even for factored problems, its storage
size grows exponentially with the number of state variables.

Some algorithms [5] store the policy as a finite state controller (FSC), a
graph with actions as nodes and observations as edges. Any two nodes can be

Efficient Policy Graph Based Planning in Large Factorized POMDPs 5

connected. ‘Policy iteration’ can improve the FSC by repeated policy improve-
ment and evaluation. Even if the FSC can be kept compact, the computed value
functions have the same size as in the value iteration algorithms above. We
maintain the value function as a policy graph using value iteration one layer at
a time; nodes in each layer are connected only to the next layer.

Some methods approximate belief updates. In [12] it is shown that approxi-
mation errors in belief updates are bounded; a bound is given when minimizing
Kullback-Leibler divergence between approximated and true belief. In [13] the-
oretical bound analysis of POMDP planning with approximated beliefs is done.
Dynamic Bayesian network inference is performed in [14] using approximations
similar to two of our approximations in Section 3.1.

The online POMDP method in [15] uses a factorized belief similar to ours;
their planning involves searching different action-observation paths using a prun-
ing heuristic; the worst case complexity is exponential in the search depth.

We lastly note that we use a policy graph based approach; a similar approach
has been discussed in [16] for optimizing POMDP policy for unknown stationary
transition probabilities but the setting is very different and approximation is not
considered. We next describe our approach.

3 Our Algorithm: Factorized Belief Value Projection

We present our novel POMDP planning algorithm called Factorized Belief Value
Projection (FBVP). Similarly to Perseus [3], FBVP starts by sampling a set of
beliefs B before the actual planning. The main planning algorithm (Algorithm 1)
takes the belief set B as input and produces a policy graph that can be used for
decision making during online operation.

On a high level, Algorithm 1 works as follows. Initially, a simple policy α0

is created, and all beliefs in B are associated with it. Then, at each iteration,
beliefs are picked in random order, and for each belief b, a new policy α is
optimized that looks one step further than previously; this optimization is called
the backup operation. The belief b is associated with this new policy α. The policy
α may have been optimal also for other beliefs earlier during this iteration;
if not (α is new at this iteration), we check if any beliefs that haven’t been
processed yet during this iteration could get improved value from policy α. If
they do get improved value, we simply associate those beliefs with α instead
of separately picking them for optimization during this iteration. A speedup is
to run backup for a small set of beliefs concurrently (randomly chosen set with
heuristically chosen size) and check if any returned policy improves the values
of the unprocessed beliefs; in the following description we omit this speedup
for clarity. When all beliefs have been associated to some improved policy, the
iteration ends and the new policies found during the iteration become the nodes
of a new layer in the policy graph. The main algorithm is similar to the main
algorithm of Perseus [3].

The key operations are the backup operation and evaluation (called eval)
of the value of a policy for a belief. To perform them tractably, we exploit the

6 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

Algorithm 1 The main algorithm of our planning method FBVP

1: Input: P (s′i|Parents(s′i), a), P (oi|Parents(oi), a), R(Si, a), V0, B
2: Output: policy graph G
3: Initialize n = 0, α0(b) = V0, G0 = α0

4: repeat
5: Initialize B̃ = B and H = ∅.
6: repeat
7: Sample belief b from B̃ and compute α = backup(b,G, P, R).
8: if α /∈ H then
9: H = (H,α)

10: if α /∈ G then
11: for b ∈ B̃ do
12: Compute Vn+1(b) = eval(α, b, G, P, R)
13: end for
14: end if
15: B̃ = (b ∈ B̃ : Vn+1(b) < Vn(b))
16: end if
17: until B̃ is ∅
18: n = n + 1
19: Gn = H
20: until convergence

policy graph from previous iterations, and use approximations; we describe the
equations and approximations in Section 3.1 after the algorithms.

The eval algorithm (Algorithm 2) evaluates the value of a belief at a graph
node α, as follows: we proceed through the graph from the newest layer where
α is to the oldest. At each layer, we process all nodes: for each node αk, we
know which younger nodes link to it (we call them “caller nodes”), and which
observation is associated to each such link. At each caller node αc we have
previously computed a projected belief bac

c with values bac
c (s′) = b′c(s

′|bc, ac);
here bc is the belief projected from the starting node α all the way to αc, and
ac is the action given by node αc. The observations when leaving αc are taken
into account next: at each caller node αc we have previously computed the path

probability, pc, of arriving at that node. The belief at αk is a sum of caller
beliefs, weighted by their path probabilities and the probabilities p(αc → αk) of
continuing their paths to αk. We have p(αc → αk) = p(oc,k|ac, bc) where oc,k is
the observation in the link (αc → αk). Similarly, the path probability pk at αk

is a sum of incoming path probabilities; pk is used to normalize the beliefs at
αk. As a computational trick, we multiply the path probability by the discount
factor. The newest layer is a special case since it has no caller nodes: there, we
just set the belief at the starting node and set the path probability to one for the
starting node and zero for others. Having the belief at αk, we compute expected
direct reward over the belief, given the action ak chosen by αk. We multiply the
expected reward by the path probability at αk, and add it to total reward for the
original node α; since we incorporated the discount factor into path probabilities,
the added rewards get properly discounted. Lastly, we compute the distribution

Efficient Policy Graph Based Planning in Large Factorized POMDPs 7

Algorithm 2 Evaluate belief value at an α node: eval(αn,j , b, G, P, R)

1: Input: node αn,j (where n is the index of the newest graph layer and j is the index
of the node within the layer), belief b at the node, graph G, probability tables P ,
reward tables R

2: Output: value V of using αn,j as policy for belief b
3: At the newest layer initialize beliefs : bn,j = b, compute ba

n,j (Equation 3) using
action an,j , and initialize path probabilities: pn,j = 1 and pn,i = 0 for all i 6= j .

4: Compute immediate reward at start: V = R(bn,j , an,j) (by Equation 7).
5: for layers i = n − 1 to 1 do
6: for each node k in layer i do
7: For this node αi,k (here denoted αk for short) do the following:
8: 1. For each caller node αc linked to αk from the previous layer, compute

b
ac,oc,k
c pcp(αc → αk), where p(αc → αk) = p(oc,k|ac, bc), oc,k is the observation

associated with the link (αc → αk), ac and bc are the action and belief at αc,
and bac,oc,k is the belief conditioned on ac and oc,k using Equation 4.

9: 2. The path probability pi,k at this node is a weighted sum over incoming path
probabilities from caller nodes: pi,k =

P

c
pcp(oc,k|ac, bc).

10: 3. The belief at this node αk is a weighted sum of incoming beliefs from caller
nodes: bi,k =

P

c
b
ac,oc,k
c pcp(oc,k|ac, bc)/pi,k. Approximate the sum by a single

factorized belief by minimizing KL-divergence (Equation 6).
11: 4. Calculate expected immediate reward Ri,k for the belief bi,k and the action

ai,k at this node (Equation 7).
12: 5. Add the path-weighted reward Ri,kpi,k to the total value V .
13: 6. Project the belief bi,k using the action ai,k but not conditioning on obser-

vations, to obtain ba
i,k with values ba

i,k = b′i,k(s′|bi,k, ai,k) (Equation 3).
14: 7. Multiply the path probability pi,k by the discount factor γ.
15: end for
16: end for

bak

k with values bak

k (s′) = b′k(s′|bk, ak). Now the node αk can be used as a “caller
node” for further layers. We process all nodes in the layer, then proceed to the
next layer, and so on through the graph.

Figure 1 illustrates eval, when computing value of the node α (marked with
green color and bold outline) for a given belief. The algorithm is currently pro-
cessing node αk (marked with yellow color and an asterisk) in Layer 2. Nodes
αc in Layer 3 are caller nodes for αk. Bold red arrows show where the belief at
αk originates. The a indicate actions chosen in each state (many indices omitted
for clarity) and o are observations attached to each link.

The backup (Algorithm 3) finds an improved policy for belief b as follows.
The candidate improved value V is first −∞. We plan to create a new node into
the graph, and we must decide which action to choose there, and which further
nodes it should link to for each observation. A posterior belief b′ with values
b′(s′|a, o) is computed for all actions a and observations o. For each action, we
go through all observations, and for each observation we try nodes from the next
graph layer, as candidates the new node could link to. We use eval to get the
value given by each candidate for the belief b′ we computed above. We choose

8 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

α
c

α
c

a c

a c

a k

Layer 3 Layer 2 Layer 1

(oldest)

Layer 4

(newest)

o=2

o=1,2

α

a

a

a

a

o=1

o=2

o=1,2

o=1

o=2

o=1

o=1,2

a

o=1,2

*
α

k

Fig. 1. Illustration of the eval algorithm, which proceeds through a fixed policy graph
from the left to the right, evaluating the reward acquired by starting from a certain
node. The graph that eval operates on is constructed by Algorithm 1, adding one layer
to the left end in each iteration and creating nodes into it using the backup algorithm.

the candidate with the highest value as the link for this action-observation pair.
Having processed all observations for action a, we compute the value given by
a for the original belief b: it is the sum of immediate rewards for this belief-
action pair, and values given by the links chosen above for observation of this
a, which are weighted by observation probabilities and by the discount factor. If
this value is the best found so far, action a (along with the associated links for
each observation from a) replaces the previous best action.

3.1 Equations and Approximations

We keep the belief values always in a fully factored form b(s) =
∏

i b(si). We
maintain an exact lower bound for the value function in the form of the policy
graph. However, when using the graph for belief value evaluation, there are three
operations that can potentially break the fully factored form of beliefs. For each
of these operations we find a fully factorized approximation (sometimes called a
mean-field approximation).

We approximate the transition from the current belief to the next without
observation conditioning with Equation 3. Let state variable si have K parents
out of all N state variables; denote them Parents(s′i) = s1, . . . , sK . It is easy
to show that when we want to approximate the posterior distribution of sev-
eral state variables by a fully factored form, the best approximation minimizing
KL divergence from the real posterior is simply the product of marginals of
the real posterior; for our model each marginal depends on the parents of the

Efficient Policy Graph Based Planning in Large Factorized POMDPs 9

Algorithm 3 Backup operation α = backup(b, G, P, R)

1: Input: belief b for which an improved policy is wanted, policy graph G, Markov
model P , reward function R

2: Output: policy graph node α corresponding to an improved policy for b
3: Initialize the value of the improved policy to Vmax = −∞.
4: Compute posterior belief ba,o (having values b(s′|a, o, b)) for all actions a and ob-

servations o
5: for all a do
6: for all o do
7: for candidate link target nodes α̃ ∈ Gn−1 do
8: compute value V (ba,o, α̃) = eval(α̃, ba,o, Gn−1,...,1, P, R)
9: end for

10: choose the link target as the best candidate, α̂a,o = arg maxα̃ V (ba,o, α̃)
11: end for
12: Compute value of this action a, V = R(b) + γ

P

o P (o|b, a)V (ba,o, α̂a,o)
13: if V > Vmax then
14: This action becomes the best candidate so far, Vmax = V
15: Set the new node to use this action and its associated link targets,

α = (a, (α̂a,o : ∀o ∈ O))
16: end if
17: end for

corresponding variable. The approximation is

ba(s′i) = b′(s′i|b, a) =
∑

s1

b(s1) · · ·
∑

sK

b(sK)P (s′i|s1, . . . , sK , a) . (3)

This approximation minimizes KL divergence from the real posterior belief
ba(s′) to the factorized approximation

∏

i ba(s′i), where ba(s′) = b′(s′|b, a) =
∑

s1,...,sN
(
∏

i P (s′i|Parents(s′i), a)) b(s1) . . . b(sN) . We next approximate the con-
ditioning of the above approximated belief on an observation, with Equation 4.
Let observation o have L parents out of N state variables, call them Parents(o) =
s′1, . . . , s

′

L. We minimize KL divergence to a factored approximation
∏

i ba,o(s′i);
we set the gradient of the divergence with respect to each factor (distribution)
to zero, which yields the distribution

ba,o(s′i) =
1

p(o|b, a)

∑

s′

1

ba(s′1) · · ·
∑

s′

i−1

ba(s′i−1)

∑

s′

i+1

ba(s′i+1) · · ·
∑

s′

L

ba(s′L)P (o|s′1, . . . , s
′

L, a) , (4)

where p(o|b, a) =
∑

s′

1
ba(s′1) · · ·

∑

s′

L
ba(s′L)P (o|s′1, . . . , s

′

L, a). The approxima-

tions in Equations 3 and 4 are used in [14] for inference in Bayesian networks.
We also update the path probability (used in Algorithm 2) for each path

arriving at a node αk from a node αc, associated with a belief bc, an action ac

and an observation oc,k:

p(c, c → k) = pcp(oc,k|ac, bc) (5)

10 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

When multiple beliefs “arrive” at a node αk from previous nodes αc (see Algo-

rithm 2 for details), the belief at αk is a sum
∑

c(p(c, c → k)/pk)
∏N

i=1
b
ac,oc,k
c (si)

where pk is the path probability at αk; this belief is approximated as a factored
form

∏N
i=1

bk(si) using Equation 6; minimizing KL divergence (by again setting
the gradient with respect to each discrete distribution to zero) we have

bk(si) =
∑

c

(p(c, c → k)/pk)b
ac,oc,k

c (si) , (6)

where pk =
∑

c p(c, c → k).
The reward at the α nodes can be calculated exactly using Equation 7:

R(b, a) =
∑

s1

b(s1) · · ·
∑

sN

b(sN)R(s1, . . . , sN , a) . (7)

Note that the approximation error in FBVP can reduce further into the policy
graph, with a rate depending on several factors; see [12] for analysis. The value
function is a convex piecewise linear function [1] corresponding to the policy
graph; beliefs that share the same optimal linear function, i.e. same optimal
policy graph node, are more likely to be “near” each other in the belief simplex.
Thus the error in the approximation in Equation 6 is usually small, because
beliefs in the approximated sum are usually similar.

3.2 Pruning

In the worst case, in iteration t each belief is evaluated O(|A||O||Gt−1 |) times,
where |Gt−1| is the number of policy graph nodes in layer t − 1; for each belief,

the maximum number of calls to Equations 3, 6, and 7 is O(
∑t−1

i=1
|Gi|) and

O(|O|
∑t−1

i=1
|Gi|) for Equation 4. The algorithm has polynomial complexity with

respect to the number of state variables and to the horizon (maximum plan-ahead
depth) and scales well to large state spaces, but evaluating the whole belief tree
yields significant computational overhead. When the number of α nodes is large,
the backup algorithm (see Algorithm 3) dominates. To eliminate a part of policy
graph evaluation we compute an approximate upper bound for the value at each
graph node. This bound is used to compute maximum values during policy graph
evaluation. Evaluation can be stopped if the value accumulated so far, added to
the maximum value possible, is smaller than the best found solution’s value.

The requirements for a policy graph node upper bound are: it should not
underestimate the value of a node, should be tight, fast to evaluate, and to a
lesser extent fast to compute.

Each of our policy graph nodes would, in a traditional approach [3], corre-
spond to a vector, whose dot product with a belief, would yield the value for
the belief. Because of the state space size, we use a sum of linear functions of
individual state variables as an approximation. Then Bv = V , where B is the
matrix of beliefs in factored form for which we have computed values V and v is
a vector of concatenated linear state variable functions. Each row of the matrix

Efficient Policy Graph Based Planning in Large Factorized POMDPs 11

B has the probabilities of the single state variables concatenated. The approxi-
mation is not exponential in the number of state variables and is tractable. To
guarantee v does not underestimate the value, all extreme points of the beliefs
would have to be added to B. But as the number of extreme points equals the
size of the state space, we calculate additional values for a randomly selected set
of beliefs, with individual belief component values set to unity.

In order to find a tight bound we can reformulate the problem as v
T BT Bv−

V T BT
v = ǫ, Bv ≥ V and find the v that minimizes ǫ using quadratic pro-

gramming or fit v using least squares. The quadratic programming approach is
possible in many problems, because the individual state variables can be very
small. For example in the computer network problem (see Section 4 for more
details) there are 16 computers each having a binary state variable.

We either compute a fit with least squares or a bound with quadratic pro-
gramming (with a time limit), and then use cross-validation to estimate the
maximum error of the bound and add that to the bound to ensure optimal ac-
tions for the current belief set are not pruned. The procedure does not guarantee
an exact bound for future belief sets but performed well in the experiments; we
used 5-fold cross-validation and quadratic programming to compute the bounds.

A further optimization can be done by observation ordering. The value for an
action is the sum of the immediate reward for the belief and the values for the
beliefs projected for each observation. When we have accumulated the sum of the
immediate reward and the rewards for part of the observations, the remaining
observations must produce at least a “minimum” value that is greater than the
best found action value so far, minus the accumulated value, in order for the
current action to exceed previous actions. As we can compute maximum values
for policy graph nodes, we can use the probability of the observation under
consideration, the required “minimum” value, and the maximum values for the
remaining observations to compute the smallest possible value for an observation
that can make the current action exceed previous actions. If the observation does
not reach this smallest possible value during value evaluation, the action under
consideration can be pruned. By ordering projected beliefs according to their
observation probability (see line 6 of Algorithm 3) this early stopping can be
made more likely and the effectiveness of the upper bound pruning increased.

4 Experiments

We compare our method against four others on several benchmark problems.
We next describe the comparison methods, benchmark problems, and results.

4.1 Comparison Methods

We use the following POMDP algorithms as comparison methods:

1. Perseus 3 iteratively improves a value function lower bound processing a
fixed set of belief samples in random order. The proposed method FBVP

3 Code available at http://staff.science.uva.nl/~mtjspaan/software/approx/

12 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

resembles Perseus in that it also samples a fixed set of beliefs and then
improves the value lower bound for each belief.

2. HSVI2 4 maintains both an upper and lower bound on the value function. In
contrast to Perseus it generates beliefs during training and applies a depth-
first type of search, while Perseus uses a breadth-first type of search.

3. Symbolic Perseus 5 is a version of Perseus that uses abstract decision dia-
grams (ADDs) for representing the POMDP data structures and is config-
ured in factored form. It uses a mean-field approximation on the beliefs in
Bellman backups and cuts of non-significant ADD leafs. Symbolic Perseus
has been applied on POMDP problems with millions of states [17].

4. In truncated Krylov iteration [5] the POMDP problem is compressed into
a linear approximation with smaller dimension than the original problem
and a policy is found by using a (slightly modified) standard POMDP solver
with the compressed problem. We use Perseus [3] as the POMDP solver.
For factored problems the problem structure can potentially be exploited
to perform Krylov iteration efficiently. We have a generic truncated Krylov
iteration implementation using ADD data structures as suggested in [5] to
provide a fair comparison. In our implementation the basis vectors are stored
as sums of products of state variable functions. With this implementation
we were able to compute compressions even for the largest problems.

4.2 POMDP Problems

We use two traditional benchmarks: RockSample [4] (a rover moves on a grid and
tries to sample rocks that are “good”; e.g. RS(5,15) denotes a 5×5 field with 15
rocks) and Computer Network (computers are up or down and administrators
can ping or reboot them; included with Symbolic Perseus software; e.g. CN(16)
denotes 16 computers). In RockSample, the rover’s position is deterministic; we
introduce a new Uncertain RockSample problem, where the rover stays at the
same location (except when moving to a terminal state) with 0.05 probability,
when it should move. The uncertain location makes the problem harder. E.g.
URS(5,15) again denotes a 5 × 5 field with 15 rocks.

We also present a new benchmark problem for POMDPs which we call Spec-

trum Access (SA).6 It is motivated by real-life needs of growing wireless com-
munication: the number of devices communicating over wireless connections is
growing, and ever more data is transmitted due to e.g. increasing video com-
munication. To avoid congestion over the limited amount of available spectrum,
it is important to allocate resources over the spectrum efficiently; here a cog-
nitive radio [18] must predict when a radio channel will be free of traffic, and
use such “time slots” for communication but avoid access conflicts with existing
(primary) users of the channels. Each channel evolves according to a 15-state
Markov model estimated from simulated data; it describes packet burst lengths,

4 Software available from http://www.cs.cmu.edu/~trey/zmdp/
5 Software available from http://www.cs.uwaterloo.ca/~ppoupart/software.html
6 See SA and URS specifications at www.cis.hut.fi/jpajarin/pomdp/problems/

Efficient Policy Graph Based Planning in Large Factorized POMDPs 13

pauses etc. The cognitive radio device can only sense three channels at a time
and transmit on one at each step. Observations tell if a channel is busy/idle but
not the exact channel state (burst type etc.). Rewards are given for successful
transmissions penalties for using energy for listening (−0.01 per channel) and
strong penalties for access conflicts. E.g. SA(4) denotes four radio channels.

5 Results and Discussion

Table 1 shows discounted expected rewards for all the problems and algorithms
tested. The discount factor was 0.95. In the classic RockSample (RS) problem,
because of time constaints, algorithms were run for two days and in the other
problems for three days. Part of the algorithms converged on some of the prob-
lems before maximum running time. The algorithms were initialized using their
default initialization and FBVP was initialized with zero valued initial values for
all problems. In spectrum access 3000 beliefs were used and 10000 in the other
problems for Perseus, FBVP, and Symbolic Perseus. If an algorithm ran out of
memory, then the intermediate policy output (if any) was used for evaluation.
Evaluation was run for 500 runs of 60 steps. The methods were evaluated using
their default evaluation method. Symbolic Perseus and FBVP were evaluated
by following their policy graphs after belief evaluation, and Perseus, HSVI, and
truncated Krylov iteration with Perseus were evaluated by using the computed
value vectors.

Each maximum time experiment was run on one core of a “AMD Opteron
2435” processor with 8GB allocated memory. In only few cases such as Symbolic
Perseus in the 16-machine computer network problem, all 8GB was needed.

Perseus and HSVI performed best in the smallest RS problem, but FBVP
was very close to them. In the other RS problems Perseus and HSVI could
not be configured. Truncated Krylov iteration together with Perseus did not
perform well in any of the RS problems. In the 15-rock RS problem Symbolic
Perseus achieved best results. Symbolic Perseus seems to be able to exploit the
deterministic location of the rover using its ADD data structures. In the largest
RS problems only FBVP had good results.

In the Computer Network (CN) problems we were not able to reproduce
the results of Poupart et al. reported in [5] with our truncated Krylov iteration
with Perseus implementation. This can be due to truncated Krylov iteration
selecting basis vectors using an Euclidean metric. At what point the exact L1-
normalization of basis vectors suggested in [5] is done in the truncated Krylov
iteration algorithm may change the order of basis vectors added to the compres-
sion matrix. Also, even if the required adding of a constant to rewards does not
change the optimal policy for the objective function, it changes the Euclidean
distance between vectors. We used the results from [5] as an additional com-
parison and ran additional evaluation for Symbolic Perseus and FBVP for the
reported running times. Note that the running times are not directly compara-
ble. For the full training time Symbolic Perseus gave a policy that was very slow
to evaluate and thus was limited to 276 evaluation runs.

14 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

In the CN problems Perseus and HSVI could not be configured due to size of
the POMDP configurations. For the 16-machine problem FBVP and Symbolic
Perseus gave better results than truncated Krylov iteration with Perseus. For
the shorter training times Symbolic Perseus was better than FBVP and for the
longer training times at the same level. In the 25-machine problem Symbolic
Perseus ran out of memory and FBVP performed best.

In the smallest Uncertain RockSample (URS) problem Perseus and HSVI
could be configured and trained successfully. All five methods got discounted
rewards that were roughly at the same level. The second smallest URS problem
had hundreds of thousands of states and FBVP performed best. Most likely the
uncertain location of the rover makes the abstract decision diagram presentation
in Symbolic Perseus less efficient than in the original RS problem of same size.
For the two largest URS problems only FBVP had acceptable results. Symbolic
Perseus ran out of memory in these problems. Truncated Krylov iteration with
Perseus did not produce good results.

In the four channel Spectrum Access (SA) problem Perseus ran out of mem-
ory before actual training, but HSVI could be configured and trained for a while
before memory ran out. FBVP and Symbolic Perseus had the best results. Trun-
cated Krylov iteration with Perseus and HSVI had results that were not bad for
such a big problem. In this problem truncated Krylov iteration was able to pro-
duce a compression close to a lossless compression in 1000 dimensions, when the
original state space had 50625 dimensions. Only FBVP got good performance
in the eight channel SA problem. Perseus, HSVI, and Symbolic Perseus did not
yield any policy, and the reward obtained by truncated Krylov iteration with
Perseus was much lower than that of FBVP.

6 Conclusions

We have presented a novel efficient POMDP algorithm policy graph based com-
putation with factorized approximations and bounding. The approximations and
policy graph approach ensure polynomial complexity with respect to number of
state variables and look ahead depth. The results show that our algorithm, called
Factorized Belief Value Projection (FBVP), scales well to very large problems
and produces adequate rewards for smaller problems compared to algorithms
that do not employ similar approximations. FBVP does not require a domain
expert for specific tasks such as grouping state variables.

In the future it may be interesting to extend FBVP to problems where using
the policy graph as the only value function representation can be inherently
advantageous such as for POMDPs with unknown transition probabilities [16].
The effect of pruning and observation ordering also needs further study.

Acknowledgments JoP belongs to AIRC; JaP to AIRC and HIIT. The work
was supported by TEKES, PASCAL2, and Academy of Finland decision 123983.

Efficient Policy Graph Based Planning in Large Factorized POMDPs 15

References

1. Sondik, E.J.: The optimal control of partially observable Markov processes over
the infinite horizon: Discounted costs. Operations Research 26(2) (1978) 282–304

2. Cassandra, A.R.: A Survey of POMDP Applications. Technical report, Austin,
USA (1998) Presented at the AAAI Fall Symposium 1998.

3. Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research 24 (2005) 195–220

4. Smith, T., Simmons, R.: Point-Based POMDP Algorithms: Improved Analysis
and Implementation. In: Twenty-First Annual Conf. on Uncertainty in Artif. Int.,
Arlington, Virginia, AUAI Press (2005) 542–549

5. Poupart, P.: Exploiting structure to efficiently solve large scale partially observable
Markov decision processes. PhD thesis, Univ. of Toronto, Toronto, Canada (2005)

6. Pajarinen, J., Peltonen, J., Uusitalo, M.A., Hottinen, A.: Latent state models of
primary user behavior for opportunistic spectrum access. In: 20th Intl. Symposium
on Personal, Indoor and Mobile Radio Communications, IEEE (2009) 1267–1271

7. Zhao, Q., Tong, L., Swami, A., Chen, Y.: Decentralized cognitive MAC for oppor-
tunistic spectrum access in ad hoc networks: A POMDP framework. IEEE J. Sel.
Areas Commun. 25(3) (Apr 2007) 589–600

8. Boutilier, C., Poole, D.: Computing optimal policies for partially observable de-
cision processes using compact representations. In: Thirteenth National Conf. on
Artif. Int., Menlo Park, CA, The AAAI Press (1996) 1168–1175

9. Cassandra, A., Littman, M., Zhang, N.: Incremental pruning: a simple, fast, exact
method for partially observable Markov decision processes. In: 13th Annual Conf.
on Uncertainty in Artif. Int., San Francisco, CA, Morgan Kaufmann (1997) 54–61

10. Poupart, P., Boutilier, C.: Value-directed compression of POMDPs. In S. Becker,
S.T., Obermayer, K., eds.: Advances in Neural Information Processing Systems.
Volume 15., Cambridge, MA, MIT Press (2003) 1547–1554

11. Li, X., Cheung, W., Liu, J., Wu, Z.: A novel orthogonal NMF-based belief compres-
sion for POMDPs. In Ghahramani, Z., ed.: 24th Annual International Conference
on Machine Learning, Omnipress (2007) 537–544

12. Boyen, X., Koller, D.: Tractable inference for complex stochastic processes. In:
Fourteenth Annual Conf. on Uncertainty in Artif. Int., San Francisco, CA, Morgan
Kaufmann (1998) 33–42

13. McAllester, D., Singh, S.: Approximate planning for factored POMDPs using belief
state simplification. In: Fifteenth Annual Conf. on Uncertainty in Artif. Int., San
Francisco, CA, Morgan Kaufmann (1999) 409–417

14. Murphy, K., Weiss, Y.: The factored frontier algorithm for approximate inference in
DBNs. In: Seventeenth Annual Conf. on Uncertainty in Artif. Int., San Francisco,
CA, Morgan Kaufmann (2001) 378–385

15. Paquet, S., Tobin, L., Chaib-draa, B.: An online POMDP algorithm for com-
plex multiagent environments. In: Fourth International Joint Conference on Au-
tonomous Agents and Multiagent systems, NY, USA, ACM (2005) 970–977

16. Poupart, P., Vlassis, N.: Model-based Bayesian reinforcement learning in partially
observable domains. In: Tenth Intl. Symp. on Artif. Intelligence and Math. (2008)

17. Boger, J., Poupart, P., Hoey, J., Boutilier, C., Fernie, G., Mihailidis, A.: A decision-
theoretic approach to task assistance for persons with dementia. In: Nineteenth
Intl. Joint Conf. on Artif. Int. Volume 19. (2005) 1293–1299

18. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J.
Sel. Areas Commun. 23 (2005) 201–220

16 J. Pajarinen, J. Peltonen, A. Hottinen, and M. A. Uusitalo

Table 1. Performance of selected POMDP algorithms.

Problem (states Reward Time
/actions/obs.)

RS(5,5) (801s 10a 2o)
Perseus 19.05 2days
HSVI2 19.05 converged
SymbolicPerseus 17.78 2days
Tr.Kry.+Perseus 7.02 2days
FBVP 18.67 2days

RS(5,15) (819201s 20a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus 31.66 2days
Tr.Kry.+Perseus −14.81 2days
FBVP 24.29 2days

RS(5,20) (26214401s 25a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus. −20.70 2days
FBVP 23.89 2days

RS(6,25) (∼ 1.2Gs 30a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus 0.00 2days
FBVP 18.05 2days

CN(16) (216s 33a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus 107.98 12658sec
SymbolicPerseus 108.14 3days
Tr.Kry.+Perseus 103.6 [Poupart05]
Tr.Kry.+Perseus 88.84 3days
FBVP 105.97 12658sec
FBVP 109.05 3days

CN(25) (225s 51a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus 148 [Poupart05]
Tr.Kry.+Perseus 136.69 3days
FBVP 152.01 8574sec
FBVP 154.66 3days

Problem (states Reward Time
/actions/obs.)

URS(5,5) (801s 10a 2o)
Perseus 16.25 3days
HSVI2 16.43 out of mem
SymbolicPerseus 15.47 3days
Tr.Kry.+Perseus 16.73 3days
FBVP 15.64 3days

URS(5,15) (819201s 20a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus 13.21 3days
Tr.Kry.+Perseus −8.37 3days
FBVP 21.15 3days

URS(5,20) (26214401s 25a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus 2.25 3days
FBVP 18.55 3days

URS(6,25) (∼ 1.2Gs 30a 2o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus 0.00 3days
FBVP 19.22 3days

SA(4) (154s 9a 8o)
Perseus - out of mem
HSVI2 13.71 out of mem
SymbolicPerseus 14.19 3days
Tr.Kry.+Perseus 13.14 3days
FBVP 14.52 3days

SA(8) (158s 25a 8o)
Perseus - config. fail
HSVI2 - config. fail
SymbolicPerseus - out of mem
Tr.Kry.+Perseus −43.07 3days
FBVP 13.86 3days

