
Fault tolerant machine learning for nanoscale cognitive

radio I,II

Joni Pajarinena,∗, Jaakko Peltonena, Mikko A. Uusitalob

aHelsinki University of Technology, Department of Information and Computer Science,

P.O.Box 5400, FI-02015 TKK, Finland
bNokia Research Center, P.O.Box 407, FI-00045 NOKIA GROUP, Finland

Abstract

We introduce a machine learning based classifier that identifies free radio chan-
nels for cognitive radio. The architecture is designed for nanoscale implementa-
tion, under nanoscale implementation constraints; we do not describe all phys-
ical details but believe future physical implementation to be feasible. The sys-
tem uses analog computation and consists of cyclostationary feature extraction
and a radial basis function network for classification. We describe a model
for nanoscale faults in the system, and simulate experimental performance and
fault tolerance in recognizing WLAN signals, under different levels of noise and
computational errors. The system performs well under expected non-ideal man-
ufacturing and operating conditions.

Keywords: radial basis function network, nanotechnology, cognitive radio,
fault tolerance, nanoelectronics

1. Introduction

We discuss hardware implementation of machine learning in a new, challeng-
ing hardware platform: nanotechnology-based computing devices or nanocom-

puting. We give a partially abstract implementation of a device and analyze its
pattern recognition performance and tolerance to physical errors.

The goal of nanocomputing is to be able to build devices with high compu-
tational speed, low power requirements and small device size. Nanocomputing
research is at a stage of rapid development at the component level, with ongoing

IThis work was supported by the Finnish Funding Agency for Technology and Innovation
(TEKES). J. Peltonen and J. Pajarinen belong to the Adaptive Informatics Research Centre,
a centre of excellence of the Academy of Finland. J. Peltonen also belongs to Helsinki Institute
for Information Technology HIIT.

IIAll authors had equal contributions.
∗Corresponding author
Email addresses: Joni.Pajarinen@tkk.fi (Joni Pajarinen), Jaakko.Peltonen@tkk.fi

(Jaakko Peltonen), Mikko.A.Uusitalo@nokia.com (Mikko A. Uusitalo)

Preprint submitted to Neurocomputing December 23, 2009

attempts to bridge the gap to architecture level. Existing information on ways
to combine possible hardware components is limited: actual physical implemen-
tation is mostly at the level of elementary components, and complicated device
architectures are largely theoretical. The challenge in making complicated ar-
chitectures is that components are stochastic and manufacturing is prone to
errors. Proposed computation devices must work successfully with noise and
error-prone computation.

We suggest that machine learning based computation can satisfy the require-
ments of noise and error tolerance. We give a machine learning based hardware
solution for a specific, special-purpose nanocomputing device. Physical research
into computing elements is still ongoing, so our solution is at a partially abstract
level, but it is detailed enough to evaluate its potential and guide physical re-
search.

We propose a machine learning-based nanocomputing solution to a widely
researched wireless communication application: cognitive radio [19], meaning a
radio that adjusts its behavior based on sensing its radio environment, so that
many radios can efficiently share limited radio spectrum resources. We address a
crucial subtask of cognitive radio: identifying at each moment the best available
frequencies (radio channels) for wireless communication. This spectrum sensing
application is ideal for nanotechnology implementation because intensive com-
putation is needed: without nanocomputing it might be infeasible to implement

sensing and analysis for cognitive radio in a single device, and complicated dis-
tributed processing schemes would be needed. Moreover, machine learning is
a suitable approach for this cognitive radio task: identifying free frequencies is
essentially a pattern recognition problem. To our knowledge our paper is the

first with results on a nanoscale implementation proposal for cognitive radio.

This paper extends our conference paper [33]; the main changes in this jour-
nal version are an improved architecture, a more detailed error model, a slightly
more realistic test setup, more extensive analyses of error tolerance, and more
method comparisons.

The rest of the paper is structured as follows: Section 1.1 outlines our contri-
butions, Section 2 provides background information on nanotechnology, cogni-
tive radio, and fault tolerance in selected machine learning algorithms. Section
3 describes the machine learning based cognitive radio system; Section 4 then
describes the model used to simulate physical faults occurring in the system
and describes how to optimize the system to tolerate the faults. In Section 5
the good performance of the system is experimentally demonstrated. Section 6
concludes the paper.

1.1. Contributions of this paper

There are a large number of challenges for designing a nanoscale imple-
mentation for a cognitive radio device. Interfacing nanotechnology and non-
nanotechnology parts should be kept at a minimum. The amount of external
power brought into the nanoscale device (and the number of places where ex-
ternal power is used) should also be kept at a minimum. Moreover, the number
of components and connections should be kept at a minimum in order to design

2

a device that can feasibly be created in the near future. There are also many
challenges in the physical details of how to realize nanocomponents. In this
paper we discuss the details of physical component implementations only to a
small extent because the current level of physical research has not solved the
detail questions yet; instead we give answers to design level challenges discussed
above.

To design a nanoscale system such that it will be possible to implement the
system in the near future, we focus on relatively simple machine learning models,
here radial basis function networks. Our focus is on how well such systems will
perform in nanoscale with specific faults caused by nanoscale technology.

Our focus is on passive analog nanocomponent circuits, which is a different
setting than the previously studied hardware implementations of machine learn-
ing methods. There are significant differences between a traditional hardware
(analog) implementation and an implementation with nanoscale components.
In nanoscale thermal noise becomes pronounced, inefficiencies in manufacturing
methods cause broken wires more frequently, and new fault types such as dis-
placed wires (see Section 4 for details) can occur. Additionally, in nanoscale,
digital implementations may be more difficult to realize than in traditional hard-
ware designs.

Our application is on nanoscale spectrum sensing, a direction which has been
made promising by recent research on new kinds of nanoscale sensors. It is espe-
cially promising to combine nanoscale spectrum sensing with passive nanoscale
analog circuits: a nanoscale passive design driven by the power in the incoming

signals could be very competitive, as one would not need to bring power to every

node separately. The differences between traditional and nanoscale implemen-
tations, advantages of analog nanoscale implementations, and recent research
on passive analog nanoscale sensors will be discussed in the nanotechnology
background Section 2.1.

Our focus is not on the physical implementation of the individual nanoscale
components of our system. Although we do not present new nanocomponents
for our device design, there is research on nanocomponents, which are similar to
the ones our device design requires. In Section 3.5 we discuss this background
work and its relationship to the proposed system.

From the cognitive radio perspective, this paper is a small but significant step
towards realizing nanotechnology based hardware to do sensing and analysis of
radio environment over a GHz range bandwidth in an energy efficient way on a
single handheld device, like a mobile phone. Cognitive radio implemented with

conventional electronics could easily drain too much power for a single handheld

device. Nanotechnology has been proposed [19] as a potential field that could
help realize machine learning algorithms for cognitive radio. However, to our
knowledge this is the first paper to take concrete steps towards that direction.

One of our particular interests is the fault tolerance of our cognitive ra-
dio nanodevice. Our solution is based on machine learning algorithms which
themselves can be error and fault tolerant. We do not give a detailed physical
implementation of our solution, but instead give an abstract level implementa-
tion and analyze its performance with respect to input noise and computation

3

errors. However, the error model is based on the assumed nanoscale implemen-
tation. Compared to previous analyses of fault tolerance in machine learning,

our novelties are our focus on nanocomputing errors, our feature extraction and

classification architecture, and our cognitive radio application. Experiments in
Section 5 show that our analog, machine learning based approach yields good
tolerance to physical errors.

We stress that our novelty is not the basic use of a machine learning solu-
tion for cognitive radio, but the use of a machine learning based solution with a
nanoscale architecture and analysis of its performance; this is a previously un-
explored direction that could provide crucial benefits in power efficiency. Our
current paper sets the design level framework based on which physical research
can be carried out in the future.

2. Background

In this section we briefly describe three central topics of our paper: nan-
otechnology, cognitive radio, and fault tolerance in selected machine learning
algorithms.

2.1. Nanotechnology

Nanotechnology tools allow manipulation of matter at the scale of 1 to 100
nm, yielding materials like graphene [18] for fast electronics and technologies
like piezoresponse force microscopy for measuring nano-scale structures [45].
Nanocomputing is a major attraction of nanotechnology since small scale elec-
tronic components have many advantages: large numbers of components can
be packed on a small device, components can operate faster due to smaller
inter-component distances, and less power is needed at smaller scales. Current
state of the art is largely at the level of manufacturing and analyzing individual
components like nanowires; simple structures like a small group of connected
transistors or a crossing mesh of nanowires [23] have been realized, but larger
architectures are at the level of theoretical proposals or at best abstract simula-
tions, like [25]. There is much uncertainty about how useful different nanocom-
puting approaches will be and how soon their potential is realized; for the near
future, manufacturing difficulties will severely constrain feasibility and perfor-
mance of most approaches. The ease of manufacturing the devices and the ease
of programming them must both be considered in device design.

As described in a recent review [32], nanotechnology enables new kinds of
components, such as carbon based field effect transistors (FETs), spintronic
FETs, molecular FETs, or magnetic logic elements, which are not part of tradi-
tional hardware designs. Such new components could make new computational
principles and architectures competitive. In nanocomputing the fundamental
computing approach can differ from traditional CMOS (complementary metal
oxide silicon) based Boolean logic and transistors. Although that approach is
most familiar to current chipmakers, it may not be the most efficient way to
assemble complicated computing from novel nanoscale components that have

4

special characteristics such as nanoscale faults. In this paper the solution is not
based on Boolean logic but instead on analog computing.

For nanoscale spectrum sensing it could be too challenging, inefficient, and
too energy consuming to convert analog signals from every nanosensor into a
digital one [32]. A more efficient solution could be to integrate analog processing
with the sensors to compress the information for potential transfer to digital
world. In an analog implementation a single nanocomponent can be utilized to
produce functionality that in a digital design would require several components,
like in the case of a carbon nanotube based transistor radio [22]. Advancements
in nanotechnology create possibilities for harvesting energy for sensors [47]: we
expect that in the future, a passive design, driven by the power in incoming
signals, can be implemented using nanocomponents.

Nanoscale faults can occur in nanocomputing devices due to causes like
stochasticity in physical component placement or thermal noise affecting elec-
tric potentials in nanowires. To combat nanoscale faults, we suggest that the
first complicated nanodevices should not be general purpose computers, rather,
they should implement specific algorithms for real-life applications: specific de-
vices are easier to make because critical parts of the computation can be better
identified and taken into account in the device design.

2.2. Cognitive radio

Increasing wireless communications require new solutions to allow a maximal
number of users on the same set of radio channels and avoid “congestion”. In
current communication types such as Wireless Local Area Network (WLAN),
there are naturally occurring communication pauses on each channel due to
communication protocols and user behavior; therefore, congestion could be re-
duced if each communicating device could exploit such pauses by analyzing at
each moment its radio environment and finding a suitable free channel. Such
intelligent communication is called cognitive radio [28, 19, 1].

In this paper we consider a crucial subtask of operating a cognitive radio:
detecting which radio channels have signal activity. This detection task is at
simplest a classification problem: feature extraction is applied to a time series
of incoming radio signal, and each channel is classified “occupied” if a signal
is present and “free” otherwise. Prior work on applying machine learning to
signal detection includes neural networks for classifying signals and signal types
[15, 3]. Support vector machines have also been used to classify signals [16, 4].
The cyclostationary input features used in [15, 4] will be discussed in Section
3.1.

Doing analysis and classification for a wide range of channels needs intensive
computation: cognitive radio implemented with conventional electronics could

easily drain too much power for a single handheld device. One solution could
be dividing computation among many devices. We study another approach:
performing the classification with nanocomputing, which could operate with
less power than conventional electronics and could allow integration of cognitive
radio into a single handheld device.

5

2.3. Fault tolerance

Implementation of neural networks with conventional hardware and the fault
tolerance of such implementations have been widely studied. Fault types studied
previously include so-called stuck-at faults where neuron output or weights are
fixed at a certain level (see e.g. [40, 11, 39]), multi-node stuck-at faults [49, 26],
and noise on a neural network’s parameters [29, 30, 14].

One of the earlier observations has been that neural networks are not in-
herently fault tolerant, but can be adjusted to tolerate faults [40, 39, 5]. In
[39] injecting stuck-at faults into a neural network during training improved
tolerance against both trained faults and faults the network was not trained for.
Similarly, in [29] injecting synaptic noise into a neural network during training
improved generalization and fault tolerance. In [34] it is shown that if there
is enough redundancy in the network, then fault tolerance can contribute to
generalization ability and vice versa.

Basic approaches for mitigating the effects of faults are the addition of re-
dundant hidden nodes to a network [49, 35, 44, 13] and restricting parameter
diversity; in [9] the weights in a neural network layer, influenced by stuck-at-
faults, are redistributed as close to the average absolute value as possible.

Fault tolerance of radial basis function (RBF) networks has been analyzed
statistically [26] and methods to identify critical parts of the network have been
presented [14, 13]. In [26] Kullback-Leibler divergence is used to measure the
difference between a desired output function and the output of a faulty RBF
network with multi-node stuck-at faults, which turns out to correspond to a
standard objective function plus a regularization term. In [42] it is shown that
when injecting multi-node stuck-at faults during training, the objective function
is identical to the one proposed in [26]. It has been proven in [21] that pure
injection of weight noise does not improve the fault tolerance of a RBF network.

In [13] a method to identify critical parts of a radial basis function network
is presented, which allows pruning of neurons with low performance impact and
targeted adding of neurons to increase fault tolerance. In [14] it is shown that
physical limits of implemented radial basis function networks allow upper bound
to be derived for output errors even when inputs and parameters are noisy.

Our proposed nanoscale system needs tolerance against noise and against
broken or displaced elements. Our system includes a radial basis function net-
work; analyzing its fault tolerance requires extension for a new kind of nanoscale
fault. We describe our system in Section 3 and our error model in Section 4.

3. Proposed system

In this section we describe, at a partially abstract level, a machine learning
system suitable for nanotechnology implementation, which performs channel
detection for cognitive radio: it classifies each radio channel as “free” or “occu-
pied”. We first describe the system as it would optimally operate; in Section 4
we then describe a model for faults occurring during manufacturing and opera-
tion, and how to train the system to tolerate the faults. Parameter values, fault

6

probabilities etc. are based on our best knowledge, to be confirmed in further
work.

We use cyclostationary [17] properties of radio signals to identify whether
each channel is occupied. For each radio channel, the system consists of two
main parts. The incoming radio signal is given to a cyclostationary feature

extraction system. The extracted cyclostationary features are then used for
classifying the status of the radio channel by a classical radial basis function

network (RBF network). Compared to other approaches that use cyclostation-
ary features as input to a machine learning classifier [15, 24, 4] our approach
differs in the classification method and in the exact input features as explained
in Section 3.1. Fig. 1 shows an overview of the system.

x t() C
x

α
{ }

α

signal
radio

extraction

cyclo−

feature
stationary

profile
alpha

classifier
RBF y t()

Repeat for each channel

(is the channel
free?)

classification

Figure 1: Schematic of our cognitive radio system. For each radio channel, cyclostationary
feature extraction is applied to the radio signal, yielding an α-profile (feature vector); this is
given to a radial basis function network that classifies the current state of the channel (free
or occupied).

We use analog computation throughout the system: digital computation
would require nanotechnology solutions for digital number representation, ad-
dition, multiplication etc. which would lead to high architectural complexity.

Our general architecture applies to any cyclostationary signals, whereas an
architecture specific to a signal type may need redesign for each type. We choose
the parameters to detect signals in WLAN (IEEE 802.11a) channels, but the
device is also able to detect other cyclostationary signals present in the channels.

We next describe the cyclostationary feature extraction system in Section
3.1 and the radial basis function network in Section 3.3.

3.1. Cyclostationary feature extraction

We use cyclostationary [17] signal analysis to perform feature extraction;
cyclostationarity of radio signals is widely used in cognitive radio research [1].
Briefly, a signal is wide-sense cyclostationary if its time-varying autocorrelation
Rx(t, τ) is periodic with respect to time t, for all lags τ . WLAN 802.11a signals
and other Orthogonal Frequency Division Multiplexing (OFDM) signals [43]
have cyclostationary components.

Signals with cyclostationary properties can be characterized by spectral cor-
relations; our feature extraction system extracts such spectral correlations, and
then summarizes them with a smaller set of features. We describe the method
below, then discuss its potential nanoscale implementation in Section 3.2.

Our feature extraction system extracts the spectral correlations based on
the averaged cyclic periodogram method [7]. Spectral correlations Sα

x (f) are
correlations over time between two frequency components centered at f and

7

separated by cyclic frequency α. We estimate them by summation over T time
lags as follows:

Sα
x (f) =

1

T

T−1
∑

k=0

X(k)
(

f +
α

2

)

X(k)
(

f −
α

2

)

∗

(1)

where the X(k)(f) are delayed versions of the instantaneous Fourier components
of the signal, with delay given by k. In our simulations we estimate them by
Fourier transform of Hanning windowed signals, where the windowing corre-
sponds to the delays (see [7]), but in actual nanoscale implementation we would
instead use special sensors as discussed later in Section 3.2.

Instead of using the large set of spectral correlations directly as features, it
is useful to summarize them by a smaller set of features. In [4] a projection of
the spectral correlations

Cα
x = max

f
|Sα

x (f)| (2)

is introduced, which we use directly as summary input features to the classifier,
although it is usual to normalize features of this kind [15, 24, 4]. Leaving out
normalization improves tolerance to nanoscale faults and robustness to noise.
This design choice is discussed in more detail in experiments Section 5.2. Sim-
ulation results in Section 5.2 show that it is beneficial to use the proposed fea-
ture extraction method in (2) compared to normalized versions in the literature
[15, 4].

3.2. Implementation of the feature extraction

We propose the following partially abstract implementation for the cyclo-
stationary feature extraction system. The radio signal x(t) is received at a
nanoscale sensor bank having two kinds of frequency sensors. The bank con-
tains sensors in the frequency range 5-6 GHz, divided into 20MHz intervals cor-
responding to the interval of IEEE WLAN 802.11a channels; over each 20MHz
channel there are sensors for F = 240 different frequencies spaced ∆f = 83.3kHz
apart. (We chose F manually to minimize system complexity while retaining
performance.) One type of frequency sensor detects magnitude (square root
of power) of the signal at each frequency and outputs a voltage corresponding
to the magnitude, the other type of sensor detects the phase of the signal and
outputs a voltage corresponding to the phase. For each frequency, T = 248
sensors are used: their responses are delayed by different lags, which will allow
approximate computation of spectral correlations around each frequency. Fig.
2 illustrates the setup.

Absolute spectral correlations |Sα
x (f)| are next computed by the subsystem

in Fig. 3 (left). The set of absolute spectral correlations that we compute is
limited by the finite size of the frequency sensor bank, in a slightly complicated
fashion. Overall, we compute absolute spectral correlations for 2F − 3 values of

8

x t() x t() x t()

−0θ ()fZ

Repeat for each f

x t()

Z−0P ()f P ()
Z−(T−1) f θ

Z−(T−1) () f...

Figure 2: Frequency-sensitive sensor banks. The P
Z−k (f) sensors measure (square root of)

signal power at frequency f , with a time delay of length k in their response. The θ
Z−k (f)

sensors measure the corresponding signal phase.

f and A = F − 1 = 239 values of α, where F is the number of frequencies in
the sensor bank.1

Lastly the α-profile values Cα
x are computed by taking the maximum over

frequencies as in (2). Fig. 3 (right) shows the setup.

*

*

S αf(,)
RΣ

S αf(,)
I

f = f −
1

α/2

f()
α

xS | |

fRepeat for each , α

P ()−(T−1) fZ 2

cos

cos

P ()−(T−1) fZ 2
P ()−(T−1) fZ 2

 fZ 2
 ()θ −(T−1) f 1

θ
Z

−0θ ()
1Z f

P ()
Z 1−0 f

Z−0θ ()
2f

Z 2
P ()−0 f

.

..
.
..

...

f = f +
2

α/2

norm

P ()−(T−1) fZ 1

−(T−1) ()
f() S

α
x 1

| |

max
α

Cx

α
x

α

|
Ff(S)|

Repeat for each

...

Figure 3: Left: Computation of absolute spectral correlations |Sα
x (f)|. The asterisk denotes

multiplication, ‘cos’ denotes the cosine cos(θ1 − θ2) of the phase difference, Σ denotes sum-
mation, and ‘norm’ denotes Euclidean vector norm. Computation of SI(f, α) is omitted for
brevity: it is the same as SR(f, α) except cosines are replaced by sines. Right: Computation
of α-profile values Cα

x . For each α value the ‘max’ node computes the final α-profile value as
the maximum over different frequencies.

For actual analog implementation it is crucial that the computation only
involves real (not complex) numbers. Note that the absolute spectral corre-
lations are absolute values of (1), which involves complex Fourier coefficients.
However, we do not need the actual complex coeffients to compute the absolute
spectral correlations; the outputs of the magnitude and phase sensors suffice.
The computation in Fig. 3 (left) uses only real numbers. It is easy to show that
the result corresponds to absolute value of (1): simple algebraic manipulation

1Brief explanation: to compute Sα
x (f) by (1), the sensor bank must have sensors for the

frequencies f −α/2 and f + α/2, but f itself can be inbetween two sensors; this yields 2F − 3
possible values of f . If the sensor frequencies are equally spaced with intervals ∆f , then α
can take values ∆f, 2∆f, . . . , (F − 1)∆f , which yields A = F − 1 possible values for α.

9

of (1) yields Sα
x (f) = SR(f, α) + jSI(f, α) where j is the imaginary unit,

SR(f, α) =
1

T

T−1
∑

k=0

PZ−k(f1, f2) cos(θZ−k(f1) − θZ−k(f2)) ,

SI(f, α) =
1

T

T−1
∑

k=0

PZ−k(f1, f2) sin(θZ−k(f1) − θZ−k(f2)) ,

and we denote PZ−k(f1, f2) = PZ−k(f1)PZ−k (f2), f1 = f + α
2 , and f2 = f − α

2 .
These are real-valued computations. Therefore the absolute spectral correlation
is |Sα

x (f)| = (SR(α, f)2 +SI(α, f)2)1/2, which corresponds to the system in Fig.
3 (left).

Fig. 4 shows examples of α-profiles calculated with this method.

0 1
0

3.5

α/F
s

C
α x

0 1

0.4

α/F
s

C
α x

Figure 4: Example feature vectors extracted from a WLAN 802.11a signal. Fs is the width
of the channel (20MHz). Left: Signal-to-noise ratio (SNR) 0dB, right: SNR −20dB. Strong
signals yield spikes at the cyclic frequencies.

3.3. Classification

For each radio channel, we use a radial basis function (RBF) network to
classify the channel state at each moment (free or occupied). RBF networks
have been used in communication systems, for tasks such as equalization [6]
and signal enhancement [27].

Multilayer perceptrons [15] have been used for this kind of classification task.
The reason we use a RBF network instead of a multilayer perceptron is that
we feel that the technology of using Gaussian kernels could in future research
be adapted to more tasks than RBF networks only; therefore we believe that
research in RBF networks can be a useful stepping stone in nanotechnology de-
vices. Moreover, the wiring of a RBF network is simpler compared to multilayer
perceptrons [46].

Support vector machines [4] have also been used for this kind of classifica-
tion task. Our main motivation for using a RBF network instead of a support
vector machine is to keep the system simple, to make it feasible to implement
the system in nanoscale in the future as discussed in Section 3.4. Furthermore,
substantial previous research [13, 14, 26, 42] exists that shows that RBF net-
works can be made fault tolerant, which is a requirement for nanoscale devices.

10

In contrast, research on the fault tolerance of support vector machines is at a
very early stage. In the fault free case, we have tested (as described in Section
5.2) that our RBF network model achieves similar performance as a support
vector machine classifier.

Our RBF network consists of an input layer, a hidden layer and an output
layer. We use the α-profile values Cx = [Cα1

x , . . . , CαA

x] as the inputs, which
yields A = 239 input units. We use a single output y, which is computed
as y =

∑n
i=1 wiφi(‖Cx − ci‖), where n is the number of hidden units, wi are

weights, ci are centroids, and φi is here a Gaussian nonlinearity φi(||Cx−ci||) =
exp(−||Cx −ci||2/2σ2

i) with width σi. Roughly speaking, the number of hidden
units n should match how many kinds of α-profiles we expect to encounter;
we use n = 30 which worked well in the experiments. Finally, the output y
is received outside the nanoscale system, and the channel is classified free if
y < threshold and occupied otherwise. Fig. 5 shows the setup.

We perform the thresholding outside the nanoscale system; it is a simple op-
eration which is easy and efficient to do outside nanoscale. An alternative could
be to include a bias term in the computation of the RBF output, but without
redundancy such a nanoscale bias term would be vulnerable to faults caused by
broken wires, and could reduce the fault tolerance of the RBF network.

φ
1

...

φ
2...

φ
n

α1

α2

αA
n

w

2
w

1
w

Σ
y<threshold

classification:
channel is
free if

x

x

x

C

C

C

y

Repeat for each channel

Figure 5: A RBF network with A inputs Cαi
x , n hidden units φi, n weights wi, and output y.

3.4. Properties of the proposed system

Our system implements both feature extraction and classification in nanoscale;
the advantage is that only the final scalar-valued RBF network output needs to
be communicated to non-nanoscale parts of the handheld device. If, for exam-
ple, only feature extraction was done in nanoscale, much more communication
to non-nanoscale parts would be required.

After our nanoscale system has received the output voltage from the sensors,
the system does not require external power to amplify the signal at any point.
The voltage will decrease as computation proceeds through the system; we will
take this into account in our model for nanoscale computation errors.

RBF networks can be trained to input data, but implementing training in
the nanocomputing device would make implementation much more complex.
As a first step we propose that RBF network parameters should be optimized
by simulations and the optimized parameters should be used as fixed values in
the actual implementation. In Section 4.1 we describe how to take nanoscale
computation errors into account in the RBF network optimization.

11

3.5. Nanocomponents

In this subsection we discuss the elementary nanocomponents that would be
needed to realize our architectural design.

Besides simple summation, our proposed system needs five computation
nodes: multiplication, computing cos(θ1 − θ2) from inputs θ1 and θ2, com-
puting norm

√

x2
1 + x2

2 of two inputs, computing the maximum of inputs, and
computing the Gaussian radial basis function.

All five nodes are simple functions; we expect it will be possible to physically
realize them reasonably accurately in nanocomputation. At the current stage of
physical research many of these components do not have existing nanoscale im-
plementations yet; however, there is ongoing research into similar components,
some of which we discuss below.

The input to our system comes from nanoscale spectrum sensors. Such
sensors could be fabricated with nanoelectromechanical systems (NEMS), taking
advantage of the mechanical properties of nanostructures, such as single carbon
nanotubes [38] or ultrathin films of them [8]. There are several advantages
in NEMS compared to microelectromechanical systems (MEMS), as reviewed
in [31]: Compared to MEMS, the dimensions of the movable parts in NEMS
are much smaller resulting in greatly reduced controlling voltages (up to 50 V
for MEMS versus a couple of volts for NEMS). This makes them much more
compatible with the battery voltages of handheld devices. Another advantage
for radio applications is the mechanical resonance frequency range of NEMS
structures, which lies in the radio-frequency domain (100 MHz - 10 GHz) due
to their low masses and high Young’s moduli.

There are several options for the implementation of summation: for example,
if values represent the amount of current, simple joining of nanowires will cause
summation of the current.

In case the available implementations of frequency sensors do not provide
the required delays, the needed delays and summation in spectral correlation
calculation could also be implemented together using a nanoscale integrator [48].
Then the number of required frequency sensors would also decrease significantly
compared to frequency sensors having delay and no special delay components
would be needed. The non-linearity of simple integrators may change the com-
puted features, but because the RBF network is trained from feature data and
can adapt to changes, the differences in the features may not affect the classifi-
cation results severely.

Some nanocomponent implementations could be based on existing designs
for traditional analog hardware, such as existing research on implementing radial
basis functions [46] and maximum operators [36].

We stress that there are many open questions in the detailed implementation
of our required nanocomponents. (Note that this is not unique to our design
approach: there are currently no available nanocomputation implementations
for tasks of this complexity regardless of the design approach!) However, the
existence of related research gives confidence that it will be possible to realize
our system with future advances in physical research. Furthermore, we note

12

that there is pressing need for low energy consumption spectrum analysis in
portable devices; thus, to answer this need, we believe it will be fruitful to pursue
physical research for solving the remaining open questions and implementing our
proposed architecture.

We next describe our model for computation errors occurring in our system.

4. Modeling Computation Errors

To simulate our system’s performance under realistic computation errors, we
model four fault types: thermal noise in feature extraction, structural faults in
feature extraction, thermal noise in the RBF networks, and structural faults in
the RBF networks. We describe a physically reasonable expected level for the
fault types; this level is relatively uncertain due to missing physical experiments.
In Section 5 we simulate the system at this expected level and with alternate
levels for each fault type.

Thermal noise perturbs the voltages inside the cognitive radio system; there-
fore the numbers that the voltages represent are affected by thermal noise. Ther-
mal noise is proportional to temperature. A cognitive radio system implemented
in a mobile device should operate at room temperature. This could yield ther-
mal noise of the order of 0.3mV; its effect on computation depends locally on
the relative scales of thermal noise and signal voltage.

We expect the input signal at the sensor banks to have voltage up to a few
tens of millivolts (mV). Without bringing power to the system for signal ampli-
fication, every operation on the signal decreases the voltage scale of the output.
We assume sum operations are done with little loss, and each multiplication and
other complicated operation reduces the voltage scale by roughly 25%. After the
sensor banks the signal flows through the feature extraction circuit; this yields
voltages up to about 22.5mV at the cosine nodes, 16.9mV at the multiplication
nodes and at the components of spectral correlation, 12.7mV at the absolute
spectral correlations and 9.5mV at the feature extraction output (RBF network
input); the output of RBF network hidden units is up to about 5.3mV, and the
final output is up to about 4mV.

In our system, signal voltages correspond to numbers with absolute values
roughly between 0 and 1. We can thus simulate thermal noise by adding to
the numbers Gaussian noise with standard deviation (SD) equal to VN/VS ; VN

and VS are voltage scales of the thermal noise and the signal. Gaussian noise
approximates analog thermal noise well; see [37].

In the feature extraction circuit we add Gaussian noise with SD 0.03 to the
magnitudes and phases of the frequency sensors. This noise consists of two
components, SD 0.01 due to the thermal noise and 0.02 due to imperfections
in the frequency sensors. Proceeding through the feature extraction circuit,
noise is added with SD 0.013 to outputs of the cosine nodes; with SD 0.018
to outputs of the multiplication nodes; with the same SD to the outputs of
the sum nodes; with SD 0.024 to the spectral correlation normalization; and
with SD 0.032 to the outputs Cα

x of the maximum operation. Next the signal

13

proceeds through the RBF network, where we add noise to centroids with SD
0.032, to squared widths σ2

i with SD 0.042 (as log-normal multiplicative noise,
to keep σ2

i positive); and to hidden unit outputs and wire weights with SD
0.056. The crucial point about this error model is that the standard deviations
of errors increase towards the end of the circuit as the signal voltage decreases.

Structural faults depend on physical implementations and manufacturing
methods. We model broken wires, i.e. stuck-at-zero faults, in the feature ex-
traction and in the RBF network; a wire (arrow in Figs. 3 and 5) is broken
with probability 0.01. In the RBF network we also model displaced wires going

to wrong hidden units, which to our knowledge is novel ; a wire (arrow in Fig.
5) goes to the wrong neighboring unit with probability 0.001.

In the current paper we model displaced wires only in the RBF network;
modeling of possible displacements in the feature extraction circuit is left for
future work, since they depend on the precise layout of the implemented circuit
which requires further physical research.

4.1. Optimizing fault-tolerant parameters for the device

To train the RBF network, we use N time series as training data. For
each time series, we extract the input features: α-values Cα1

x , . . . , CαA

x for the
frequency band of the RBF network. For each series the desired output is y = 1
if the series really contained a signal and y = −1 otherwise. We then train
the centers, widths and weights of the RBF network by on-line gradient descent
with the usual squared error cost function. We reparameterize squared widths
by σ2

i = exp(σ′2
i) to keep them positive.

As a technical note, the RBF network parameters are initialized by k-
means++ clustering [2] (k-means++ has better convergence results than stan-
dard k-means) followed by expectation-maximization training of a Gaussian
mixture model with separate components for each class. The RBF weights are
initialized proportional to the component probabilities, where the sign of each
weight is determined by the class of the component. For each RBF the width is
initialized to the variance of the corresponding mixture component (the Gaus-
sian component covariance matrix is diagonal with uniform diagonal entries)
and the center to the mean of the corresponding mixture component.

To make the RBF network fault tolerant, we inject structural and noise
faults during training. For each training sample, we inject faults into the feature
extraction and the RBF network computation according to the model described
in Section 4.

The gradient of RBF network parameters is computed using the faulty values
of the features, RBF network parameters, wiring structure, and hidden unit
outputs. The RBF network then slowly learns to tolerate computation errors.

During RBF network training noise is injected to centroids and square
widths, and broken wire faults are injected. Existing research indicates that
injection of noise into hidden node outputs and wire weights during training
may not improve fault tolerance [21], however, during evaluation this allows
realistic evaluation of performance against nanoscale faults and for simplicity

14

noise is also injected to hidden node outputs and wire weights during train-
ing. Mathematically, noise is injected by adding Gaussian perturbations to wire
weights and components as described in Section 4. Displaced wire faults are
also injected during training. The results in the experiments of Section 5 show
that this approach performs well.

When centers and widths of a RBF network are trained using gradient de-
scent, the RBF network may converge to a local minimum. In the experiments
Section 5, where the RBF network was also compared to a support vector ma-
chine classifier, there were no convergence problems. We suspect the good con-
vergence may be caused by the initialization procedure of the RBF network
parameters.

Since the RBF network performs binary classification, after the training it
is possible to trade off the rates of true positives vs. true negatives (channels
correctly classified as occupied vs. channels correctly classified as free), simply
by changing the classification threshold until the desired tradeoff is achieved on
the training set. In the experiments we used this method to fix the true negative
rate at 95%.

5. Experiments

We first ran four experiments; in each, one fault type (feature extraction
noise, feature extraction structural faults, RBF network noise, or RBF network
structural faults) is studied at several fault levels, while holding the other fault
types at the default level 1. The “fault level” is used to multiply standard
deviations of thermal noise and to multiply probabilities of structural faults;
level 1 means the expected faults described in Section 4. Structural faults were
studied at fault levels 0.2, 1, 3, 10, and 20 and noise at fault levels 0.2, 0.5, 1,
1.5, and 3. As a special case, we also ran the level “All 0” meaning no faults of
any type.

Since the computation in all radio channels is similar, for simplicity we ran
the experiments for a single channel. We used the simulator of [20] to generate
IEEE 802.11a as our input signal, using 16-Quadrature Amplitude Modulation
and a convolutional code rate of 1/2, with 24Mbps throughput.2

Each signal was sampled for 1ms. For each signal sample a packet length
of 40 bytes was chosen with probability 0.4, 1500 bytes with probability 0.2,
and a value between 40 and 1500 bytes uniformly with probability 0.4. This
is in agreement with the Internet packet length observations in [41]. We used
AWGN noise with a fixed volume, and for each signal sample a signal-to-noise
ratio (SNR) between −25dB and 10dB was chosen. For simplicity, multipath
effects were not simulated. For each fault level combination, we generated in
total 6300 samples containing a signal and 6300 containing only noise.

2The system performance is not limited to this choice of data: we also tried randomly
selected code rates and modulations for each packet, with similar results.

15

Table 1: Average test-set classification success rate (in percentages) of noise samples, for levels
of noise and structural faults (fault scale multipliers). ‘Overall’ and ‘Structural variability’
refer to experiments in Section 5.1.

Noise fault level

Fault type All 0 0.2 0.5 1 1.5 3
RBF network 93.6 94.1 94.6 94.7 94.7 95.3
Feature extraction 93.6 95.1 94.2 94.7 94.3 94.1
Overall 93.6 94.6 93.8 94.7 94.8 95.0
Structural variability - 94.6 94.2 94.5 94.7 94.8

Structural fault level

Fault type All 0 0.2 1 3 10 20
RBF network 93.6 94.9 94.7 94.8 94.9 95.2
Feature extraction 93.6 94.6 94.7 94.7 94.3 94.2
Overall 93.6 94.7 94.7 94.8 95.1 94.6
Structural variability - 94.9 94.5 94.9 94.4 95.4

We used four-fold cross-validation: in each fold, 3/4 of the data set was used
for training and 1/4 for testing the system. We report average results over the
4 folds. For each fault level combination, the RBF network was trained for 400
iterations over the training set, with learning rate 0.001, and then tested with
the test set. We used the training method in Section 4.1; the same fault levels
were used for injecting faults in both training and testing.

Fig. 6 shows average classification success rates, for samples containing sig-
nals (occupied channel) as a function of SNR. Subfigure (a) shows results for
feature extraction noise levels, (b) for feature extraction structural fault levels,
(c) for RBF network noise levels and (d) for RBF network structural fault levels.
Results without faults (the “All 0” level) are shown as an upper bound.

Note that we fixed the true negative rate (classification success rate on free
channels, i.e., samples containing only noise) to 95% on the training sets as
described in Section 4.1. The corresponding rates on test sets are very similar
over all experiments, ranging from 93.6% to 95.4%; the precise numbers are
given in Table 1 for completeness.

The system classifies signal and noise samples well at the expected fault level.
Training and test performances were similar, suggesting our data set was large
enough to draw conclusions about the system. Small increases or large decreases
to the expected fault level have no major performance impact. Thermal noise
seems to have a larger effect on signal classification than structural faults. Even
at the highest level of structural faults, where fault probability is 20 times as
high as at the expected fault level, the performance of the system does not
degrade noticeably.

Thermal noise in the RBF network seems to have a larger effect on signal
classification than thermal noise in the feature extraction circuit; this may be
because signal voltage is lowest when it reaches the RBF network. Structural
faults also seem to have a somewhat larger effect in the RBF network than in
the feature extraction; a potential reason is that the RBF network has fewer

16

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

0.5

1

1.5

3.0

(a) Effect of feature extraction noise fault levels

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

1

3.0

10.0

20.0

(b) Effect of feature extraction structural fault levels

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

0.5

1

1.5

3.0

(c) Effect of RBF network noise fault levels

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

1

3.0

10.0

20.0

(d) Effect of RBF network structural fault levels

Figure 6: Effect of faults on test-set classification performance. Signal classification success
rate is shown as a function of the signal-to-noise ratio (SNR). Each line denotes the system
having a particular fault level for a specific fault type. The multipliers in the legends show
the fault level for the specific fault type—see the text for details. Other kinds of faults are
kept at the default levels. “All 0” is an upper bound denoting no faults of any kind.

wires than the feature extraction circuit, which can make the RBF network
computation more vulnerable to individual structural faults.

5.1. Overall effect of structural and noise faults, and variability across devices

We ran two additional experiments studying the overall effect of structural
and noise faults in the system. In the first experiment, structural faults were
held at the expected level for both the RBF network and the feature extraction,

17

and the effect of noise was studied at fault levels 0.2, 0.5, 1, 1.5, and 3, affecting
both the RBF network and the feature extraction. In the second experiment
the noise was held at the expected fault levels and structural faults were varied
at levels 0.2, 1, 3, 10, and 20. Fig. 7 shows performances as a function of SNR,
for the different overall fault levels; results without faults (the “All 0” level) are
again shown as an upper bound. The effect of fault levels is larger than in Fig.
6 since here they affect both the feature extraction and the RBF network. The
system again performs well.

The previous figures show average performance across different individual
instances of faults. During actual device operation noise fault instances are
temporary, occuring continuously, but structural faults can be permanent. It is
therefore interesting to see how the performance varies across individual devices
with permanent structural faults. We next tested the variability of the system
performance over different structural fault instances, for a manually selected
subset of SNR values.

Technically, we tested the variability separately in each cross-validation fold
of the above experiments, then averaged the results. In each fold, we took the
trained RBF network parameters, and for each selected combination of fault
levels and SNR, we generated 40 structural fault instances, and generated 50
signal samples and 50 noise samples for each instance to measure its classification
success rate. We computed the 2nd quantile, median and the 3rd quantile of
the classification success rates over the instances; we then averaged the median
and quantiles over the cross-validation folds.

The results are shown in subfigures (c) and (d) of Fig. 7. Subfigure (d) shows
that the structural variability is high for very high structural fault levels (10,
20). This suggests that for these fault levels, structural fault combinations start
to appear that affect system operation especially much. On the other hand,
in subfigure (c) the structural variability seems to diminish slightly when the
thermal noise fault level increases; this may be because the high thermal noise
becomes the main influence on system performance. Overall, although there
is variability across individual structural fault instances (individual devices),
the performance is good enough that building cognitive radios by the proposed
approach is feasible.

Side note: performance with highest SNRs and high RBF network fault levels.

In Fig. 6 subfigures (c) and (d) and in Fig. 7 subfigures (a) and (b), for
the highest fault levels the classification performance drops somewhat for the
highest SNRs. It turned out that the computation on high-SNR samples is
more vulnerable to faults, due to the RBF training method. We used standard
gradient-based training, plus injection of faults. The training assigned only
few RBF centers to respond to the high-SNR samples; this made the system
vulnerable to faults in those centers. Additionally, as the desired output for
occupied channels was set to +1, the system did not seek redundancy that
would have yielded higher outputs for high-SNR samples. These effects are an
example of how properties of nanoscale computation affect design and training
of nanocomputing devices. For our device, several remedies for the above effects
exist, for example one can simply add more RBF centers, or make individual

18

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

0.5

1

1.5

3.0

(a) Effect of overall noise fault levels

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0

0.2

1

3.0

10.0

20.0

(b) Effect of overall structural fault levels

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

0.2

0.5

1

1.5

3.0

(c) Effect of overall noise fault levels: structural variability

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

0.2

1

3.0

10.0

20.0

(d) Effect of overall structural fault levels: structural variability

Figure 7: Effect of overall faults on test-set classification performance. Top: Signal classi-
fication success rate is shown as a function of the signal-to-noise ratio (SNR). In subfigure
(a) each line denotes the system having a particular fault level for noise (multipliers in the
legend), and structural faults are kept at the default level. Conversely, in subfigure (b) the
system is studied at different structural fault levels (multipliers in the legend) and noise is kept
at the default fault level. “All 0” is an upper bound denoting no faults of any kind. Bottom:

Structural variability of the performance (variability over individual devices having individual
structural faults). Subfigures (c) and (d) show the median of the average classification success
rate over individual structural faults; the bottom and top of the error bars show the 2nd and
3rd quantile respectively.

centers more expressive (say by allowing full diagonal covariances). However,
note that the effects only occurred for the highest fault levels; for more moderate
levels, the methods used in this paper already suffice to give consistently good

19

performance.

5.2. Effect of feature extraction and classification method choices

In this subsection the proposed feature extraction method without normal-
ization is compared to feature extraction methods found in the literature that
use normalization [15, 4], with respect to classification performance and toler-
ance to nanoscale faults. In addition, the fault free signal classification perfor-
mance of the proposed system is compared to the performance of the system
proposed in [4]. Also, the fault free signal classification performance of the
proposed RBFn classifier is compared with a SVM classifier.

In Section 3.1 we motivated that leaving out spectral correlation normaliza-
tion in feature extraction will improve system performance and fault tolerance.
We show this by brief experimental comparisons to two feature extraction al-
ternatives [15, 4], which we discuss next.

In the first alternative, a normalized α-profile is used, which consists of
maximal absolute spectral coherences

max
f

|Sα
x (f)|

√

S0
x(f − α

2)S0
x(f + α

2)
(3)

for each cyclic frequency α. In [15] these normalized features are used as input
to a neural network and in [24] as part of input feature calculation for a hidden
Markov model. The method in (3) could be implemented in nanoscale by adding
an additional normalization node in Fig. 3 (right) before the max operation with
inputs |Sα

x (f)|, |S0
x(f − α

2)|, and |S0
x(f + α

2)|.
It would be possible to implement such normalization in the wiring diagrams

of Figure 3 (details omitted for brevity); however, such normalization would be
problematic in our nanoscale system. When the feature extraction system is
implemented in a nanoscale circuit, as discussed in Section 3.2, it may have
broken wires and there will be thermal noise during operation. In simulations
we found that if normalization is included in the implementation, the broken
wires and noise can cause very small or zero valued denominators in the division
operation of (3). The maximum operation could then pick the resulting faulty
values as the final feature value. Many of the extracted features can thus satu-
rate at faulty high values, especially when hardware faults are common. Also, as
discussed in Appendix A spectral correlations S0

x(f) used in the normalization
of (4) and (3) contain too much noise.

To test the effect of spectral coherence normalization we ran experiments
with a system implementing the normalization in (3), for the expected fault
level “1” and without any faults (denoted “All 0”). We compared that system
to the one without normalization which we used in our other experiments. To
make a fair comparison, we assumed the normalization included a simple limiter,
so that zero denominators or results exceeding valid α-profile values would be
set to zero. Results with and without normalization are shown in Fig. 8; leaving
out the normalization clearly improves performance, which confirms our design
choice was beneficial.

20

In the second feature extraction alternative, a truncated normalized version

maxf |Sα
x (f)|

maxf |S0
x(f)|

(4)

of (2) is used [4]. In [4] such features are used as input to a SVM classifier; note
that this is not a nanoscale method and works as a benchmark of performance.

Since the SVM method is a non-nanoscale method, we will not attempt
to compare tolerance of nanoscale faults. Instead, we will make a benchmark
comparison of performance in the fault-free case, between our proposed RBF-
based system and the SVM-based method of [4] including their normalization,
and the SVM-based method without normalization.

The system in [4] uses Equation (4) for computing input features from signal
data and a SVM for classifying the computed features. In [4] two signal types
and noise are classified, but the same system can be equally well applied to
binary classification. For the experiments the classical SVM [12] was trained and
tested on scaled fault free α-profiles using a Gaussian kernel with the software
available at [10]. The SVM constants were obtained using a grid search [10].
The true negative rate was fixed at 95% as in all the experiments. Fig. 9 shows
the results for our fault free proposed system denoted “RBFn (without norm.)”
and for the system in [4] (denoted “SVM (Bixio norm.)”). The proposed system
performs better than the system in [4].

Lastly, we note that although we have used a standard training approach
for the RBF network in our system (minimizing a squared error cost function),
we could have used SVM-based training: we could have trained an SVM clas-
sifier with our extracted features. Its support vectors could have been used as
radial centers and its weight vector as the output layer weights; in other words,
the trained SVM could have been implemented as an RBF network. Fig. 9
shows also the performance of the proposed system, when the RBFn classifier
is trained by a SVM (denoted “SVM (without norm.)”) instead of using the
proposed RBFn training method (denoted “RBFn (without norm.)”). The two
methods perform equally well, although each RBFn trained by a SVM uses over
3000 neurons and the proposed RBF network only 30 neurons. One reason for
the good RBFn performance may be that the RBFn training method trains
the individual neuron widths, but in the SVM training method the widths are
uniform.

In summary, for our application, the RBFn approach provides equal per-
formance with less resources than an SVM, and our decision to leave out nor-
malization both simplifies our system and yields better performance than two
existing normalization approaches.

6. Conclusions

We presented an abstract level implementation of cognitive radio, based on
a nanocomputing implementation of a machine learning algorithm for feature
extraction and classification. In extensive experiments, the system recognized

21

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

All 0 (without norm.)

All 0 (with norm.)

1 (without norm.)

1 (with norm.)

(a) Effect of design choices

Figure 8: Effect of our design choice on test-set performance. Signal classification success rate
is shown as a function of the signal-to-noise ratio (SNR), with and without spectral coherence
normalization. The effect of the normalization is tested with the expected fault level (denoted
“1”) and with no faults of any kind (denoted “All 0”). Our choice to leave out normalization
improves results.

−25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
la

ss
ifi

ca
tio

n
 s

u
cc

e
ss

 r
a

te

SNR (dB)

RBFn (without norm.)

SVM (without norm.)

SVM (Bixio norm.)

(a) Method comparison

Figure 9: Effect of the choice of feature extraction and classification methods on fault free
test-set performance. Signal classification success rate is shown as a function of the signal-to-
noise ratio (SNR). Results are shown for the proposed system “RBFn (without norm.)”, for a
support vector machine (SVM) classifier “SVM (without norm.)”, and for the classifier system
proposed in [4] by Bixio et al. “SVM (Bixio norm.)”. 1) Our proposed system performs better
than the method proposed in [4]. 2) In this task the RBFn classifier performs equally well
compared to a SVM.

wireless LAN signals well under several levels of input noise and computational

22

errors. To our knowledge our paper is the first with results on a nanoscale

implementation proposal for cognitive radio. Future work includes physical ex-
periments to verify our choices and extending the architecture to other machine
learning applications.

Appendix A. Normalization noise

The spectral correlation normalization terms S0
x(f) used in [15, 4] to produce

summary features from spectral correlation functions are vulnerable to noise in
the radio signals and in case of nanoscale frequency sensors also to noise in the
sensors.

Spectral correlations are between different frequencies whose noises may par-
tially cancel each other, but the normalization terms S0

x(f) measure signal power
for which such canceling does not happen. Assuming additive Gaussian noise in
the signal, then the Fourier transform of the signal at frequency f has additive
Gaussian noise N(f) ∼ N (0, σ2) and the Fourier transform of the received sig-
nal is X(f) = X̂(f)+N(f), where X̂(f) is the Fourier transform of the original
signal. The spectral correlation function is then

Sα
x (f) =

1

T

T−1
∑

k=0

X(k)
(

f +
α

2

)

X(k)
(

f −
α

2

)

∗

=
1

T

T−1
∑

k=0

[

X̂(k)
(

f +
α

2

)

X̂(k)
(

f −
α

2

)

∗

+

X̂(k)
(

f −
α

2

)

∗

N (k)
(

f +
α

2

)

+

X̂(k)
(

f +
α

2

)

N (k)
(

f −
α

2

)

∗

+

N (k)
(

f +
α

2

)

N (k)
(

f −
α

2

)

∗
]

.

For α 6= 0 the averaging over T terms cancels noise effectively in case the
instantenous noise on different frequencies is not strongly correlated, but the
normalization term S0

x(f) contains noise components N (k) (f)N (k) (f)
∗

and no
canceling of noise occurs.

Acknowledgments

We thank A. Huttunen, V. Koivunen, and R. White for useful discussion.

References

[1] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, S. Mohanty, NeXt genera-
tion/dynamic spectrum access/cognitive radio wireless networks: A survey,
Computer Networks 50 (2006) 2127–2159.

23

[2] D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding,
in: Proceedings of SODA 2007, the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms, ACM, New York, and Society for Industrial and
Applied Mathematics, Philadelphia, 2007, pp. 1027–1035.

[3] L. Bixio, M. Ottonello, H. Sallam, M. Raffetto, C. S. Regazzoni, Signal
classification based on spectral redundancy and neural network ensembles,
in: Proceedings of CROWNCOM’09, the 4th International Conference on
Cognitive Radio Oriented Wireless Networks and Communications, IEEE,
2009.

[4] L. Bixio, G. Oliveri, M. Ottonello, C. S. Regazzoni, OFDM recognition
based on cyclostationary analysis in an open spectrum scenario, in: Pro-
ceedings of the IEEE 69th Vehicular Technology Conference, IEEE, 2009.

[5] G. R. Bolt, J. Austin, G. Morgan, Fault tolerant multi-layer perceptron
networks, Tech. Rep. YCS 180, University of York, UK (1992).

[6] A. G. Bors, M. Gabbouj, Minimal topology for a radial basis functions
neural network for pattern classification, Digital Signal Process. 4 (3) (1994)
173–188.

[7] R. Boustany, J. Antoni, Cyclic spectral analysis from the averaged cyclic
periodogram, in: P. Zitek (Ed.), Proceedings of IFAC’05, the 16th IFAC
World Congress, 2005.

[8] Q. Cao, J. Rogers, Ultrathin films of single-walled carbon nanotubes for
electronics and sensors: A review of fundamental and applied aspects, Adv.
Mater. 21 (1).

[9] S. Cavalieri, O. Mirabella, A novel learning algorithm which improves the
partial fault tolerance of multilayer neural networks, Neural Networks 12
(1999) 91–106.

[10] C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines,
software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm

(2001).

[11] R. D. Clay, C. H. Sequin, Fault tolerance training improves generalization
and robustness, in: Proceedings of IJCNN, the International Joint Confer-
ence on Neural Networks, Vol. 1, IEEE, 1992, pp. 769–774.

[12] C. Cortes, V. Vapnik, Support-vector networks, Machine Learning 20 (3)
(1995) 273–297.

[13] R. Eickhoff, U. Rückert, Enhancing fault tolerance of radial basis functions,
in: Proceedings of IJCNN’06, the 2006 International Joint Conference on
Neural Networks, IEEE, 2006, pp. 5066–5073.

24

[14] R. Eickhoff, U. Rückert, Robustness of radial basis functions, Neurocom-
puting 70 (2007) 2758–2767.

[15] A. Fehske, J. Gaeddert, J. H. Reed, A new approach to signal classification
using spectral correlation and neural networks, in: Proceedings of DyS-
PAN 2005, the First IEEE International Symposium on New Frontiers in
Dynamic Spectrum Access Networks, IEEE, 2005, pp. 144–150.

[16] M. Gandetto, M. Guainazzo, C. Regazzoni, Use of time-frequency analysis
and neural networks for mode identification in a wireless software-defined
radio approach, EURASIP Journal on Applied Signal Processing 12 (2004)
1778–1790.

[17] W. A. Gardner, A. Napolitano, L. Paura, Cyclostationarity: half a century
of research, Signal Process. 86 (2006) 639–697.

[18] A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Materials 6
(2007) 183–191.

[19] S. Haykin, Cognitive radio: brain-empowered wireless communications,
IEEE J. Sel. Areas Commun. 23 (2005) 201–220.

[20] J. Heiskala, J. Terry, OFDM Wireless LANs: A Theoretical and Practical
Guide, Sams Indianapolis, IN, USA, 2001.

[21] K. Ho, C.-s. Leung, J. Sum, On weight-noise-injection training, in:
M. Köppen, N. Kasabov, G. Coghill (Eds.), Advances in Neuro-Information
Processing (Proceedings of ICONIP 2008), Part II, LNCS 5507, Springer,
Berlin Heidelberg, 2008, pp. 919–926.

[22] K. Jensen, J. Weldon, H. Garcia, A. Zettl, Nanotube radio, Nano Letters
7 (2007) 3508–3511.

[23] G.-Y. Jung, E. Johnston-Halperin, W. Wu, Z. Yu, S.-Y. Wang, W. M. Tong,
Z. Li, J. E. Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath,
R. S. Williams, Circuit fabrication at 17 nm half-pitch by nanoimprint
lithography, Nano Letters 6 (2006) 351–354.

[24] K. Kim, I. A. Akbar, K. K. Bae, J. S. Um, C. M. Spooner, J. H. Reed, Cy-
clostationary approaches to signal detection and classification in cognitive
radio, in: Proceedings of DySPAN 2007, the 2nd IEEE International Sym-
posium on New Frontiers in Dynamic Spectrum Access Networks, IEEE,
2007, pp. 212–215.

[25] J. H. Lee, K. K. Likharev, Defect-tolerant nanoelectronic pattern classifiers,
Int. J. Circuit Theory Appl. 35 (3) (2007) 239–264.

[26] C. S. Leung, J. P. F. Sum, A fault-tolerant regularizer for RBF networks,
IEEE Trans. Neural Networks 19 (2008) 493–507.

25

[27] B. Lin, B. Lin, F. Chong, F. Lai, Higher-order-statistics-based radial basis
function networks for signal enhancement, IEEE Trans. Neural Networks
18 (3) (2007) 823–832.

[28] J. Mitola III, G. Q. Maguire Jr., Cognitive radio: making software radios
more personal, IEEE Pers. Commun. 6 (1999) 13–18.

[29] A. F. Murray, P. J. Edwards, Enhanced MLP performance and fault tol-
erance resulting from synaptic weight noise during training, IEEE Trans.
Neural Networks 5 (1994) 792–802.

[30] X. Parra, A. Català, Learning fault-tolerance in radial basis function net-
works, in: M. Verleysen (Ed.), Proceedings of ESANN2001, the 9th Eu-
ropean Symposium on Artificial Neural Networks, D-Facto, Brussels, Bel-
gium, 2001, pp. 341–346.

[31] A. Pärssinen, R. Kaunisto, A. Kärkkäinen, Future of radio and communi-
cation, in: T. Ryhänen, M. A. Uusitalo, O. Ikkala, A. Kärkkäinen (Eds.),
Nanotechnologies for Future Mobile Devices, Cambridge University Press,
in press.

[32] P. Pasanen, M. A. Uusitalo, V. Ermolov, J. Kivioja, C. Gamrat, Comput-
ing and information storage solutions, in: T. Ryhänen, M. A. Uusitalo,
O. Ikkala, A. Kärkkäinen (Eds.), Nanotechnologies for Future Mobile De-
vices, Cambridge University Press, in press.

[33] J. Peltonen, M. A. Uusitalo, J. Pajarinen, Nano-scale fault tolerant ma-
chine learning for cognitive radio, in: Proceedings of IEEE Int. Workshop
Machine Learning for Signal Process., IEEE, 2008, pp. 163–168.

[34] D. S. Phatak, Relationship between fault tolerance, generalization and the
Vapnik-Chervonenkis (VC) dimension of feedforward ANNs, in: Proceed-
ings of IJCNN’99, the International Joint Conference on Neural Networks,
Vol. 1, IEEE, 1999, pp. 705–709.

[35] D. S. Phatak, I. Koren, Complete and partial fault tolerance of feedforward
neural nets, IEEE Trans. Neural Networks 6 (2) (1995) 446–456.

[36] J. Ramirez-Angulo, G. Ducoudray-Acevedo, R. Carvajal, A. Lopez-Martin,
Low-voltage high-performance voltage-mode and current-mode WTA cir-
cuits based on flipped voltage followers, IEEE Trans. Circuits Syst. Express
Briefs 52 (7) (2005) 420–423.

[37] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill,
Boston, MA, 2001.

[38] V. Sazonova, Y. Yaish, H. Üstüunel, D. Roundy, T. A. Arias, P. L. McEuen,
A tunable carbon nanotube electromechanical oscillator, Nature 431 (2004)
284–287.

26

[39] B. E. Segee, M. J. Carter, Comparative fault tolerance of parallel dis-
tributed processing networks, IEEE Trans. Comput. 43 (1994) 1323–1329.

[40] C. H. Sequin, R. D. Clay, Fault-tolerance in artificial neural networks, in:
Proceedings of the 1990 IJCNN International Joint Conference on Neural
Networks, Vol. 1, IEEE, 1990, pp. 703–708.

[41] R. Sinha, C. Papadopoulos, J. Heidemann, Internet packet size distribu-
tions: some observations, Tech. Rep. ISI-TR-2007-643, University of South-
ern California (May 2007).

[42] J. Sum, C.-s. Leung, K. Ho, On node-fault-injection training of an RBF net-
work, in: M. Köppen, N. Kasabov, G. Coghill (Eds.), Advances in Neuro-
Information Processing (Proceedings of ICONIP 2008), Part II, LNCS 5507,
Springer, Berlin Heidelberg, 2008, pp. 324–331.

[43] P. D. Sutton, K. E. Nolan, L. E. Doyle, Cyclostationary signatures in prac-
tical cognitive radio applications, IEEE J. Sel. Areas Commun. 26 (2008)
13–24.

[44] E. B. Tchernev, R. G. Mulvaney, D. S. Phatak, Investigating the fault
tolerance of neural networks, Neural Computation 17 (7) (2005) 1646–1664.

[45] R. Waser (Ed.), Nanoelectronics and Information Technology: Advanced
Electronic Materials and Novel Devices, Wiley, 2005.

[46] S. Watkins, P. Chau, R. Tawel, A radial basis function neurocomputer
implemented with analog VLSI circuits, in: Proceedings of IJCNN, the
International Joint Conference on Neural Networks, Vol. 2, IEEE, 1992,
pp. 607–612.

[47] B. E. White, Energy-harvesting devices: Beyond the battery, Nature Nan-
otechnology 3 (2008) 71–72.

[48] H. Ye, Z. Gu, T. Yu, D. Gracias, Integrating nanowires with substrates
using directed assembly and nanoscale soldering, IEEE Trans. Nanotechnol.
5 (1) (2006) 62–66.

[49] Z. H. Zhou, S. F. Chen, Z. Q. Chen, Improving tolerance of neural net-
works against multi-node open fault, in: Proceedings of IJCNN’01, the
International Joint Conference on Neural Networks, Vol. 3, IEEE, 2001,
pp. 1687–1692.

27

