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Abstract—The performance of medium access control (MAC) depends on both spatial locations and traffic patterns of wireless agents.

In contrast to conventional MAC policies, we propose a MAC solution that adapts to the prevailing spatial and temporal opportunities.

The proposed solution is based on a decentralized partially observable Markov decision process (DEC-POMDP), which is able to

handle wireless network dynamics described by a Markov model. A DEC-POMDP takes both sensor noise and partial observations

into account, and yields MAC policies that are optimal for the network dynamics model. The DEC-POMDP MAC policies can be

optimized for a freely chosen goal, such as maximal throughput or minimal latency, with the same algorithm. We make approximate

optimization efficient by exploiting problem structure: the policies are optimized by a factored DEC-POMDP method, yielding highly

compact state machine representations for MAC policies. Experiments show that our approach yields higher throughput and lower

latency than CSMA/CA based comparison methods adapted to the current wireless network configuration.

Index Terms—Spatial reuse, wireless network, decentralized POMDP, multi-agent planning, medium access control.
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1 INTRODUCTION

New applications and proliferation of wireless devices
demand increased wireless network performance. In cur-
rent protocols, devices communicating over congested
channels may get long transmission delays due to waiting
for transmission opportunities inefficiently or losing data
in collisions with other transmissions. However, the traf-
fic can contain patterns or structure that can be exploited
for efficient communication. Transmission opportunities
can arise due to gaps in transmissions of other devices;
even when there are no gaps, opportunities can arise due
to a spatial arrangement where the other transmissions
do not cause much interference. In contrast to current
access protocols, more efficient methods should predict
and exploit both kinds of transmission opportunities.

We propose an efficient solution for planning transmis-
sion opportunities in wireless networks, exploiting both
spatial structure (interference environment) and proba-
bilities for temporal opportunities occurring in the traffic
patterns. Unlike conventional medium access control
(MAC) solutions, our random access policies are opti-
mized for the prevailing spatio-temporal communication
situation. After optimizing the policies, our solution does
not need constant communication (e.g. notification or
scheduling messages) between devices or to a central
node: the plans are implemented as controllers that run
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independently in each device for a long time.
Our solution exploits both spatial reuse and opportuni-

ties in time. In spatial reuse [1] several wireless devices
can use the same frequency channel simultaneously. Due
to signal attenuation, a device interferes only with close-
by devices. Two spatially far-away devices can use the
same frequency channel simultaneously with little inter-
ference. Additionally, opportunities in time arise because
a wireless device does not always have data to transmit;
other devices can exploit such moments. To get low
delay and high throughput, devices must plan in advance
when to transmit. This planning over time is coupled
with spatial reuse: how much data a device can currently
transmit depends on interference from other devices,
which depends on the spatial network configuration.
We study spatial and temporal reuse in a network

where each wireless agent gets data into its transmit
queue from a possibly bursty traffic source, and trans-
mits data by a transmission scheme whose performance
depends on interference from other agents. We consider
two interference sensing types: an agent observes in-
terference either at its receiver via a feedback link, or
at the transmission point. To optimize a sensing-based
MAC policy over both spatial and temporal dimensions,
we frame MAC optimization as a factored decentralized
partially observable Markov decision process (factored DEC-
POMDP). In a DEC-POMDP agents do not communi-
cate; they make decisions using local observations about
the state of the world and other agents. This DEC-
POMDP approach yields MAC protocols for desired
objectives like maximal throughput or minimal delay.
The optimized protocols are well-performing compact
state machines. Modeling the wireless network problem
by a DEC-POMDP has further advantages: 1. The op-
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timization goal for the network can be chosen freely,
e.g. throughput, delay, or packet loss. 2. The approach
takes into account all network model properties. Policies
can be optimized for different spatial network configu-
rations and with individual source traffic models and
transmit queue sizes for all agents; thus the approach
works well in both homogeneous and very heteroge-
neous environments. 3. The model takes into account
uncertainty both in environment evolution over time and
in observations: e.g. sensor noise can be incorporated as
a probability to make wrong interference measurements.
4. The approach yields compact policies that can be
inspected to gain human-understandable information on
what MAC policies should take into account in such a
network configuration. 5. Carrier sense multiple access
(CSMA), Aloha and other MAC protocols use contention
based random channel access while time division multi-
ple access (TDMA) and others use deterministic access.
Our optimized policies can include both random access
and deterministic behavior.
Section 2 discusses related work. Section 3 outlines

a wireless network model. Section 4 tells why a DEC-
POMDP yields optimal policies for the network model,
how the problem can be framed as a factored DEC-
POMDP, and how policies can be efficiently computed.
Section 5 experimentally compares the DEC-POMDP ap-
proach to CSMA/CA based approaches adapted for the
network model and each network configuration. Section
6 concludes with discussion and future directions.

2 RELATED WORK

We frame the problem of deciding when to transmit as
a multi-agent planning problem and optimize transmis-
sion policies over temporal and spatial dimensions. We
now discuss related works having some aspects of our
solution: MAC protocols, spatial reuse, work on combin-
ing temporal and spatial aspects, and previous work on
multi-agent planning in wireless network problems.
Medium access control. Kumar et al. [2] survey MAC

protocols in wireless ad hoc networks. CSMA protocols
transmit only when the channel is sensed idle; they use
a carrier sense threshold to detect whether a channel is
occupied for a perceived interference level. CSMA pro-
tocols like the IEEE 802.11 MAC update an internal state
with channel state observations, and decide whether to
transmit based on the internal state. Channel state ob-
servations, and thus CSMA behavior, can be influenced
by tuning the carrier sense threshold or tuning transmit
power, which affects perceived interference.
CSMA operation is superficially similar to our method

as an agent’s transmit decision is updated temporally
and decided using current measured interference at its
spatial location; decisions are not optimized for the
communication situation, they are based on a factory-
assigned protocol. Our approach is more advanced: each
agent decides whether to transmit based both on current
observed interference and predicted future interference

(see Section 4 for details), by updating its controller state
using channel observations and making decisions based
on the controller state; the controller has been optimized
using a probabilistic model of the network for a joint
objective (maximize throughput, minimize delay, . . . ).
Our optimization sets parameters of all controllers to
work well together and take future interference levels,
caused by controllers’ actions, into account.
The IEEE 802.11 [3] MAC protocol uses CSMA, with

binary exponential backoff, with physical or virtual car-
rier sensing. For simplicity, we consider only physical
carrier sensing in this paper. Binary exponential backoff
increases the maximum waiting time (contention win-
dow) exponentially with the number of consecutive col-
lisions. Many approaches [4], [5], [6] improve efficiency
of CSMA-type protocols by adjusting the backoff. We go
beyond adjusted backoff mechanisms; our methods pre-
dict and avoid collisions in an optimized proactive way
rather than only reacting to them by a fixed protocol.
Kaynia et al. [7] analyze outage probability of CSMA

and Aloha protocols considering the spatial location of
wireless devices. By letting the receiver sense the channel
and inform its transmitter whether to initiate transmis-
sion, outage probability of conventional continuous-time
CSMA is clearly improved. We also consider receiver-
side observations but our method is not limited to them.
Some MAC approaches [8], [9] use multiple channels

to help wireless network performance. For MAC, stan-
dards like WiMAX use centralized scheduling. There is
work on using communication among agents [9] and
using polling to schedule data transfers [10]. We focus on
single channel random access control without additional
communication between agents during policy execution.
Spatial reuse. A survey [1] on improving spatial reuse

in multihop wireless networks discusses approaches to
enhance IEEE 802.11 performance. Previous work ex-
ists on spatial approaches that tune the carrier sense
threshold [11], optimize transmission power control [12],
adapt transmission rate [13], or use directional or MIMO
antennas [14], [15]. The perhaps closest previous work on
spatial reuse is about tuning the carrier sense threshold
and optimizing transmission power, discussed next.
Carrier sense threshold. The physical carrier sense

threshold is tuned in [11]; an analytical model for the
optimal threshold is shown, given a network topology,
reception power and data rate assuming a homogeneous
network with identical interference and noise at all
nodes. A heuristic distributed algorithm, which assumes
all agents have the same local network configuration, is
given; it adapts the sense threshold using information
also from other agents. Another paper [16] adjusts in-
dividual carrier sense threshold levels: each agent tries
several levels and for each level counts the number of
ACK frames of any agent, corresponding to the number
of successful transmissions. The best level is chosen.
Some papers investigate both the carrier sense thresh-

old and the transmit power. Fuemmeler et al. [17],
[18] analyze the relationship between transmit power
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and carrier sense threshold in wireless networks that
use CSMA. They conclude the product of the transmit
power and carrier sense threshold should be constant.
Their analysis uses, for tractability, an approximation
that assumes the interference to the transmitter is the
same as the interference to the transmitter’s receiver.
Kim et al. [12] show network capacity depends only

on the ratio of transmit power to the carrier sense
threshold. Their analysis assumes the network is densely
populated, agents interfere as if they were in a hexagonal
grid around the transmitter, and all agents have equal
transmit powers and sense thresholds. They show when
the set of data rates is limited, tuning transmit power
gives more sophisticated rate control than tuning the
carrier sense threshold, if there are enough power levels.
Overall, approaches that dynamically tune MAC ac-

cess parameters for spatial or temporal reuse use a
predefined protocol (like CSMA/CA) and adjust param-
eters like contention window size, backoff, carrier sense
threshold, or transmit power. Parameter selection is often
based on analyses that, for tractability, use assumpions
like saturated source traffic or a homogeneous network
configuration. In contrast, our model makes no assump-
tions on wireless agent independence, network traffic
type, or how agents are spatially distributed; we only
assume the world is Markovian and that the agents op-
timize a joint goal. Our model includes bursty network
traffic, takes into account how wireless agents influence
each other over time, and includes the spatial dimen-
sion. Our approach yields finite state controllers (MAC
protocols) that are optimized for the network model and
take into account the interplay between agents.
We exploit both spatial reuse and temporal opportuni-

ties; our experiments compare our DEC-POMDP method
to spatial reuse by carrier sense threshold tuning.
Multi-agent planning in wireless networks. We

model optimal decision making in a wireless network
as a factored DEC-POMDP whose solution is a set
of medium access control policies for wireless agents.
The paper [19] gives the first method for solving fac-
tored infinite-horizon DEC-POMDP problems. One ex-
periment in [19] is a simple wireless network benchmark,
where devices arranged in a row transmit slotted fixed
size packets. The network model differs clearly from the
one in this paper: in [19] the transmit queue size is only a
few slots, the collision model is binary, and the transmit
queue is discrete. In this paper the collision model
and transmit queues are continuous-valued, the discrete
transmit queue model is longer, and wireless devices
may be in any arrangement. Also the convergence time
in [19] is much longer, on a much simpler problem,
compared to the method used in this paper.
Shirazi et al. [20] model channel dynamics with a

Markov model in a wireless relay network: the goal is
to choose which relay nodes to use for re-transmissions.
They model the problem as a DEC-POMDP where neigh-
boring relay nodes are allowed to communicate and
use a gradient ascent type method to compute policies

Transmitter 1
Transmitter 2

Receiver 1

InterferenceSignal

Signal

Transmit queue

Transmit queue

Receiver 2

Fig. 1. Wireless network

for relay nodes. The DEC-POMDP method in [20] is
restricted to special problems, where an agent’s local
state is not influenced by other agents. In [20] channels
evolve independently of the relays being optimized, but
most often in wireless networks, and in also in this paper,
an agent’s transmissions influence other agents.
Multi-agent reinforcement learning is widely used to

optimize cognitive radio (CR) behavior [21], [22], [23],
[24] in wireless networks with high priority primary
users (PUs) and multiple frequency channels. The pa-
per [21] studies convergence of multi-agent Q-learning
(MAQL) for channel selection in a CR network, when the
number of CRs is less or equal to the number of channels.
In [22] MAQL is used to limit CR interference to PUs
in an IEEE 802.22 based wireless network where CRs
are secondary base stations. Wu et al. [23] use MAQL
to reduce interference to PUs by optimizing channel
selection and transmit powers of CRs. MAQL is used
in [24] for selecting which channels to sense in order
to avoid collisions with PUs. To avoid collisions among
CRs a special backoff based mechanism is used.
Unlike our approach, the main aim of the above CR

approaches is to prevent interference to PUs. They do
not use knowledge of source traffic or agents’ spatial
configuration to optimize policies; they avoid interfer-
ence by using multiple channels, but in our approach
agents avoid interference using opportunities over space
and time. The above approaches use special problem
structure in Q-learning. To our knowledge there is no
Q-learning approach that could be applied directly to
the wireless network problem in this paper. For instance,
[21], [22], [23], [24] do not consider that an agent’s actions
affect local states of other agents over time.

3 NETWORK MODEL

Our method is designed for a typical wireless commu-
nication situation (overall network model in Fig. 1). The
network has N transmitter-receiver pairs: a transmitter
(agent) i has an associated receiver i and vice versa. We
index transmitter-receiver pairs, transmitters, receivers,
and agents interchangeably. Each transmitter has a finite
transmit queue with real-valued current length. A source
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puts data into the queue; the transmitter removes data
from the queue when transmitting. For simplicity we
assume transmitters do transmision and sensing actions
at discrete time intervals called “time slots”.
How much data a transmitter can successfully trans-

mit in a time slot depends on the signal-to-interference
ratio (SIR) of the activated link. Consider the ith
transmitter-receiver pair (transmitter i and receiver i).
The amount of data transmitted by transmitter i at slot t
is Di(t) = min(Bi(t),WCi(t)), where Bi(t) is the amount
of data in the transmit queue,

Ci(t) = log2(1 + SIRi(t)) (1)

is the information capacity (bits per channel use) from
transmitter i to receiver i where the receiver’s SIR at
slot t is denoted as SIRi(t), and W is the number of
available channel uses per slot. The equation of Di(t)
follows because even with optimal transmission schemes
(achieving Shannon capacity), one can at most empty the
transmit queue.
The SIR depends on all active links; we use the con-

ventional definition

SIRi(t) = gi,ixi(t)/(
∑

j 6=i

gj,ixj(t) + σ2) , (2)

where gj,i is the link gain (power) from transmitter j to
receiver i, xj(t) is the transmit power of transmitter j
at time t, and σ2 is the (thermal) noise power at time
t; we approximate the momentary σ2 by the average
thermal noise power, assumed equal at all receivers.
At each time slot each receiver i informs its associated
transmitter i about the current channel capacity via a
feedback channel. In optimization, link gains between
agents are assumed known or are first estimated by
usual path-loss measurements (in experiments estimated
by path loss using line-of-sight).
The goal is to optimize policies for the transmitters,

with a common objective such as maximizing sum
throughput ST or minimizing average queue delay
AQD of the transmitters:

ST =

∑Tmax

t=1

∑N

i=1 Di(t)

Tmax

, AQD =

∑Tmax

t=1 w(t)l(t)
∑Tmax

t=1 l(t)
,

(3)
where data inserted at time t of size l(t) has to wait w(t)
time in the queue before exiting.
In each time slot, a transmitter’s policy tells whether

to transmit. A transmitter does not know what channel
capacity will occur over the time of the transmission, but
it can make a prediction using previous observations of
channel capacity (see Section 4 for details). Transmission
policies are computed centrally, but are optimized to be
executed in a decentralized manner. There is no need to
negotiate transmission slots with peers while executing
policies, so communication pairwise between devices or
to a central device is not needed; channel capacity is
not spent on pairwise or central communication so it

is available for communication of actual data between
transmitters and receivers.
The source traffic of each agent is modeled by a

discrete Markov model; the models are assumed to be
known by the optimizer or agents can estimate their
models from their network traffic. We use Markov mod-
els since they model network traffic compactly and have
successfully modeled real-life bursty wireless traffic [25],
[26] like Web or VOIP traffic. States of the source traffic
model belong to either the “data” or “no-data” class; the
number of “data” and “no-data” states is 1 at simplest
and can be larger for more detailed models. In a “data”
state the model inserts a fixed amount of data into the
transmit queue. Counting state transitions is a trivial
way to estimate transition probabilities of a two state
Markov model; for models with more states probabilities
can be estimated e.g. as in [26]. In experiments, the
source traffic model (see Fig. 2b) is a two state Markov
model, estimated from simulated NS-2 VOIP and HTTP
traffic: it has probability 0.9530 to stay in the “no-data”
state and 0.9259 to stay in the “data” state; on average
the model puts data into the transmit queue 38.81% of
the time. For clarity we use the same source traffic model
in experiments for all agents; when agents have differ-
ent source models, our DEC-POMDP approach which
adapts to the network model could yield even better
results compared to other methods.

4 MEDIUM ACCESS CONTROL BY A DEC-
POMDP

We compute policies for wireless devices by a decentral-
ized partially observable Markov decision process (DEC-
POMDP). Resulting policies are finite state controllers
(FSCs); an FSC is effectively a MAC protocol optimized
for a certain network configuration. We compute FSCs
using a Markov model of network dynamics and the
wireless agents then execute the FSCs independently for
a long time. Fig. 2 illustrates the approach. We describe
how the MAC for the network model of Section 3 is
solved by a DEC-POMDP, and the properties of the
DEC-POMDP approach. We then show how to transform
the wireless network problem into a factored infinite-
horizon DEC-POMDP [19] problem and how good poli-
cies can be computed efficiently for several agents.
In the network model, transmitters do not need to

exchange information with each other, they just execute
a policy given to them. The policy is a conditional
plan that tells what action to do upon receipt of an
observation. In the network model a traffic source inserts
data into a transmit queue and the transmitter transmits
data from the queue. Evolution of transmit queues and
traffic sources over time is modeled by Markov models;
the state of traffic sources and transmit queues of all
agents defines the world state. Policies are optimized
by grading each policy during optimization by a sum
of goodness measures called rewards: at each time step
a common reward is given for the current state and
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Fig. 2. Illustration of the proposed approach. (a) Wireless network with transmitters (numbers) and their receivers

(boxes). The interference at the receiver determines the capacity of a transmitter. When each transmitter transmits

it interferes with the receivers of other transmitters. (b) Bursty source traffic is modeled by a Markov model. The
model inserts data into a transmitter’s queue when in a data-insertion-state and changes state according to the shown

probabilities. (c) A 50 time step snapshot of transmissions. Transmitters transmit data from their queues according to

the Shannon capacity. Box height denotes the capacity possible if the agent would transmit at this time, relative to the
maximum capacity. The potential capacity for an agent is large when only few of the highly-interfering other agents are

transmitting. The agents do not know for certain what the potential capacity would be over the next transmission slot,
they decide whether to transmit based on past observations of channel capacity and predictions of future capacity.

Filled boxes denote actual transmissions and empty boxes denote non-transmissions. Interestingly, the agents seem to

use both deterministic and contention based behavior, for example, Agent 3 seems to deterministically avoid collisions
with Agent 4. Subfigure (d) shows a complete overview of the controller of agent one. Boxes denote the set of states

the agent can be in during a particular time step. Ellipses denote finite state controller states, each of which directs

the agent to perform a transmit or listen action (probabilities of both actions are listed inside the ellipse). Note that
transmission is stochastic in our model: even when the action of a controller state is deterministic (an action probability

of 0.00 or 1.00), the transition between controller states may be stochastic. Arrows denote transitions from one state to
another; for clarity only state transitions with a probability greater than 40% are shown. Text above each arrow denotes

the condition (observation) when the transition is allowed: “E” denotes empty queue and “D” data, a non-empty queue.

Numbers after E or D denote the observed capacity level: for example “E: 1-2 or D” denotes the transition is allowed
with either an empty queue and observed capacity levels 1 and 2 or with data in the queue and any observed capacity

levels. Subfigure (e) illustrates the detailed transition probabilities from one state for each observation combination.

current actions of the agents, and the goal is to optimize
a reward sum into the future. To act optimally an agent
must take into account the current world state and how it
may evolve into the future. The world state depends on
the actions of all agents. An agent does not observe the
current state of other agents’ transmit queues or source
models, but it can observe the interference level (locally
or communicated from the receiver) which gives indirect
information about the other agents. The agent does not

know what observations other agents have made or
what they are planning to do. To act optimally an agent
must consider all possible observation histories of all
other agents and all possible future action, observation
sequences of all agents. In this setting optimal policies
are given by a DEC-POMDP [27].

To act optimally agents must consider extremely many
possible action-observation sequences, hence compu-
tational complexity of finite-horizon DEC-POMDPs is
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NEXP-complete [28] and infinite-horizon DEC-POMDPs
are undecidable even for one agent [28]. Our wireless
network problem needs a policy that can run for a
long time, i.e. a solution to an infinite-horizon DEC-
POMDP. General (approximate) infinite-horizon DEC-
POMDP algorithms have been demonstrated only for
few agents [29], [30], but our recent (approximate) algo-
rithm for factored infinite-horizon DEC-POMDPs in [19]
shows good results for several agents.
In our DEC-POMDP approach wireless agents operate

independently using their current policies. If a new com-
munication situation (a changed network model) arises,
policies can be recomputed to improve performance in
the new situation; this may need occasional communica-
tion of the changed dynamics model and changed poli-
cies to and from agents. Before an agent’s policy has been
optimized, the agent can use a pre-defined default policy
such as simplified CSMA/CA, that operates reasonably
well in different wireless environments. In experiments
we optimized policies starting from random controllers;
our method can also start from hand-crafted policies,
which could yield even better results.
In this paper we do not discuss in detail how the

network model or policies are communicated, but con-
centrate on optimizing MAC policies of wireless agents.
In the setup used in the experiments, communicating
network models or policies is not expected to take much
effort: policies of agents are very compact finite state
controllers and source traffic models are simple two state
Markov models that do not consume much bandwidth.
To communicate link gains, one can communicate only
link gains of the largest interferers for each receiver and
a sum of the other link gains (see Section 4.2.1 on how
the interference information is used to compute policies).
We now show how to frame the wireless network

problem as a factored infinite-horizon DEC-POMDP [19]
and compute good policies efficiently for several agents.

4.1 Wireless network as a factored infinite-horizon

DEC-POMDP

We show how to describe the wireless network problem
as a factored DEC-POMDP and give our algorithm based
on [19] to compute good policies for wireless agents.
Notation. A (discrete-valued) DEC-POMDP involves

transitions of variables from one time step to the next:
for each variable y we denote its value in the current time
step t simply by y and the value in the next time step
with y′. We do not denote the time slot t explicitly here.
For each variable y we denote conditional probabilities
with P (y|Pa(y)), where Pa(y) are the variables that the
probability of y depends on (details below). We describe
in Section 4.2.1 how to transform real-valued quantities
such as capacity into discrete random variables and use
the real-valued variable symbols for clarity here.
States. A wireless network problem with N agents

consists of N transmitters, and their respective re-
ceivers, source traffic models, and transmit queues.

When the wireless network problem is described as
a factored DEC-POMDP, the current world state s
is a combination of state variables so that s =
(m1,m2, . . . ,mN , B1, B2, . . . , BN ), where mi is the state
of the source model of agent i, Bi is the size of the
transmit queue of agent i. The world state space s has
size |m1|× |m2|× · · ·× |mN |× |B1|× |B2|× · · ·× |BN |, that
is, the world state space is exponential w.r.t. the number
of agents N .
Influence diagram. Fig. 3 shows an influence diagram

for the factored DEC-POMDP for a two agent wireless
network, when the objective is to minimize average
queue delay. In the diagram circles denote variables,
diamonds rewards, and arrows dependencies between
variables. We describe next the variables in the network.
Actions. At each time step each agent i performs an

action ai which is either “do not transmit” or “transmit”;
in our current experiments we use a simple power and
rate control model where agents either transmit or do
not transmit, but our approach also supports more fine-
tuned power and rate control schemes simply by adding
more transmit actions with different powers and rates.
In the experiments the transmit power is

xi =

{
0 if ai is ”do not transmit”

TPi if ai is ”transmit”
,

where TPi denotes the transmit power of agent i. We
used the simple scheme in experiments since it already
sufficed to demonstrate the benefit of our method.
Capacity and interference variables. After the ac-

tions are performed, the channel capacity Ci at each
receiver i is determined, and also the interference
power Ii visible to agent i. Note that Ci and Ii
are intermediate variables, that are used for com-
puting variables part of the formal factored DEC-
POMDP definition (controller, observation, action, state,
or reward variables). Ci and Ii depend only on
active transmitters: P (Ci|a1, . . . , ai−1, ai+1, . . . , aN) and
P (Ii|a1, . . . , ai−1, ai+1, . . . , aN ). Equation (1) yields the
capacity (transmit power xi = 0, when agent i is not
transmitting). Ci can be computed using Equation 1.
Ii is identical to Ci for exact receiver-side interference
measurements, but for example for transmitter-side in-
terference measurements the interference power visible
to the agent can be different from the interference that
yields the channel capacity at the receiver.
Transitions. Next each state variable si transitions

to state s′i according to the transition probability
P (s′i|Pa(s

′
i)), where Pa(s′i) is the set of variables that s

′
i =

(m′
i, B

′
i) depends on. The next time step source model

state m′
i depends only on the current source model state

mi: P (m′
i|mi). The next time step transmit queue size B′

i

of agent i depends on whether the agent is transmitting,
on the channel capacity Ci, whether the source model
mi inserts data into the queue, and on the current size
Bi of the transmit queue: P (B′

i|ai, Ci,mi, Bi).
Observations. After the state transitions, each agent i
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makes observations oi according to the observation prob-
ability P (oi|Pa(oi)), where Pa(oi) is the set of variables
that oi depends on. Here Pa(oi) = (Ii, Bi), where Ii is
the interference power visible to the agent and Bi is the
size of the agent’s transmit queue.
Rewards. At each time step, a real valued reward

R(s,~a) is then given that depends on the current state of
the world s and the actions ~a of the agents. The reward is

a sum of reward functions: R(s,~a) =
∑K

k=0 Rk(Sk)where
Rk is a reward function operating on a subset Sk of state
and action variables. The wireless network problem al-
lows several different measures of network quality to be
used as the reward in a straightforward fashion. To mini-
mize the average queue delay AQD of Equation 3 for the
network, the corresponding DEC-POMDP reward func-

tion is R(s,~a) =
∑N

i=1 Ri(Bi) where Ri(Si) = −Bi/Li is
the negative queue size for agent i divided by the av-
erage arrival rate Li (in the experiments identical for all
agents). The reward function follows from Little’s law:
AQD is in the limit the average queue length divided by
the average arrival rate. To maximise the throughput ST
of Equation 3 for the network, the corresponding DEC-

POMDP reward function is R(s,~a) =
∑N

i=1 Ri(Bi, Ci)
where Ri(Bi, Ci) = Di(Bi, Ci) = min(Bi,WCi) is the
minimum of capacity and transmit queue size for agent
i when agent i is transmitting, and Ri(Bi, Ci) = 0 when
the agent does not transmit.
The DEC-POMDP approach easily allows many other

kinds of objective functions, that is, other measures of
communication quality over the network. For example,
to minize the amount of dropped data, the reward
function could be expressed with the queue size, agent
action, capacity, and traffic source state variables, where
any data that does not fit into the queue incurs a penalty.
Goal of the DEC-POMDP. Having defined the model

and the reward function, the goal in an infinite-horizon
DEC-POMDP is to compute agent policies π that max-
imize the expected discounted infinite-horizon reward
E [
∑∞

t=0 γ
tR(s,~a)|π], where γ is the discount factor.

Form of the policy. Here, the policy of an agent is a
stochastic finite state controller (FSC) [19]. Fig. 2 shows
an example FSC. A FSC is defined by a set of states and
action and transition probabilities. When in FSC state
qi, agent i executes action ai according to the action
probability P (ai|qi), observes oi and moves from state
qi to state q′i with transition probability P (q′i|qi, oi). In
the experiments we used periodic FSCs [30], which allow
optimization of larger controllers than with regular FSCs.
Optimality and efficiency.When the wireless network

problem under investigation can be framed directly
as a DEC-POMDP, the optimal solution to the DEC-
POMDP yields optimal MAC protocols. However, as
discussed earlier, the computational complexity of even
discrete DEC-POMDPs makes exact policy computation
intractable. Additionally the network model includes
real-valued capacities and queue sizes and therefore we
describe next approximations that enable efficient policy
computation for the described factored DEC-POMDP.
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Fig. 3. Influence diagram for the two agent wireless

network problem. The vertical dashed line separates the
current and next time steps. B1 and B2 are the transmit

queue state variables of agent 1 and 2, respectively. m1

and m2 are the source traffic model state variables. To-

gether m1,m2, B1, B2 define the current state illustrated

with a dotted box. The Shannon capacities at the re-
ceivers C1 and C2 and the observed interference powers

I1 and I2 are determined by the actions a1 and a2 of the

agents. The next state of transmit queue B1 depends on
the Shannon capacity C1, the state of the source model

m1, the agents action a1, and the current state of the
transmit queue B1. The agent observations o1 and o2
depend on the observed interference power and whether

there is data in the transmit queue. Here, the reward (r1
and r2) is the negative transmit queue size for minimizing

delay. q1 and q2 are finite state controller states.

4.2 Computing policies

Our approach for computing policies is based on the
factored infinite-horizon DEC-POMDP method that we
introduced in [19]. The idea is to use EM, a widely used
approach for improving the likelihood of parameters in a
probabilistic model, to improve the likelihood to achieve
maximum reward (maximum throughput/minimum de-
lay) of finite state controller parameters. The approach
operates on a probability distribution, called the belief,
over the world state s and FSC states ~q = (q1, . . . , qN ).
One iteration of the approach shown in Algorithm 1 con-
sists of computing an “average belief” and then scaling
FSC parameters by reward probabilities (see [19, Section
3.3] and [19, Section 3.4] for details) accumulated when
projecting the “average belief” forward. Because a belief
over all state variables has exponential size w.r.t. the
number of agents, we keep the belief in factored form:
random variables are in possibly overlapping clusters
with a limited number of variables in each cluster.

To project the belief from one time step to the next
we apply the junction tree algorithm [31] on the two
time step dynamic Bayesian network (DBN) [31] of the
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Input: FSC parameters ~θ = (θ1, . . . , θN ) for N agents

Output: Optimized FSC parameters ~θ

while Value of ~θ increases and time limit not reached do
Compute “weighted average” belief α̂(s, ~q) from
projected beliefs. See [19, Section 3.2].
foreach Agent i do

1) Project α̂(s, ~q) for different θi parameter
values. 2) Scale θi by reward probabilities
accumulated during belief projection.
See [19, Section 3.3].

end
end
Algorithm 1: Our expectation maximization method for
factored DEC-POMDPs (basic form of the pseudocode
is based on [19], differences are in the model)

factored DEC-POMDP (Fig. 3 illustrates a two time step
DBN for the wireless network problem described in
Section 4.1). We project the belief directly into clustered
form breaking dependencies between variable clusters.
Note that even though some variables are assumed
independent inside one time step, they are not assumed
independent over multiple time steps (see [19] for de-
tails) and thus the actions of any agent can influence any
other agent in policy computation, allowing the policy of
each agent to take other agents into account as desired.
Note also that the approximation error introduced by
variable clustering is bounded over time [32], because
mixing of the Markov chain attenuates the effect of
approximation errors in the past. For practical wireless
network problems with N agents the computational
complexity of one EM iteration is O(N2) [19, Section 3.5].
To compute actual policies using the factored DEC-

POMDP algorithm we use approximations and modifi-
cations to deal with continuous values and to speed up
the algorithm. We will next describe modifications that
are specific to the wireless network problem; for com-
pleteness generic modifications are described in 4.2.2.

4.2.1 Wireless networking modifications

In order to perform wireless network optimization with
the discrete factored DEC-POMDP model we have to
solve the following problems: (1) capacities are real val-
ued, (2) capacity and transmit queue observations may
be real valued, (3) the transmit queue size is real valued
and the range of values may be large, (4) the capacity
of a transmitter depends on all other transmitters. We
solve problems 1 and 2 by a soft quantization trick: to
represent a real value z for a discrete state variable s,

we assign probabilities P (s = ⌊z⌋) = ⌈z⌉−z

⌈z⌉−⌊z⌋ and P (s =

⌈z⌉) = z−⌊z⌋
⌈z⌉−⌊z⌋ , where ⌊z⌋ denotes rounding z down and

⌈z⌉ denotes rounding z up. Thus the expected value of
the discrete variable s is the desired value z. For exam-
ple, to represent a transmission rate of 2.4 we set a 0.6
probability to transmit with rate 2 and a 0.4 probability
to transmit with rate 3. To solve problem 3 we quantize

the real valued queue size into ratios of the maximum
queue size; in the experiments eight equally spaced
ratios were used. Problem 4 is actually not DEC-POMDP
specific: there are 2N different combinations for which of
N transmitters are transmitting, and any approach that
considers these combinations must take a large N into
account. Here we model the largest interferers (eight in
the experiments) accurately and use an approximation
for the remaining smallest interferers. When we compute
the capacity C for a specific combination of transmitting
largest interferers, we compute a lower bound capacity
Clower corresponding to when all smallest interferers
are transmitting and an upper bound capacity Cupper

corresponding to when all smallest interferers are not
transmitting. In more detail, the capacities Clower and
Cupper for receiver i are computed using the SIR defined
in Equation 2, where for each smallest interferer j:
xj(t) = 0 for Cupper and xj(t) = TPj for Clower. The
capacity is then written as a combination of the upper
and lower bounds: C = Clowerpsource+Cupper(1−psource),
where psource is the average probability that a source
traffic model is inserting data into a transmit queue. This
approximation assumes that all generated traffic of the
smallest interferers is transmitted. psource for receiver
i is communicated to transmitter i together with the
policy of the transmitter. psource can be computed as the
(weighted) average probability for the source Markov
model of each smallest interferer j for receiver i to be
in a “data” state. In the experiments, source models are
identical, but for a good general solution, weight can be
assigned directly to interferer j based on the capacity
difference at receiver i, when j is transmitting vs. idle.
The DEC-POMDP algorithm requires that variables

are clustered at each planning time step. We cluster the
transmit queue state, source model state, and FSC state
of each agent into a single cluster, because these variables
are guaranteed to influence each other during one time
step: for example in Fig. 3 (q1,m1, B1) and (q2,m2, B2)
would form the clusters. In the experiments variable
clustering was needed only for more than two agents.

4.2.2 Modifications to the general factored infinite-

horizon DEC-POMDP method

For completeness we describe below details on how
the DEC-POMDP method is modified to converge faster
and then how the starting probability distribution for
optimization can be made better.
Greedy nonlinear reward scaling. In order to get a

fully probabilistic model for which EM optimization can
be applied, the DEC-POMDP method scales the reward
function R(s,~a) into a probability: R̂(r = 1|s,~a) =
(R(s,~a)−Rmin)/(Rmax −Rmin), where Rmin and Rmax

are minimum and maximum immediate rewards. The
value of the current DEC-POMDP policies is computed
using the reward probabilities. To speed up EM op-
timization we use a greedy approach by applying a
further nonlinear scaling step which emphasizes the
highest rewards, making the algorithm concentrate on
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the most promising actions and converging faster (see
Fig. 4h for an optimization speed comparison).
The greedy reward scaling is done by applying a soft-

max transformation to the reward probabilities: when
optimizing the action (or state transition) for some con-
troller node by EM, we compute reward probabilities
for different possible actions (or transitions) i (for de-
tails see [19]). We apply the greedy scaling to these
probabilities, and set r̃i = eαr̂i/

∑
j e

αr̂j , where r̃i is
the reward probability after the softmax transformation,
r̂i is the original untransformed reward probability for
action (or transition) i, and α is a constant that was in
the experiments 500. To reduce numerical instability, we
apply the same softmax function a second time to r̃i,
yielding the final transformed values r̃′i = eαr̃i/

∑
j e

αr̃j .
To ensure the greedy weighting based optimization

does not decrease the computed policy value, α is halved
whenever the value would decrease, and the update
is retried with the new α; if α becomes less than 2
the softmax scaling is stopped, and further optimization
proceeds as in the original EM of [19]. Thus the opti-
mization never decreases the computed policy value (the
computed value is an approximation, because of variable
clustering discussed in Section 4.2.1).
Small added noise in parameter updates. In the EM

parameter updates, we add a very small amount of noise
to updated parameters to help escape local minima.
Improved initialization. The method in [19] assumes

that optimization starts from the same probability distri-
bution over world states in each iteration. However, the
goodness of the initial probability distribution depends
on the current policies of the agents. Therefore, opti-
mization should start from the most likely probability
distribution given the current policies and a long run-
ning time. Therefore, we ran in each iteration the Markov
chain (defined by the agents’ policies and DEC-POMDP
transition and observation probabilities) until conver-
gence and used the converged probability distribution
as an initial distribution for optimization. Because of this
modification we can also use a short planning horizon
(denoted T in [19]) together with a discount factor of 1
and still get good results: in the experiments a horizon
of 4 was used. A larger T would take future events better
into account at the cost of more optimization time.

5 EXPERIMENTS

We compare our DEC-POMDP approach to four other
methods. We compare to a CSMA/CA version that
uses a carrier sense threshold similar to IEEE 802.11,
and to three CSMA/CA versions that tune the carrier
sense threshold of each agent to maximize spatial reuse.
We optimized the carrier sense thresholds in the spa-
tial reuse CSMA/CA versions using the relationship
between transmit power and sense threshold defined
in [17], denoted “product CSMA/CA”, and using the
relationship in [12], denoted “ratio CSMA/CA”. Based
on [11] we also optimized carrier sense thresholds online,

TABLE 1
Summary of experiment parameters

Parameter Value

Time step length 20µsec
Maximum transmit queue size 10240 bytes
Data insertion into queue per time step 0 or 80 bytes
Transmission from queue per time step 0–80 bytes
Maximum CSMA/CA backoff window 2

10 time steps (20msec)
Size of wireless agent area 100m × 100m

Background noise power 0.01W

denoted “online CSMA/CA”. In all CSMA/CA versions
we optimize the maximum consecutive data transfer
length. Next we discuss the experimental setup and the
implementation of each approach. Then we outline the
experiments and show results.

5.1 Setup

We use a discrete time simulation whose parameters are
summarized in Table 1. One time step is 20 µsec; an
agent can transmit 0 to 80 bytes per time step, giving
a 4 MB/sec maximum rate. The traffic source model
inserts either 80 bytes or no data at each time step to
the transmit queue. The maximum transmit queue size is
10240 bytes; when new data would not fit into the queue
old data is discarded. In the wireless network the line-
of-sight path loss exponent is 2.3 and background noise
power 0.01W. Each experiment consists of 10 random
network configurations: each method is optimized for a
maximum of one hour (the DEC-POMDP method con-
verged much earlier) with the network configuration and
then evaluated ten times for 50000 time steps starting
with empty transmit queues. We report in Section 5.2
average values and 95% confidence intervals (computed
using bootstrapping).
The network configuration is created as follows: trans-

mitters are randomly placed on a 100m× 100m field. A
receiver is randomly placed within a predefined maxi-
mum distance from its transmitter, which is varied in the
experiments. If the receiver is not within the 100m×100m
field, its position is resampled until it is inside the field.
In our ad-hoc network model interferers may reside

very close or very far from transmitting nodes. In the
absence of network wide CSI knowledge at each trans-
mitter, our transmitters determine their transmit power
using path-loss (channel) estimates between their respec-
tive source-destination pairs, and set transmit power so
that a given signal-to-noise ratio (as opposed to SIR) is
achieved at destination node. Our model would allow
alternative power control policies (like fixed transmit
power), but for simplicity, the above solution is selected.
We also consider a more difficult scenario where

transmitters have no direct measurements of receiver-
side interference; the scenario is common, for example
IEEE 802.11 uses transmitter-side interference measure-
ments with carrier sensing. In these cases, our DEC-
POMDP method can be used with any indirect estimate
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of receiver-side interference in place of the direct value.
In experiments we tried this scenario by estimating
receiver-side SIR by a simple transmitter-side estimate

ŜIRi(t) = xi(t)/I(t) , (4)

where I(t) is the interference observed at the transmitter
at time step t. This corresponds to assuming that interfer-
ers are in the immediate vicinity of the transmitter and
background noise is negligible. It turns out our method
works well with such estimates too: it performs almost
equally well as with direct measurements.

5.1.1 DEC-POMDP

We used the factored DEC-POMDP model in Section 4.1
to model the wireless network and the techniques in
Section 4.2.1 to frame the problem as a discrete factored
DEC-POMDP and optimize policies. In our model each
agent has a transmit queue of 512 slots (each slot = 20
bytes). The maximum capacity is 80 bytes = 4 slots.
In the DEC-POMDP approach the policy of each agent

is a finite state controller (FSC), that takes as input
capacity observations and outputs transmit actions. We
utilized in the experiments 5 different capacity obser-
vations and two different actions: “transmit”/“do-not-
transmit”. In the experiments we used four layer pe-
riodic FSCs (see [30] for details about periodic FSCs)
with two states in each layer, resulting in a total of eight
FSC states. Note that while a controller with eight states
may seem small, together the individual controllers can
produce very complicated behavior that may yield better
performance than sharing a pre-defined protocol. We fix
in each layer the action of the first state to “transmit”
and of the second state to “do-not-transmit” in order
to make FSCs easier to inspect by a human (see Fig. 2
for examples of optimized FSCs). We initialize FSC state
transition probabilities randomly. Because random FSC
state transitions can lead to a state with any action, an
initial FSC chooses also actions randomly, but optimized
FSCs can perform both deterministic and random access.
A FSC takes as input discrete observations, but during

evaluation transmit queues and capacity observations
are continuous valued. Therefore, we quantize observa-
tions during evaluation and input them into the FSCs.
The quantized observations are enough to yield very
good performance for our method in the experiments.

5.1.2 CSMA/CA

The CSMA/CA controller is implemented as a simple
state machine. It takes as input an observation that tells
whether there are interferers or not (physical carrier
sensing is used) and outputs an action that tells whether
to transmit or not. Next we describe how exponen-
tial backoff, post-backoff, and a (tunable) carrier sense
threshold are implemented in the CSMA/CA controller.

5.1.2.1 Exponential backoff: Before transmission
the controller listens to the channel at least for one
time step. If the channel is sensed occupied or a packet

collision occurs, the controller uses binary exponential
backoff with a maximum waiting time of 210 time steps.

5.1.2.2 Post-backoff: Because our model transmits
data without division into packets, we allow the con-
troller to transmit data for a certain limited time “max
transmit length” (corresponding to a maximum packet
length) before it has to do a two time step post-
backoff, during which it does not transmit. Similar
to IEEE 802.11 this allows other agents to use the
channel. In the experiments the system was simulated
for each CSMA/CA variant for different “max trans-
mit length” values (1, 2, 4, 8, 16, 32, 64, 128, 256 time slots,
corresponding to 20, 40, 80, 160, 320, 640, 1280, 2560, 5120
µsec) and the value with best performance was chosen
for each network configuration. Note also that adjusting
the “max transmit length” changes the effective mini-
mum contention window length relative to the pseudo
packet length. In [6], [33] Medepalli et al. show that
adjusting the minimum contention window length im-
proves performance in IEEE 802.11 wireless LANs.

5.1.2.3 Carrier sense threshold: In wireless net-
works such as IEEE 802.11 the channel is assumed
occupied when the sensed power level exceeds the
carrier sense threshold. In our system, observations are
Shannon capacities and the capacity sense threshold Cth

is a ratio of the maximum capacity (0 ≤ Cth ≤ 1).
If a CSMA/CA agent observes a capacity larger than
Cth times the maximum capacity, then the channel is
assumed to be unoccupied. For receiver-side observa-
tions the observed capacity is the actual capacity at the
receiver. For transmitter-side interference measurements
the estimated capacity is Ci(t) = log2(1+ŜIRi(t)), where

ŜIRi(t) is given in Equation 4.
Using standard assumptions about free-space path

loss for IEEE 802.11, the capacity sensing threshold is 1
for the field size of 100m × 100m, that is, only one agent
can transmit at the same time. This version of CSMA/CA
is called here “CSMA/CA”. In order to exploit spatial
sparsity and allow more agents to transmit simultane-
ously, the “ratio CSMA/CA”, “product CSMA/CA”, and
“online CSMA/CA” versions find a good carrier sense
threshold value for each agent using the state-of-the-
art principles in [12], [17], and [11], respectively. The
ratio, product, and online versions of CSMA/CA were
optimized over all combinations of both “max transmit
length” and carrier sense threshold but basic CSMA/CA
only over the “max transmit length” parameter.
“Ratio CSMA/CA” finds a single capacity sense thresh-

old common to all agents; the best threshold maximizes
the capacity of the network, under the assumptions of
the network capacity analysis in [12] (see Section 5.1.4 for
details). In the experiments the system was simulated for
different capacity threshold values (0.0125, 0.025, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1) and the best value
was chosen for each network configuration.
“Product CSMA/CA” finds a different capacity sense

threshold for each agent. It uses the major conclusion
in [17] that the product of transmit power and carrier
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sense threshold, denoted with xsi, should be constant
(see Section 5.1.4 for details). In the experiments we
simulated the network for different values of xsi (0.04,
0.0625, 0.1111, 0.25, 1, 4, 9, 16, 25) and the best value was
chosen for each network configuration.

“Online CSMA/CA” finds the same carrier sense
threshold for all agents. Because online CSMA/CA
requires a target SIR (see [11] for details), we sim-
ulated the network for different target SIR values
(0.195, 0.391, 0.781, 1.563, 3.125, 6.25, 12.5, 25, 50, 100) and
chose the best one for each network configuration. The
carrier sense threshold was updated every 1000 time
steps according to measured SIRs as discussed in [11].

5.1.3 Movement and imperfect sensing

The experiments included also transmitter movement
where transmitters moved into random directions for a
specified distance. When hitting an edge a transmitter
changed to a new random direction. For the experiments
we computed the capacity and observation probabilities
of the DEC-POMDP model as average probabilities over
(100) sampled transmitter positions. CSMA/CA param-
eters were found similar to the other experiments.

For experiments with imperfect sensing we assumed
that observed interference is Gaussian and thus inter-
ference power estimates, from a set of sensor samples,
are chi-squared distributed. Similar to the movement
experiment we computed the observation probabilities
of the DEC-POMDP model as average probabilities over
(100) observation error samples. Observation errors were
also used in the search for CSMA/CA parameters.

5.1.4 Capacity threshold for product and ratio principles

For completeness, we provide details about the ratio and
product CSMA/CA, specifically details on how finding
the best single capacity threshold for all agents conforms
with the ratio principle in [12] and how individual capac-
ity thresholds are tuned in the experiments to conform
with the product principle introduced in [17]. Readers
not interested in these details may skip this section.

Kim et al. [12] show that the network has maximum
capacity when the ratio xi/I

(th)
i of the transmit power xi

and the carrier sense threshold I
(th)
i is constant over all

agents i. The analysis of [12] assumes that the agents are
in a densely populated network and that they interfere
as if they were arranged in a hexagonal grid around the
transmitter and that transmit powers and carrier sense
thresholds of all agents are equal.

We use a threshold Cth for capacity which is the same
for all agents, and show that under the assumptions of
Kim et al. [12] it corresponds to a ratio of transmit power
to carrier sense threshold which is constant over agents.

For an agent i, the capacity is defined as

Ci = log2

(
1 +

gi,ixi∑
j 6=i gj,ixj + σ2

)
/Cmax

= log2

(
1 +

gi,ixi

Ii

)
/Cmax (5)

where Cmax is the capacity without interference, xi is
the transmit power, and Ii =

∑
j 6=i gj,ixj + σ2 is the

interference at agent i. Therefore the capacity threshold
Ci = Cth is achieved when

Ii = (xigi,i)/(2
CthCmax − 1) ≡ I

(th)
i (6)

where the right-hand side is the carrier sense threshold
corresponding to the capacity threshold. Therefore the
ratio of the power and the carrier sense threshold is

xi/I
(th)
i = (2CthCmax − 1)/gi,i , (7)

where the right-hand side is constant since gi,i is con-
stant over agents in [12]. Therefore, the best capacity
sense threshold corresponds to the best transmit power
and carrier sense threshold ratio.
“product CSMA/CA” finds a different capacity sense

threshold for each agent. It uses the main conclusion
in [17] that the product of transmit power and carrier

sense threshold, denoted with xsi = xiI
(th)
i , should

be a constant xsi = xsth. Therefore the corresponding
capacity sense threshold for agent i is

C
(th)
i = log2(1+gi,ixi/I

(th)
i ) = log2(1+gi,ixi/(xsth/xi))

= log2(1 + xi/xsth) (8)

where the last equality follows in cases when the receive
power is gi,ixi = 1 which holds in our experiments.

5.2 Results

We ran experiments for the DEC-POMDP method and
the CSMA/CA methods for different maximum link
lengths (distance between transmitter and receiver),
agent numbers, and optimization objectives.
In the experiments in Fig. 4a,b,e,f,g,h the methods

were optimized to minimize delay and evaluated by
the resulting average delay. In the experiments in
Figs. 4c and 4d all methods were optimized to maxi-
mize throughput and evaluated by the resulting sum
throughput. In the experimental setup of Figs. 4b and
4d, observations were computed from interference levels
that the transmitter observed, and in Figs. 4a,c,e,f,g,h
the observations were computed from interference levels
that the receiver observed (see Section 3 for details).
(Original) transmitter and receiver positions were iden-
tical between different figures and methods.
Figs. 4a and 4b show the average delay for eight agents

and different maximum link lengths. DEC-POMDP out-
performed all the CSMA/CA based methods by a large
margin. Because DEC-POMDP policies are optimized
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using the network model that contains observation prob-
abilities, hidden and exposed terminals do not degrade
DEC-POMDP performance, when using transmitter-side
observations instead of receiver-side observations: DEC-
POMDP performance is roughly the same in Fig. 4b as
in Fig. 4a, but for “ratio” and “product” CSMA/CA
methods the performance decreases (delay increases)
with transmitter-side observations.
Figs. 4c and 4d show sum throughput for eight agents

and different maximum link lengths. When optimizing
throughput there is no penalty for having too much data
in the transmit queue in contrast to optimizing delay.
To obtain momentary maximum throughput it suffices
to have enough data for maximum transmissions. With
receiver-side observations the DEC-POMDP method is
the best for maximum transmitter-receiver distances of
75m, and has otherwise equal performance with product
CSMA/CA. With transmitter-side observations the DEC-
POMDP approach is the best by a large margin.
Fig. 4e shows the average delay for different numbers

of agents and a maximum link length of 75m. For more
than four agents the DEC-POMDP approach achieves
the smallest delay, outperforming the other methods by
a large margin. The similar performance of the DEC-
POMDP approach and the best CSMA/CA approaches
for two and four agents can be explained by the offered
traffic load. Because the source traffic model used in the
experiments inserts data into a transmit queue 38.81%
of the time, the probability that two agents have data to
transmit at the same time is 15.06%, assuming that the
agents can always empty their queues. For few agents it
is therefore relatively easy to find transmission opportu-
nities, but with more agents it becomes important that
the agents take advantage of all the opportunities.
Fig. 4f shows the average delay for eight agents when

transmitters move. Although the performance of the
DEC-POMDP approach degrades with movement it has
the best performance over all movement distances (each
distance is a separate experiment). The figure illustrates
also that when the topology changes dramatically the
DEC-POMDP model should be optimized for the new
topology in order to attain maximum performance.
Fig. 4g shows the average delay for eight agents

with imperfect sensing. A higher sensing error (fewer
samples) decreases the performance of product and ratio
CSMA/CA slightly, but not of the DEC-POMDP ap-
proach which takes observation uncertainty into account.
Because the basic CSMA/CA approach has effectively

no carrier sense threshold in the experiments, it yields
the same average delay for all maximum link lengths
in Figs. 4a–g. Because the ratio and product based
CSMA/CAmethods and the DEC-POMDP approach can
take advantage of spatial sparsity, they yield lower delay
and higher throughput than basic CSMA/CA.
In Figs. 4a–g online CSMA/CA is outperformed by

the product and ratio CSMA/CA approaches whose pa-
rameters are optimized offline. In online CSMA/CA the
transmitter with the worst average SIR determines the

threshold for other transmitters even if others have high
average SIRs (see [11] for details). Online CSMA/CA
outperforms basic CSMA/CA when transmitter-receiver
distances are small, because SIR values are more homo-
geneous. The better performance of product CSMA/CA
compared to ratio CSMA/CA can be explained by the
capacity sense threshold being different for each device
in product CSMA/CA, but the same in ratio CSMA/CA.
The DEC-POMDP approach performs the best, because
in the DEC-POMDP approach each device has an in-
dividual MAC protocol optimized for the spatial and
temporal configuration. In the CSMA/CA approaches
the underlying MAC protocol is the same for all devices.
Lastly, Fig. 4h illustrates the convergence of the DEC-

POMDP approach without (“Naive DEC-POMDP”) and
with (“DEC-POMDP (our method)”) nonlinear scaling
(see Section 4.2.2 for details). Because EM iterations did
not end exactly at the displayed optimization times, the
average delay in an evaluation run was computed by
linear weighted averaging over the results of the two EM
iterations closest to the displayed optimization time.

6 DISCUSSION AND FUTURE WORK

In this paper, we consider medium access control (MAC)
in wireless networks with buffered data. The goal is to
optimize MAC protocols for different network configu-
rations and different optimization objectives. In order to
optimize the behavior of wireless agents over both spa-
tial and temporal dimensions we frame the optimization
problem as a factored decentralized partially observable
Markov decision process (DEC-POMDP). The policies
optimized by the DEC-POMDP approach incorporate
both random access and deterministic behavior. In ran-
domly generated wireless network configurations the
DEC-POMDP approach outperforms CSMA/CA based
comparison methods by a large margin, especially in
cases where complex behavior is required.
Our contribution has strong advantages: Unlike pre-

vious approaches our solution is theoretically optimal
under the assumed probability model for the network,
thus our model is a good framework for studying the
problem. The remaining concerns are about practical
feasibility. We empirically show that the approach is
feasible and yields very good results in reasonably sized
problems. Our traffic model is also better than most
traffic models incorporated in spectrum access methods
due to more detailed source traffic and buffer modeling.
Using the flexibility of the proposed DEC-POMDP

approach, future work includes utilization of multiple
channels, using several transmit power levels or transmit
rates, and experiments with different optimization goals.
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Fig. 4. Experimental results (legend in subfigure (e); separate legend for (h)). All experiments are averages over

ten simulations; error bars denote 95% confidence intervals. Performance as a function of maximum transmitter-

receiver distance: (a) shows average delay (smaller numbers are better) and (c) shows sum throughput (larger
numbers are better), when interference is measured at the receiver. (b) and (d) show corresponding performance when

interference is measured at the transmitter. DEC-POMDP outperforms other methods. Subfigures (e)-(h) show average

delay (smaller numbers are better), with 75m maximum transmitter-receiver distance. Performance a function of the
number of agents (e): DEC-POMDP outperforms the others for more than 4 agents. Performance robustness to

movement (f): the horizontal axis shows different experiments where each experiment increases the distance that
transmitters move; DEC-POMDP performs well. (g) shows performance robustness to imperfect sensing, using

different numbers of samples for interference power estimation: DEC-POMDP has stable good performance. (h) shows

convergence (average delay vs. optimization time) for naive DEC-POMDP (“Naive DEC-POMDP”) and our approach
(“DEC-POMDP (our method)”) which uses nonlinear scaling: nonlinear scaling is crucial for fast convergence.
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