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Abstract— Making decisions based on visual input is chal-
lenging because determining how the scene should be split into
individual objects is often very difficult. While previous work
mainly considers decision making and visual processing as two
separate tasks, we argue that the inherent uncertainty in object
segmentation requires an integrated approach that chooses the
best decision over all possible segmentations. Our approach
over-segments the visual input and combines the segments into
possible objects to get a probability distribution over object
compositions, represented as particles. We introduce a Markov
chain Monte Carlo procedure that aims to produce exact,
independent samples. In experiments, where a 6-DOF robot
arm moves object hypotheses captured by an RGB-D visual
sensor, our approach of probability distribution based decision
making outperforms an approach which utilises the traditional
most likely object composition.

I. INTRODUCTION

Segmentation is one of the key components of many vision
systems. Most current approaches search for the single best
segmentation. However, the quality of a particular segmen-
tation result is strongly application dependent, to the extent
that ambiguities are unavoidable without prior knowledge of
object models [1].

In this paper, we argue that optimal segmentation should
consider the application even further so that the segmentation
result should be considered together with its intended use.
Furthermore, we claim that a single optimal result does not
necessarily lead to optimal utility in the application, but that
better utility can be obtained by considering the distribution
of possible segmentations. The difference can be significant
in cases where the segmentation will be used as a basis for
decisions with variable benefits, which can be found often
in robotics [2] and other vision systems such as autonomous
cars [3] or security cameras [4].

The approach is in contrast to most state-of-the-art seg-
mentation approaches which search for a single optimal
result, for example by minimising an energy functional [5].
Optimising the method for a particular application is then
performed by modifying the energy functional or its param-
eters [6]. Our approach avoids the difficulty of modifying
the segmentation criterion by considering the utility function
directly.
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Fig. 1. Overall system. (a) Segment an image. (b) Create probability
distribution over object compositions from segments. (c) Instead of using a
single object composition for decision making, the robot chooses the action
which maximises the utility w.r.t. the whole probability distribution over
object compositions.

The major contributions of this paper are threefold: (i) We
present the novel idea that instead of the single most likely
segmentation, it is preferable to make decisions based on
the distribution of segmentations; (ii) we present a Markov
chain Monte Carlo procedure that produces approximately
exact, independent samples from the distribution; and (iii)
we present experiments with a robotic system that demon-
strate improved decisions with the proposed approach. The
operation of the system, illustrated in Fig. 1, consists of a
preliminary over-segmentation of an RGB-D image (Fig. 1a),
creation of a distribution of object composition hypotheses
based on the initial segmentations (Fig. 1b), and maximisa-
tion of the expected utility of an action over the distribution
to choose a robotic action (Fig. 1c).

II. RELATED WORK

Image segmentation is a widely and actively studied
research field [7], [8], [9], [10], [11]. Most of the earlier
work concentrates on segmenting grey and color 2D images
[7], [8]. With new cheap 3D-sensors research on segmenting
3D images has seen high activity lately [12], [13], [14],
[11], especially in robotics, where 3D information can be
a necessity.



We are not aware of previous work on using the com-
plete probability distribution over object compositions for
decision making. Previous research exists on utilising a
probability distribution over segmentations to find the best
segmentation [15], [16]. The robotic system presented in
[16] utilises a probability distribution over segmentations to
gather information about the most likely segmentation. The
goal in [16] is to reduce segmentation uncertainty through
active exploratory actions such as moving the camera and
poking objects. [17] localises 3D objects in an RGB-D
image by matching the best 2D segmentation hypotheses
to the depth map inside a bounding box. In the task of
localising objects, [17] shows the usefulness of using several
2D hypotheses instead of only one. In another line of work,
[18] uses several different temporal segmentations of RGB-
D video to optimise labelings of human activities. Many
robotic systems base their decisions on segmented images.
In [19], in the task of clearing a pile of objects, a robotic
system creates at each time step a segmentation hypothesis
about possible objects and attempts to verify an object
hypothesis by interaction (poking and pushing). In specific
applications, object segmentation is not always needed for
decision making. For example, grasps can be selected based
on features [20] computed directly from an image.

A common technique for finding the best object compo-
sition is through graph cuts [9], [21], [11]. In this paper, we
estimate the probability distribution over object compositions
using a Markov chain Monte Carlo (MCMC) procedure.
Prior work on applying MCMC to finding a single best
segmentation exists; for example, in the task of segmenting
humans from video frames using human shape models [22],
or for segmenting 2D images [23]. Because of the inherent
ambiguity in segmentation the authors also present in [23]
a technique for selecting a fixed amount of distinct 2D
segmentations, instead of only the most likely segmentation.

This paper is based on our earlier work [24] which for-
malises planning manipulation actions over different object
compositions over several time steps as a partially observable
Markov decision process (POMDP). In [24] the idea of
sampling over compositions along the lines of Algorithm 1
is also briefly presented. This paper extends the work by
analysing the convergence of the Markov chain as well as
presenting new procedures that aim to generate exact, inde-
pendent samples. These give theoretical and practical insights
needed to apply the idea in a variety of contexts. Moreover,
the experimental set-up in this paper is different, aiming to
analyse directly if decision making over the distribution of
compositions is preferable to the alternative of using the best
single composition.

III. UNCERTAIN SEGMENTATION

Many systems first segment an image, then form an
object model from the segmentation, and finally, based on
this model, decide on the next action. Usually, the goal in
segmentation is to find the most likely object composition h∗

from the segmented image [15], [12], [13], [14], [11], [16]:

h∗ = argmax
h

P(h) . (1)

This composition can be used directly to find the action with
highest application specific preference, that is, the action a∗

which maximises the application specific utility U(h,a):

a∗ = argmax
a

U(h∗,a) . (2)

In this paper, we instead propose to use the action which
maximises the expected utility:

a∗ = argmax
a ∑

h
P(h)U(h,a) , (3)

where P(h) is a probability distribution over object compo-
sitions. In some applications, e.g. when comparing different
segmentation algorithms, when a human operator requires
a single hypothesis, or under heavy computational con-
straints, a constant utility function may be desirable and
then Equations 2 and 3 yield the same action. In many
other applications, Eq. 3 yields a better solution than Eq. 2.
For example, an autonomous vehicle usually does not care
about immobile objects further away from the road but
the vehicle should assign a high cost for failing to detect
pedestrians close to the road. Similarly, a robot pouring hot
coffee into a cup for a human should assign a high cost to
spilling coffee and take into account the whole distribution of
segmentations. In Section IV, in the robotic task of moving
toys away from a table, we demonstrate that the approach
based on Eq. 3 outperforms an approach based on Eq. 2.

To generate object compositions in a computationally
efficient way, we first segment the image into pixel patches
(= segments, see Fig. 1a), and then combine the segments
into object compositions which consist of object hypotheses
(see Fig. 1b). Previous work on segmenting an image and
then combining the segments into a single object composition
immediately [11], or through interaction [15], [16], exists.
We instead maintain a probability distribution over object
compositions and make decisions based on the probability
distribution.

More formally, denote with δi, j whether segments i and
j are directly (physically) connected: δi, j = 1 and δi, j = 0
denote direct and no direct connection, respectively. Denote
with δ all possible direct connections. Moreover, denote with
ci, j = 1 when segments are part of the same object and with
ci, j = 0 when not. Denote with h = (h1, . . . ,hN) an object
composition, where hi is an object hypothesis. An object
hypothesis hi consists of a set of directly connected segment
pairs. All segments belonging to the same object hypothesis
are either directly or indirectly connected, that is, ci, j = 1
for all segment pairs i, j which are part of the same object
hypothesis. Note that our sampling procedure in Algorithm 1
in Section III-A uses these direct and indirect connections to
estimate the probability of a segment pair connection.

h has worst case dimensionality of 2N2/2 w.r.t. the num-
ber of segments N. In practice, the dimensionality may
be lower because segments with only “air” between them



cannot be directly connected. Often, in real-world scenes,
the dimensionality of h is a product of the dimensionality
of disconnected groups of segments ∏i 2N2

i /2, where Ni is
the number of segments in a segment group. For exact
computation this is still intractable, and therefore we use
an approximate particle representation for the probability
distribution over object compositions: P(h) = ∑i wihi, where
∑i wi = 1 and wi ≥ 0 ∀i.

A. Markov chain Monte Carlo

In order to generate the particle based probability distribu-
tion over object compositions which can be used as a basis
for decision making, we utilise Gibbs sampling (also known
as Glauber dynamics) [25], [26], [27]. We randomly sample
direct connections one connection at a time. We will first
discuss how a new Markov chain state is sampled, then show
that the proposed Markov chain is ergodic and converges
to a unique distribution for non-deterministic connection
probabilities, and finally present a sampling procedure that
aims to generate exact, independent samples.

Our sampling technique for generating a new Markov
chain state takes advantage of the fact that evaluating the
probability for a single segment connection is fast because
we only need to consider local segment connections. The
sampling technique consists of two steps: 1) select randomly
two segments i and j which may be directly connected, 2)
sample the direct connection from the probability distribu-
tion, which is estimated by assuming the direct connection
is disabled and by keeping other direct connections fixed to
their current values. When i and j are indirectly connected,
that is, part of the same object through some other con-
nections, the probability for the direct connection between
i and j depends only on the prior probability of i and j
being part of the same object because connecting i and j
would not change which object hypothesis other segments
would belong to. When i and j are not already part of
the same object, the probability for the direct connection
depends on the probabilities between the segment sets U
and V which connecting i and j would connect into the same
object hypothesis. Fig. 2 illustrates this.

Algorithm 1 defines formally how to sample a new object
composition h∗, when given the current object composition
h and two random numbers w and q. The algorithm first
samples a possible direct connection, then on lines 4 and
5 determines the segment sets U and V which the direct
connection would connect. On lines 6, 7, the algorithm com-
putes the probability for the segment sets U and V to belong
to the same object hypothesis when i and j are connected
and when not. Assuming an uniform direct connection prior,
line 9 computes the direct connection probability, and line 9
finally samples the direct connection.

a) Ergodicity of the Markov chain.: When the connec-
tion probability P(ci, j) for any two segment patches is non-
deterministic 0 < P(ci, j) < 1, the Markov chain generated
by Algorithm 1 is ergodic and converges to an unique
distribution. Because P(ci, j) is non-deterministic the prob-
abilities on lines 6, 7, and 8 are non-deterministic, and
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(a) (b)
Fig. 2. Effect of indirect connections on the connection probability between
segments i and j. A circle denotes a segment and a solid line denotes
a connection between segments. Dotted lines denote which connection
probabilities are used for sampling the connection between i and j. U and
V denote the sets of segments directly or indirectly connected to i and j,
respectively. (a) Because i and j are not indirectly connected we have to
consider the connection probabilities between segments that will become
part of the same object, that is, we have to take into account the connection
probabilities between all segments in the sets U and V . (b) Because i and
j are already indirectly connected we consider only the probability of the
direct connection between i and j.

1 h∗ = Sample(h,w,q)
Input: Composition h, random values w and q
Output: New composition h∗

2 δi, j← The wth direct connection
3 ĥ← h so that δi, j = 0

4 U ←

{
i if ci, j = 1 in ĥ

i∪{u|ci,u = 1} if ci, j = 0 in ĥ

5 V ←

{
j if ci, j = 1 in ĥ

j∪
{

v|c j,v = 1
}

if ci, j = 0 in ĥ
6 P(ĥ|δ ∗i, j = 1)← 1

Z(U,V,ĥk)
∏u∈U ∏v∈V P(cu,v = 1)

7 P(ĥ|δ ∗i, j = 0)← 1
Z(U,V,ĥk)

∏u∈U ∏v∈V P(cu,v = 0)

8 P(δ ∗i, j = 1|ĥ)← P(ĥ|δ i, j
k+1=1)

P(ĥk|δ
i, j
k+1=1)+P(ĥk|δ

i, j
k+1=0)

9 δ ∗i, j←

{
0 if P(δ ∗i, j = 1|ĥ)≤ q

1 if P(δ ∗i, j = 1|ĥ)> q
Algorithm 1: Sample new object composition.

because we randomly select the direct connection to consider,
Algorithm 1 enables or disables any direct connection with
non-zero probability. Therefore, the Markov chain is ergodic
and converges to an unique distribution in the limit. Note
that because of the inherent uncertainty in segmentation
the condition 0 < P(ci, j) < 1 usually applies, e.g. in the
experiments in Section IV.

b) MCMC procedure.: We would like to have our
MCMC approach produce automatically independent sam-
ples from the correct distribution. Our MCMC approach
first aims to get an exact sample, that is, a sample from
the correct probability distribution, then continue sampling
until having enough independent samples (H in Algorithm 2).
Algorithm 2 shows the proposed MCMC approach. Because
the Markov chain state is a discrete combination of binary



1 H =Compositions(NESS,NSTART,|H|)
Input: ESS target NESS
Output: Compositions H

2 {h1,T}← CFTP(NSTART)
3 t← 1, H← h1
4 while ((ESSmin(H)< NESS) AND
5 (T < TMAX)) do
6 while t < T do
7 ht+1← Sample (ht,w,u)
8 H←{H,ht+1}
9 t← t +1

10 end
11 T ← 2T
12 end
13 H← Prune H evenly to size |H|

Algorithm 2: Sample a set of object compositions.

variables, each variable denoting whether two segments are
directly connected, we could use the coupling from the past
(CFTP) [28] technique to get exact samples. The basic idea
of CFTP is to run Markov chains starting from each possible
state with the same random numbers, starting further back
in time, until the chains collapse (see [28] for why). For
monotone [28] and anti-monotone [29] Markov chains only
two starting states are needed. However, our chain is not
monotone nor anti-monotone. Because of the large number
of states we start CFTP from a limited dispersed set of states:
the all connected, all disconnected, and from a fixed number
of randomly selected states. We can make the collapsed
sample more likely to be exact by increasing the number of
starting states: when the starting states cover the whole state
space the collapsed sample will be exact [28]. Algorithm 3
shows the CFTP procedure we use. In the experiments, we
used 100 (NSTART in Algorithm 2 and Algorithm 3) starting
states.

After CFTP, we start the actual sampling from the col-
lapsed sample, and double the sampling horizon until having
enough independent samples. We use the minimum of the
effective sample size (ESS) [30] over all possible direct con-
nections (NESS in Algorithm 2) as an lower bound estimate
for the number of independent samples. Sampling stops when
the estimate for independent samples is large enough. We
also use a hard limit on the number of generated samples
(TMAX in Algorithm 2).

IV. EXPERIMENTS

We compare decision making based on the most likely
object composition to decision making based on the prob-
ability distribution over object compositions in a robotic
manipulation task. Note that in the experiments, the goal
is not to find correct segmentations but to make correct
decisions. The experiments test whether maximising the
expected utility instead of making decisions based only
on the most likely segmentation increases performance in
practice. We are not aware of previous approaches that make
decisions based on maximising the expected utility over

1 {HT,T} = CFTP(NSTART)
Input: # of start compositions NSTART

Output: Composition HT at time T
2 HINIT ←{{h1|δ = 1},{h2|δ = 0},
3 {h3, . . . ,hNSTART |δ = random}}
4 T ← 1
5 repeat
6 T ← 2T , HT←HINIT

7 wT , . . . ,wT/2← Random
8 uT , . . . ,uT/2← Random
9 for t← T to 1 do

10 HT−t+1← /0
11 foreach hT−t ∈HT−t do
12 HT−t+1←HT−t+1∪
13 Sample(hT−t,wt ,ut)
14 end
15 end
16 until |HT|= 1

Algorithm 3: Coupling from the past (CFTP).

object compositions. Fig. 3 shows the overall experimental
setup. In the setup, a Kinect RGB-D sensor captures images
of the scene and a 6-DOF robotic Kinova Jaco arm tries to
move as many toy bricks away from the table as possible.
Because we do not assume any prior information in advance,
including geometric or colour information, and because the
bricks are in a pile, segmenting the bricks correctly is
difficult. For clearly separated known objects one could
possibly use standard segmentation methods. At each time
step, the RGB-D sensor captures an RGB-D image of the
scene, and the system segments the RGB-D image into
patches and computes a prior probability for each patch
pair to belong to the same object using the approach in
[11]. In more detail, [11] groups neighbouring pixels into
clusters and fits planes and B-splines onto the patches to get
parametric models (see Fig. 1a for examples of segmented
patches). [11] computes for each patch pair a set of features
based on the texture, distance of the patches from each
other, and other properties. Finally, [11] inputs the computed
features into a support vector machine (SVM), trained with
a labeled set of household items which differ from the items
in our experiments, and scales the output into a probability
indicating whether the patches belong to the same object.
We use the approach of [11] to compute prior probabilities
P(ci, j) for all segment/patch pairs, where P(ci, j = 1) defines
the prior probability for i and j to be part of the same object.
Note that, in place of the segmentation approach we currently
use [11], our approach can use also other approaches to over-
segment and estimate patch pair probabilities.

We use P(ci, j) in the MCMC procedure in Algorithm 2 and
compute a probability distribution over object compositions
(see Fig. 1b for examples). The number of MCMC samples
should be chosen according to the computational budget. In
the experiments, we used |H| = 2000 samples. Because the
minimum lower bound estimate ESS underestimates the real



ESS it should be lower than the number of samples: we
used a target ESS of NESS = 200, a tenth of the number of
samples. The number of CFTP starting states influences the
independence of the first sample w.r.t. the starting state. We
used NSTART = 100 CFTP starting states in the experiments.
The hard limit for the number of samples generated was
TMAX = 131072. For computing grasps, and for estimating
the grasp success probability (without taking grasp history
into account), we used the top-down grasping approach
in [24]. The approach in [24] estimates the grasp parameters,
grasp spread (distance between opposing fingers), robot
hand rotation, and the grasp centroid, from the point cloud
representing the object. We labeled grasps valid when the
spread did not exceed 4cm.

In the experiments, we shook a box containing toy bricks
shown in Fig. 3b and emptied the bricks into a specific
area on a table. Fig. 4 shows the 10 random scenes for
each method ordered so that the first scene produced highest
utility and the last scene the lowest utility. The goal was to
move a toy brick in each time step away from the table. We
now describe the experimental application using the terms
introduced for the general framework in Section III. In the
application, action a specifies the object to grasp and move
away. The robot is rewarded 1 for a successfully grasped
and moved object and 0 otherwise. The utility function
U(h,a) is thus directly proportional to the probability of
successfully grasping a in object composition h. We compare
two methods. The first one, called “Best composition”,
corresponds to Eq. 2. “Best composition” finds first the most
likely object composition h∗, and then finds the action a that
maximises the utility function U(h∗,a). In this application,
Eq. 2 tries to grasp the object which has the highest grasp
success probability in the most likely object composition.
The second method, called “Best object”, corresponds to
Eq. 3. “Best object” tries to maximise the expected utility
∑h P(h)U(h,a) over all possible object compositions. In this
application, Eq. 3 tries to grasp the object which has the
highest grasp success probability weighted by the probability
of the object to exist in an object composition.

c) Results & discussion.: Fig. 5 shows the number of
successful moves (a maximum of six moves per scene) in
10 experimental runs for each method. One complete object
movement operation, including image processing, segment-
ing, generating the particle based probability distribution,
and moving an object, took on the average 79.9s of which
our MCMC approach took 8.8s (11%). The time needed
for MCMC depends on the number of particles and CFTP
starting states and can be adjusted. The “Best object” method
performed significantly better than “Best composition” (the
p-value was 0.029 in the Mann-Whitney U test [31]). To
qualitatively compare the methods we recorded decisions by
both, although only one method operated the robot arm in
each scene, that is, we ran one method and at the same time
output the decisions which the other method would have
made for the same object compositions. In the scenes in
Fig. 4a, , even though graspable objects were still available,
“Best object” would have finished execution early 3 times

(a) Overall experimental setup

(b) Toy bricks used

Fig. 3. In the experiments, we use an RGB-D sensor for visual input and
a 6-DOF Kinova Jaco arm for grasping randomly placed toy bricks.

and “Best composition” finished early 10 times, that is, in ev-
ery scene, and in the scenes in Fig. 4b “Best object” finished
execution early 3 times and “Best composition” would have
finished early 23 times. The most likely composition was
often missing graspable objects that were part of other object
compositions. Fig. 6 shows an example of one such situation.
Fig. 6a shows under-segmentation happening sometimes. In
general, it is better to over-segment too heavily than under-
segment but this applies to all over-segmentation approaches
including the over-segmentation approach utilised by the
two comparison methods. Grasps were sometimes successful
even when the segmentation of the grasped object did not
correspond to a real object. For example, the robot sometimes
grasped the segmented top of an object and moved the
complete object successfully. The robot can achieve higher
performance because our utility function did not include
unnecessary constraints. For applications, such as moving
fragile objects, the utility function can penalize grasping an
incorrectly segmented object if this could lead to dropping
the object.

V. CONCLUSIONS

In this paper, we argued that image segmentation should be
considered in the context it is applied in. When used as part
of a vision system most current approaches try to determine
the best segmentation (Eq. 1) and then use the result for
decision making. However, usually the best segmentation is
application specific (Eq. 2). Moreover, in applications with
non-uniform utility the probability distribution over possible
segmentations (Eq. 3) performs better than a single segmen-
tation. To make computations with the complete probability



(a) Random scenes in “Best composition” evaluations, ordered according to experimental success from best to worst

(b) Random scenes in “Best object” evaluations, ordered according to experimental success from best to worst

Fig. 4. Cropped kinect RGB images of the 20 randomly generated scenes.
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Fig. 5. Results for the robot moving toy bricks in random scenes (please,
see the text for further details). The box plot in the figure describes the
number of successful moves in 10 experimental runs for each method. The
“Best object” method performed significantly better than “Best composition”
(the p-value was 0.029 in the Mann-Whitney U test [31]).

distribution feasible, we provided an MCMC procedure for
estimating the distribution.

In a task of moving toys from a table with a robot arm,
our probability distribution based approach outperformed
an approach based on the most likely object composition.
Analysis showed that the most likely composition did not
always contain objects which could have been moved and
which were present in other less likely compositions.

The ideas in this paper could be applied in many different
applications that use image segmentation for decision mak-
ing. For example, a robot pouring hot coffee into a cup for

a human should take into account all possible segmentations
of the scene to prevent accidents. In the future, support for
modelling moving objects could be added to the proposed
approach using particle filtering.
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