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Abstract

Decentralized partially observable Markov deci-
sion processes (DEC-POMDPs) are used to plan
policies for multiple agents that must maximize
a joint reward function but do not communicate
with each other. The agents act under uncertainty
about each other and the environment. This plan-
ning task arises in optimization of wireless net-
works, and other scenarios where communication
between agents is restricted by costs or physical
limits. DEC-POMDPs are a promising solution,
but optimizing policies quickly becomes computa-
tionally intractable when problem size grows. Fac-
tored DEC-POMDPs allow large problems to be
described in compact form, but have the same worst
case complexity as non-factored DEC-POMDPs.
We propose an efficient optimization algorithm
for large factored infinite-horizon DEC-POMDPs.
We formulate expectation-maximization based op-
timization into a new form, where complexity can
be kept tractable by factored approximations. Our
method performs well, and it can solve problems
with more agents and larger state spaces than state
of the art DEC-POMDP methods. We give results
for factored infinite-horizon DEC-POMDP prob-
lems with up to 10 agents.

1 Introduction

Planning for multiple agents arises in several domains such
as robotics (where agents are robots) or wireless networking
(where agents are devices transmitting over the network). The
task is especially difficult when the agents have a joint goal,
but they have only uncertain knowledge of each other and the
environment, and they cannot directly communicate to share
knowledge. The lack of communication can be due to phys-
ical limits of the agents, or it may be necessary to minimize
costs like power drain. The agents must then act separately,
under uncertainty about each other and the environment.
For example, in wireless networking devices may have

a joint goal of minimizing transmission delays in the net-
work. Each device senses only local transmissions and does
not know upcoming data streams of other devices. Simulta-
neous transmissions from several devices can collide, caus-

ing delays. The task is to optimize an overall action policy,
where each device can follow its own part of the policy with-
out inter-device communication, and the overall policy mini-
mizes delays.
Problems such as optimizing the policy of several wire-

less radio devices can be framed as DEC-POMDP prob-
lems [Oliehoek, 2010] and solving the DEC-POMDP yields
the optimal policy for each agent. However in DEC-
POMDPs, the computational complexity of optimization
grows rapidly in terms of the number of agents and the num-
ber of variables describing the environment. Current algo-
rithms can only handle very few agents.
We will show how to optimize policies efficiently for fac-

tored infinite-horizon DEC-POMDPs with large state spaces
and many agents. Factored means we exploit independence
relationships in transitions of state variables, observations,
and rewards. Although many DEC-POMDP problems are
factored, such problems are hard for current methods, since
any momentary factorization of the state does not survive
into the future. We will show we can exploit factorization
better than previously by reformulating the learning and us-
ing approximations that maintain the factorization. To our
knowledge this is the first investigation into factored infinite-
horizon DEC-POMDPs. Our approach builds on the work of
using Expectation Maximization (EM) for optimizing finite
state controllers (FSCs) for POMDPs [Toussaint et al., 2006]

and for DEC-POMDPs [Kumar and Zilberstein, 2010a]. Our
proposed methods have polynomial complexity with respect
to the number of state variables and number of agents.

2 Background

DEC-POMDPs are a general and hence computationally
complicated class of models for multi-agent sequential de-
cision making. At simplest, Markov decision processes
(MDPs) can optimize policies for one agent that knows the
full state of the environment; partially observable Markov
decision processes (POMDPs) can optimize policies for one
agent under uncertainty; and DEC-POMDPs treat the even
harder case of several agents. The harder problems need
much computation: the worst case computational complex-
ity of finding solutions is PSPACE-hard for finite-horizon
POMDPs and NEXP-complete for DEC-POMDPs [Allen and
Zilberstein, 2009]. DEC-POMDPs are harder to solve than
POMDPs since in DEC-POMDPs each agent must consider



more effects of its actions: not only effects on the world state,
but also effects on the observations and thus the actions of
other agents. In POMDPs the agent can maintain a probabil-
ity distribution (“belief”) over the world state, but in DEC-
POMDPs all the observation history is needed for optimal
decisions.
Efficient point based algorithms exist for solving large

POMDPs [Pajarinen et al., 2010] and for finite-horizon
DEC-POMDPs [Kumar and Zilberstein, 2010b], but not for
infinite-horizon DEC-POMDPs. To keep the policy size
bounded, state of the art infinite-horizon DEC-POMDPmeth-
ods [Amato et al., 2007; Kumar and Zilberstein, 2010a]

keep the policy of an agent as a stochastic finite state con-
troller (FSC). Amato et al. [2007] formulate FSC optimiza-
tion as a non-linear constraint satisfaction (NLP) problem
and find FSC parameters by an NLP solver. Kumar and Zil-
berstein [2010a] optimize FSC parameters using expectation
maximization (EM). The EM approach scales well and is flex-
ible. It can for example be used with continuous probability
distributions [Toussaint et al., 2006]. Bernstein et al. [2005]

use linear programming to improve the value of each FSC
in turn with other FSCs fixed. Szer et al. [2005] find de-
terministic finite state controllers of fixed size by a best-first
search. Best accuracy and scaling have been demonstrated
for the NLP and EM methods.
In many real world problems the world state, observations,

and rewards can be divided into many variables. For example,
in a wireless network the size of each packet buffer (see Sec-
tion 4) can be described as a separate state variable, instead
of a single world state describing all buffers. For POMDPs,
efficient algorithms exist for solving large factored infinite-
horizon problems [Pajarinen et al., 2010], but for DEC-
POMDPs, similar research exists only for factored finite-
horizon problems [Oliehoek et al., 2008; Oliehoek, 2010];
we are not aware of research on efficiently solving factored
infinite-horizon DEC-POMDPs. Although the specification
of a general factored DEC-POMDP problem can be simpler
than of a non-factored problem, the worst case computational
complexity is the same [Allen and Zilberstein, 2009]: a spe-
cial case where agents act independently but with the same
rewards has lower computational complexity, but for most in-
teresting real world DEC-POMDP problems the worst case
complexity is NEXP-complete [Allen and Zilberstein, 2009].

We next present definitions for infinite-horizon DEC-
POMDPs and factored DEC-POMDPs, and the recent EM
approach of Kumar and Zilberstein [2010a].

2.1 Infinite-Horizon DEC-POMDP: Definition

An infinite-horizon DEC-POMDP is specified by a tuple
〈{αi}, S, {Ai}, P, {Ωi}, O,R, b0, γ〉. Each αi is an agent, S
is the set of world states, and Ai and Ωi are the sets of actions
and observations available to agent αi. The Markovian tran-
sition function P (s′|s,~a) specifies the probability for moving
from state s to state s′, given the actions of all agents which
are denoted as the joint action ~a = 〈a1, . . . , aN 〉, where N
is the number of agents. The observation function O(~o|s′,~a)
is the probability for the agents to observe ~o = 〈o1, . . . , oN 〉
(where each oi is the observation of agent i), when actions
~a caused a transition to state s′. R(s,~a) is the real-valued
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Figure 1: Influence diagram for a DEC-POMDP with finite
state controllers ~q, states s, joint observations ~o, joint actions
~a and reward r. A dotted line separates two time slices.

global reward for executing actions ~a in state s. Lastly, b0(s)
is the initial state distribution and γ is the discount factor.

For brevity we denote transition probabilities with Ps′s~a,
observation probabilities with P~os′~a, reward functions with
Rsa, and other agents than i with ī. At each time step each
agent i performs action ai, the world transitions from state
s to state s′ with probability Ps′s~a, and the agents receive
observations ~o with probability P~os′~a. The goal is to compute
a joint policy π for the agents that maximizes the expected
discounted infinite-horizon reward E [

∑∞
t=0 γtR(s,~a)|π].

The joint policy to be optimized is a set of stochastic finite
state controllers (FSCs), one for each agent. A FSC resem-
bles a Markov model, but transitions depend on observations
from the environment, and the FSC emits actions affecting
the environment. The FSC for agent i is specified by the tu-
ple 〈Qi, νqi

, πaiqi
, λq′

i
qioi

〉, where Qi is the set of FSC nodes

qi, νqi
is the initial distribution P (qi) over nodes, πaiqi

is the
probability P (ai|qi) to execute action ai when in node qi, and
λq′

i
qioi

is the probability P (q′i|qi, oi) to move from node qi to

node q′i when observing oi. Figure 1 illustrates the setup.

2.2 Factored DEC-POMDPs: Definition

In a factored DEC-POMDP [Allen and Zilberstein, 2009;
Oliehoek, 2010] states and observations are described as a
combination of several variables, and the reward is a sum of
reward sub-functions. The factored DEC-POMDP specifica-
tion can be compact since states and observation variables
and reward sub-functions depend only on few variables. The
state s is a combination of variables s = s1 × · · · × sM

and observation oi for agent i is a combination of vari-
ables oi = oi,1 × · · · × oi,K . Transition probabilities are
written as P (s′|s,~a) =

∏

i P (s′i|Pa(s
′
i)), where Pa(si) de-

notes the set of state and action variables that s′i depends
on; observation probabilities are written as O(~o|s′,~a) =
∏

i

∏

j P (oi,j |Pa(oi,j)), where Pa(oi,j) is the set of state and
action variables that oi,j depends on. Reward functions are
defined as functions over subsets Sk of state and action vari-

ables: R(s,~a) =
∑K

k=0 Rk(Sk), where Rk is a reward func-
tion operating on subset Sk.

A factored DEC-POMDP can be represented as a dynamic
Bayesian network (DBN) [Murphy, 2002]. The right hand
side of Figure 2 shows the DBN of a wireless network prob-
lem with two agents for the first two time slices. For clarity
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Figure 2: Wireless network DEC-POMDP example. Left: Il-
lustration. Right: Influence diagram. Two wireless devices
cause interference to each other, when transmitting simulta-
neously. A packet is successfully transmitted only if only one
device is transmitting. Each device has a packet queue (state
variables s1 and s2). A Markov process (state variables s3

and s4) inserts packets into the queue. The action (a1, a2) is
chosen using the FSC state (q1, q2). The reward (r1, r2) is the
negative queue length. A dotted line separates two consecu-
tive time steps. For clarity this problem does not have all the
dependencies possible in a factored DEC-POMDP.

this problem does not have all the possible dependencies a
factored DEC-POMDP problem could have.

2.3 Expectation Maximization for DEC-POMDPs

Our approach builds on the expectation maximization (EM)
method for DEC-POMDPs [Kumar and Zilberstein, 2010a].
The optimization is written as an inference problem and EM
iteration is used to improve stochastic finite state controllors
(FSCs). We outline the method; for details, see Toussaint et
al. [2006] and Kumar and Zilberstein [2010a]. The reward
function is scaled into a probability

R̂(r = 1|s,~a) = (R(s,~a) − Rmin)/(Rmax − Rmin) , (1)

where Rmin and Rmax are the minimum and maximum re-
wards possible and R̂(r = 1|s,~a) is the conditional prob-
ability for the binary reward r to be 1. The FSC parame-
ters θ are then optimized by maximizing the reward likeli-
hood

∑∞
T=0 P (T )P (r = 1|T, θ) with respect to θ, where the

horizon is infinite and P (T ) = (1 − γ)γT . This is equiva-
lent to maximizing expected discounted reward in the DEC-
POMDP. We next describe the E-step and M-step formulas
used in the EM approach.
In the E-step, alpha messages α̂(~q, s) and beta messages

β̂(~q, s) are computed. Intuitively, α̂(~q, s) corresponds to the
discounted weighted average probability that the world is in
state s and the FSCs are in nodes ~q, when following the pol-
icy defined by the current FSCs. α̂(~q, s) can be computed
by starting from the initial nodes-and-state distribution and

projecting it T time steps forward: if αt(~q, s) denotes the
probability for being in state s and nodes ~q at time t, we have

α̂(~q, s) =

T
∑

t=0

γt(1 − γ)αt(~q, s) . (2)

β̂(~q, s) is intuitively the expected discounted total scaled re-
ward, starting from state s and FSC nodes ~q. First project the
reward probability t time steps backwards; denote it βt(~q, s).
We then have

β̂(~q, s) =

T
∑

t=0

γt(1 − γ)βt(~q, s) . (3)

The M-step FSC parameter update rules can be written as:

ν∗
qi

=
νqi

Ci

∑

s,qī

β̂(~q, s)νqī
b0(s) (4)

π∗
aiqi

=
πaiqi

Cqi

∑

s,s′,qī,
~q′,~o,aī

α̂(~q, s)πaīqī

[

Rs~a +
γ

1 − γ
Ps′s~aP~os′~aλq′

ī
qīoī

λqi
′qioi

β̂(~q′, s′)
]

(5)

λ∗
q′

i
qioi

=
λq′

i
qioi

Cqioi

∑

s,s′,qī,q
′

ī
,oī,~a

α̂(~q, s)

Ps′s~aP~os′~aπaīqī
πaiqi

λq′

ī
qīoī

β̂(~q′, s′) , (6)

where Ci, Cqioi
, and Cqi

are normalizing constants and ī de-
notes all agents except i.
Kumar and Zilberstein [2010a] give formulas for the com-

plexity of the DEC-POMDP EM algorithm for two agents.
For N agents the complexities are O(|Q|2N |A|N |O|N |S|2)
for computing Markov transitions and O(Tmax|Q|2NS2) for
propagating alpha and beta messages. The computational
complexity for Equation 5 is O(|Q|2N |S|2|A|N−1|O|N ) and
for Equation 6 O(|Q|2N |S|2|O|N + |Q|N |S|2|A|N |O|N ).
The complexity is exponential in the number of agents,
polynomial in the number of states, and for factored DEC-
POMDPs, exponential in the number of state variables. This
is much better than the complexity class of NEXP-complete,
but to solve DEC-POMDPs with many agents and large state
spaces a reduction in complexity is required.

3 Proposed Approach

We now propose our new method, based on the EM ap-
proach, to solve factored DEC-POMDPs with large state
spaces and many agents. In order to apply the EM ap-
proach for such large-scale factored (DEC)-POMDPs, two
main problems must be solved. Problem 1: In general fac-
tored (DEC)-POMDP problems, the influence between state
variables grows when a belief is projected forward or back-
ward in time; even if the problem initially has several inde-
pendent factors, after some time steps, all variables depend on
each other (this is usual in dynamic Bayesian networks [Mur-
phy, 2002]). Problem 2: In the EM approach, scaling re-
wards into probabilities makes the state variables in the fac-
tored reward sub-functions depend on each other. Problem



1 causes the size of the probability distribution over states
and FSC nodes to grow exponentially with the number of
state variables and agents, and Problem 2 makes it grow ex-
ponentially with the number of state variables. In many prob-
lems the number of state variables depends on the number of
agents, so both problems 1 and 2 make solving problems with
many agents intractable.
We propose a new EM based approach with polynomial

complexity in the number of state variables and agents. We
make three main changes. Change 1: We transform Equa-
tions 4, 5, and 6 so that probabilities are projected only for-
ward in time. This lets us apply efficient approximations dur-
ing forward projection. Change 2: We use approximations
that keep the probability distribution over state variables and
FSC nodes in factored form during forward projections; this
addresses Problem 1. Change 3: We keep the reward sub-
functions separated, when computing probabilities; this ad-
dresses Problem 2. We next discuss the changes in detail.

3.1 Projecting Probabilities Forward

A major part in our E and M steps will be forward projection
of a (factorized) probability distribution over FSC nodes and
state variables, α̃t(~q, s), using the dynamic Bayesian network
(DBN) of the factored DEC-POMDP (Figure 2 shows an ex-
ample DBN), and keeping the result factorized. We discuss
this before detailing the E and M steps.
The junction tree algorithm or variable elimination can be

used on the DBN between two successive time points to com-
pute α̃t+1(~q, s) from α̃t(~q, s) [Murphy, 2002]. The complex-
ity of the algorithm depends on the size of cliques in the junc-
tion tree; we simply computed cliques greedily for the DBN.
In factored DEC-POMDPs dependencies are often initially
limited to a few variables, but more dependencies quickly ap-
pear in future steps. We use approximations (details soon) to
ensure that in each projection step, the found cliques are small
(below a fixed size) even as time goes on or as more agents are
added; the complexity then remains polynomial in the number
of state and FSC node variables (for details see Section 3.5).
After each forward projection step, we approximate the dis-
tribution α̃t+1(~q, s) over variables (q1, . . . , qN , s1, . . . , sM )
with a factorized form: the approximation is factorized over
variable clusters C1, . . . , CL, where Ci is a set of FSC node
and state variables. The factor for each Ci is obtained by
marginalizing out variables not in Ci, which is fast to do.
With fixed variable clusters, the next forward projection step
is no harder than the previous one. Variables in the same
cluster are in the same junction tree clique; if all variables are
in one cluster, the projection is identical to the original EM
method. We use two clusterings that yield fast computation.
Although we perform an approximation at each time step,

the approximation error is bounded for disjoint variable clus-
ters: the error contracts in each time step [Boyen and Koller,
1998]. The lower bound of Boyen and Koller [1998] for the
contraction rate depends on the mixing rate of the stochastic
process. We use stochastic FSCs; stochasticity in their ac-
tions, and in state transitions and observations, help the DEC-
POMDP to have faster mixing and error contraction for fac-
tors containing FSC nodes and for factors affected by actions.

We investigate two different clusterings. 1. The sim-

plest approximation is to keep a cluster for each variable,
called a fully factored approximation in DBNs; it decou-
ples the FSC nodes from the world state after each update.
The finite-horizon DEC-POMDP approach based on the Fac-
tored Frontier algorithm in [Oliehoek, 2010] keeps random
variables also in a fully factored form. In the finite-horizon
approach histories are used instead of FSC nodes. Also,
in [Oliehoek, 2010] each variable is projected forward ap-
proximately, which is not efficient for FSCs, because of how
transition probabilities bind variables (see Figure 2). Here
one step is projected exactly and then the fully factorized
approximation is made. 2. More complex clusterings can
be made by studying the structure of the DBN for two time
steps. Intuitively, variables should cluster together if they
influence the same variables for the future, as this reduces
the number of “incoming” and “outgoing” influences across
clusters from one time step to the next. Variables affecting
a reward sub-function should also cluster together, because
the goal is to maximize reward. In detail, we form a cluster
for the variables involved in each reward function, transition
probability, and observation probability; as the clustering is
for state and node variables only, any action and observation
variables involved in the rewards/transitions/observations
are substituted with FSC node variables of the same
agent. For example, rewards R(s2, a2), transitions P (s′1|a1),
P (s′2|s1), and observations P (o1|s

′
1, a1) would yield clus-

ters C1 = s2, q2, C2 = s1, q1, C3 = s1, s2, after
pruning identical and subset clusters. For the problem in
Figure 2 the clustering yields P (q1, q2, s1, s2, s3, s4) =
P (s1, s3|q1, q2)P (q1, q2, s2, s4).

Clustering 2 is based on the factored DBN structure of the
DEC-POMDP problem. It yields overlapping clusters. Boyen
and Koller [1999] investigate overlapping clusters of vari-
ables formally; they conclude that if variables have weak in-
teraction, their dependency can be ignored without incurring
a large approximation error. A set of overlapping clusters cor-
responds to a conditionally independent approximation of the
full probability distribution. In the wireless network example
of Figure 2, the variable clusters resulting from clustering 2
are (s1, s3, q1, q2) and (s2, s4, q1, q2): the packet buffer sizes
and source model states are thus assumed independent be-
tween agents given their FSCs, a reasonable approximation.

The modified E- and M-steps are discussed next.

3.2 E-step

In standard EM, messages α̂(~q, s) and β̂(~q, s) are both com-

puted in the E-step. However, β̂(~q, s) would require addi-
tional approximation beyond what was discussed in Section
3.1, to sum up rewards efficiently. We avoid that by not com-

puting β̂(~q, s) explicitly in the E-step; instead, we compute it
implicitly as part of the M-step.

In the E-step it remains to compute α̃(~q, s), the approxi-
mate alpha message: we project the distribution over states
and FSC nodes α̃t(~q, s) forward for T time steps, keeping
it factorized for each t as described in Section 3.1; we then
compute the final summed discount weighted α̃(~q, s). T is
estimated essentially as in [Kumar and Zilberstein, 2010a],
but we project beliefs only forward for 2T time steps. Be-



cause of discounting, reward probability mass accumulation
decreases exponentially with time, therefore T is small. We
approximate Equation 2 to compute it in an efficient factor-
ized way for each variable cluster separately:

α̃i(Ci) =
1

∑

t γt

∑

t

γtα̃i
t(Ci) . (7)

This approximation minimizes the Kullback-Leibler (KL) di-
vergence between the approximation α̃(~q, s) and the orig-
inal weighted sum α̂(~q, s). Proof: the KL divergence is

KL(α̃(~q, s))||α̂(~q, s)) =
∑

~q,s α̃(~q, s) log α̃(~q,s)
α̂(~q,s) = const −

∑

~q,s α̃(~q, s) log α̂(~q, s). The log makes the product of vari-

able cluster probabilities a sum, and the approximation for
each cluster can be computed separately as in Equation 7.

3.3 M-step

In the M-step we substitute discount weighted beta messages

β̂(~q, s) with forward projection and computing reward prob-
abilities at each of the T time steps. Compared to the original
EM method this multiplies the time complexity of the M-step
by T , but rewards can be kept in factored form and the same
factored forward projection approximations as in the E-step
used. First we show the forward projection equations (equal
to original EM equations) and then discuss how we use them.
Project the distribution νq

ĩ
b0(s) forward t steps, with qi

fixed for time zero. Call the projected distribution φt(~q, s|q
0
i ),

where the superscript denotes time. The M-step parameter
update Equation 4 is then equal to:

ν∗
qi

=
νqi

Ci

T
∑

t=0

γt
∑

~q,s,~a

φt(~q, s|q
0
i = qi)R̂s~aπ~a~q . (8)

Project α̂(~q, s) forward t steps, with qi and ai fixed for
time zero. Call the projected distribution φt(~q, s|a

0
i , q

0
i ). The

M-step parameter update Equation 5 is then equal to:

π∗
aiqi

=
πaiqi

Cqi

T
∑

t=0

γt
∑

~q,s,~a

φt(~q, s|a
0
i = ai, q

0
i = qi)R̂s~aπ~a~q .

(9)
Project α̂(~q, s) forward t steps, with q′i, qi, and qi

fixed for time step zero. Call the projected distribution
φt(~q, s|q

1
i , q0

i , o0
i ). The M-step parameter update Equation 6

is then equal to:

λ∗
q′

i
qioi

=
λq′

i
qioi

Cqioi

T
∑

t=0

γt
∑

~q,s,~a

φt+1(~q, s|q
1
i = q′i, q

0
i = qi, o

0
i = oi)R̂s~aπ~a~q . (10)

Forward projection of φt(~q, s) is done similarly to forward
projection of α̂t(~q, s) in the E-step, i.e. using the junction tree
algorithm on the DBN of two successive time points.
In Equations 8, 9, and 10 the old parameters are multiplied

with a discounted reward probability expectation in order to
get the new parameters.
Note that M-step parameter update rules equal the ones in

the original EM, when using only one variable cluster and the
same reward scaling.

3.4 Factored Rewards

Rewards are kept in factored form. To do so, we compute
the reward or reward probability for each reward sub-function
Rk(Sk) separately at each time step in the M-step equations
8, 9, and 10. The discounted reward sum is computed from
these and scaled using minimum and maximum rewards into
a discounted reward probability expectation. Computing min-
imum and maximum rewards is not tractable from the joint
reward function for large problems, as the state space has ex-
ponential size in the number of state variables. We find a

lower bound R̃min for the complete reward function by sum-
ming all minimum rewards of theRk(Sk) and an upper bound

R̃max by summing all maximum rewards of the Rk(Sk). The
right side of Equation 8 is then

∑T
t=0 γt

∑

~q,s,~a φt(~q, s|q
0
i = qi)R̂s~aπ~a~q

=
(
∑T

t=0 γt
∑

~q,s,~a φt(~q, s|q
0
i = qi)π~a~q

∑K
k=0 Rk(Sk) −

∑T
t=0 γtR̃min

)

/
(

R̃max − R̃min

)

.

The same technique is used for Equations 9 and 10.

3.5 Properties of the approach

In general EM is guaranteed to increase or maintain the likeli-
hood, which is proportional to the discounted reward, in each
iteration. There is no such theoretical guarantee for the pro-
posed approximations provided here. However, we expect the
properties to hold better for good approximations than bad
ones. In the experiments, with sufficient running time, the
approximations converged to good stable solutions.

The overall computational complexity for one EM iteration
for N agents isO(N(N +M)T (|Q|+ |A||Q|+ |Q||O||Q|) ·
maxCliquePotential) where maxCliquePotential is de-
scribed below. Minimum memory requirements are very
small and the algorithm is parallelizable, because we can do
computations for parameters separately.

The E-step consists of propagating a belief for 2T time
steps forward. The M-step consists of propagating a belief
for each of the N(|Q| + |A||Q| + |Q||O||Q|) FSC parame-
ters for T time steps forward. Belief propagation complexity
is proportional to the number of cliques in the junction tree
of the two time slice dynamic Bayesian network, which is
O(N + M) for O(N) reward sub-functions, and is also pro-
portional to “maxCliquePotential” which denotes the size of
the largest clique potential in that junction tree (size of the
largest probability distribution over a group of variables that
form a clique).

In theory a factored DEC-POMDP could be constructed,

where “maxCliquePotential” isO(constant
√

N+M ), but in all
factored DEC-POMDP benchmarks we know of, the largest
clique has bounded size (see Section 4 for examples). When
dependencies are local, like in wireless networks, the size of
cliques in the junction tree is limited.

4 Experiments

We compare our method with two variable clusterings to
the expectation maximization (denoted “Flat EM”) method



of Kumar and Zilberstein [2010a] and to the non-linear pro-
gramming (denoted “NLP”) method of Amato et al. [2007].
We used uniform random behavior as a baseline. As infinite-
horizon benchmarks we used (modified) factored fire fight-
ing [Oliehoek et al., 2008] and a wireless network problem.

The factored fire fighting problem was introduced by Oli-
hoek et al. [2008] for finite-horizon factored DEC-POMDPs.
There are N robotic fire fighting agents and N + 1 houses in
a row. The goal is to extinguish fire in all houses. Agents are
placed between houses; each agent chooses which of the two
neighboring houses to extinguish. Each house has a fire level
from 0 to 2. An agent observes the house it tries to extinguish
is on fire, with probability 0.2 for fire level 0, 0.5 for level
1 and 0.8 otherwise. The reward is the single-step expected
reward for negative house fire levels, so the reward for house
1 depends on fire level of houses 1 and 2 and action of agent
1. In the original finite-horizon problem all houses could be
extinguished in few time steps [Oliehoek, 2010]. We used a
small variation on fire catching probabilities so that fires take
longer to put out, to emphasize the infinite-horizon nature of
the problem. If no agent is extinguishing a house, the fire
level increases by 1 with probability 0.8 if a neighbor house
is burning, or probability 0.4 if the house is burning but neigh-
bor houses are not. If one agent is extinguishing a house, the
fire level increases by 1 with probability 0.32 if a neighbor
house is burning, decreases with probability 0.12 if the house
is burning, and if the house is burning but no neighbors are,
the fire level decreases by 1. If two agents are extinguish-
ing a house, its fire is completely extinguished. For N agents
this problem has 3N+1 states, 2 actions and 2 observations
for each agent; with |Q| nodes per FSC, a joint probability
distribution over states and FSC nodes has size 3N+1|Q|N .

A wireless network problem, called inline Aloha, is intro-
duced in [Oliehoek, 2010] for finite horizon DEC-POMDPs.
Each network device has a limited size packet buffer; they
send packets on the same channel, and only neighbouring de-
vices interfere with each other. If two or more neighbouring
devices send simultaneously a collision occurs, and packets
must be resent. The reward is the negative sum of packet
buffer sizes; this penalizes delay and awards throughput. We
consider a more general problem: each device has a Markov
process placing packets into the buffer, instead of a Poisson
process. Figure 2 shows the setup for two agents. We used a
two state Markov model as source, with parameters from sim-
ulated Web and voice over IP traffic: the probability to move
from packet to idle state is 0.0741 and from idle to packet
state 0.0470. N agents are arranged so that if two neighbor
agents send at the same time, their transmissions fail and they
must resend later. An agent can either send or listen. A packet
is removed from an agents packet buffer if it sends and neigh-
bours do not. Each agent’s packet buffer has 0 to 3 packets.
If the source Markov model is in the packet state, a packet
is inserted into the buffer. The agent correctly observes the
channel state with probability 0.9 and gets wrong observa-
tions with uniform probability. Possible channel state obser-
vations are: idle, one transmitter, collision. The agent also
observes whether its packet buffer is empty. For N agents this
problem has 4N2N states, 2 actions and 6 (2×3) observations
for each agent; a joint probability distribution over states and

FSC nodes has size 4N2N |Q|N .
We ran experiments for 2, 3, 4, 5, and 10 agents on both

benchmarks problems. All methods were implemented with
Matlab. Each method was trained for two hours, 10000 it-
erations or until convergence on an AMD Opteron core with
4GB memory. In the fire fighting problem with 4 agents 6GB
was allocated for “Flat EM” to get more comparison results.
Longer, three day experiments, denoted with “10*”, were run
for 10 agents. Finite state controllers were initialized ran-
domly from a Dirichlet distribution with concentration pa-
rameter 2. Results are averages over 10 FSC initializations.
For very large problems 500 evaluation runs were run for each
FSC initialization.
Figure 3 shows the results. “Our1” and “Our2” denote the

fully factored and the overlapping variable clusterings dis-
cussed in Section 3.1. Our method performs comparably on
the small problems and solves the large problems where oth-
ers fail. The overlapping approximation produces no notica-
ble decrease in accuracy in the smaller problems compared to
flat EM and scales well to larger problems. For many agents
and large controllers fully factored clustering produces better
results than overlapping clustering, because of limited train-
ing time.
As discussed in Section 3.5 the largest clique potential af-

fects computation time. In factored fire fighting for “Our
1” and |Q| = 2 the largest found clique potential has size
|Si|

4|A|2 for N >= 2, and for “Our 2” |Si|
6|A||Q|3 for

N >= 5, where Si is the fire level. In the wireless network
problem for “Our 1” and |Q| = 2 the largest found clique
potential has size |S1|

2|S2||A|3 for N >= 3, and for “Our 2”
|S1||S2||A|3|Q|5 for N >= 4, where S1 and S2 are “packet
buffer” and “source” variables respectively.

5 Conclusions and discussion

We have introduced an efficient approximate expectation
maximization method for factored infinite-horizon DEC-
POMDPs. The method has polynomial complexity in num-
bers of state variables and agents; it works well in compar-
isons and solves large problems that current methods cannot.
Optimality bounds for approximations are future work.
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